Longitudinal relaxation and thermoactivation of quantum superparamagnets

D. Zueco and J. L. García-Palacios
Departamento de Física de la Materia Condensada e Instituto de Ciencia de Materiales de Aragón, CSIC, Universidad de Zaragoza, E-50009 Zaragoza, Spain

(Received 27 September 2005; revised manuscript received 10 January 2006; published 30 March 2006)

The relaxation mechanisms of a quantum nanomagnet are discussed in the framework of linear response theory. We use a spin Hamiltonian with a uniaxial potential barrier plus a Zeeman term. The spin, having arbitrary \(S \), is coupled to a bosonic environment (phonons). From the eigenstructure of the relaxation matrix, we identify two main mechanisms: namely, thermal activation over the barrier, with a time scale \(\Lambda^{-1} \), and a faster dynamics inside the potential wells, with characteristic time \(\Lambda^{-1} \). This permits to introduce a simple analytical formula for the response, which agrees well with exact numerical results and covers experiments even under moderate to strong fields in the superparamagnetic range. In passing, we generalize known classical results for a number of quantities (e.g., integral relaxation times, initial decay time, Kramers’ rate), results that are recovered in the limit \(S \to \infty \).

DOI: 10.1103/PhysRevB.73.104448

PACS number(s): 75.50.Xx, 75.50.Tt, 03.65.Yz, 05.40.–a

I. INTRODUCTION

Superparamagnets are nanoscale magnetic solids or clusters effectively described in terms of their net spin. They have an internal anisotropy barrier with several local equilibrium states. The spin is coupled to the environmental degrees of freedom of the host material (phonons, nuclear spins, electrons, etc.). This interaction provokes dynamical disturbances on the spin, which can “jump” over the barrier separating the potential minima, giving rise to the phenomenon of superparamagnetism. The prefix super stems from the typically large net spins of these systems (\(S \sim 10^3–10^6 \)).

Single-domain magnetic particles are an example of such nanoscale solids, having a magnetic moment of a few thousand Bohr magnetons. Due to their enormous spin, these particles can be described classically. Another example is provided by single-molecule magnets, such as Mn\(_{12}\), Fe\(_8\), or Ni\(_{12}\). Their net spin is \(S \sim 10 \), so that the classical description is no longer valid and a quantum treatment is required. Still, these molecules comprise a few hundreds of atoms, yielding an interplay of quantumness and mesoscopicity that has stimulated an intense research in recent years.

Classically, the spin surmounts the barrier \(\Delta U \) by thermal activation. When \(\Delta U/k_B T \gg 1 \) the characteristic time for this overbarrier process can be written in Arrhenius’ form \(\tau = \Lambda^{-1} \sim \exp(\Delta U/k_B T) \). This is the rotational counterpart of the Kramers’ rate in the theory of activated processes in translational systems. The classical dynamics of these systems has been studied extensively. The transverse response (i.e., perpendicular to the anisotropy axis) is nearly constant (except at ferromagnetic resonance frequencies) and equals the thermal equilibrium response. More interesting is the longitudinal response; its analysis revealed that an one-mode relaxation picture with time scale \(\Lambda^{-1} \) is not valid in general. A satisfactory description, however, is provided by a two-mode response, one mode corresponding to the overbarrier flux and the other, with a characteristic scale \(\Lambda^{-1} \), describing the faster intrawell dynamics.

Quantum mechanically, spin reversal can take place by thermal activation or tunneling (or a combination of both). Tunneling may occur from one side of the barrier to the other (Fig. 1) between resonant, equal-energy states “coupled” by transverse fields (or high-order anisotropy terms). However, as in any quantum-mechanical problem, the tunnel splitting (and hence its probability) decreases exponentially from the maxima down to the potential wells (in Mn\(_{12}\) tunneling is effective only through a few states near the barrier top, \(|m| \approx 3,4 \)). Thus, in the superparamagnetic regime \((T \gg 2 \text{ K}) \) thermal activation governs the physics: (i) out of resonance, the transitions can only be driven by thermal activation, while (ii) tunneling in resonance results in a lowering of the effective barrier by a few states \(\{\Delta U = (\varepsilon_0 - \varepsilon_{m}) \to (\varepsilon_{1,4} - \varepsilon_{m})\} \).

The theory of quantum thermal activation has focused mainly on the zero- or very-weak-field limit. Then the relaxation becomes well described by one mode—the overbarrier process. The effect of bias fields, beyond the weak-field regime, has been studied only on the thermoactivation rate, but not on the susceptibility. Thus studies of the full dynamical response including the effect of applied fields are demanded. This is the issue we address in this work: the

![FIG. 1. Energy levels of a moderate spin described by Hamiltonian (1) with \(D=0.5 \) at \(B_z=1 \). Considering \(D \) in kelvin, the values given correspond closely to those of Mn\(_{12}\).](image)
relaxation of a spin with arbitrary S in contact with a bosonic (phonon) environment. The dynamics is studied in the framework of quantum master (balance) equations with help from linear-response-theory tools. We concentrate on the case of longitudinal applied fields, giving a complete characterization of the relaxation mechanisms. The connection with the classical theory is done taking the $S \rightarrow \infty$ limit (whenever well defined) recovering known classical results.

The paper is organized as follows. In Sec. II we present the quantum balance equations. The tools of linear-response theory employed are discussed in Sec. III as well as the eigenstructure of the relaxation matrix. Its eigenvalue spectrum suggest the introduction of a two-mode description of the susceptibility (Sec. IV) following closely the approach of Kalmykov and co-workers in the classical limit. The comparison between exact numerical results and such an analytical approximation is done in Sec. V. We give a full physical interpretation of the results obtained and present also simplified expressions (for both the susceptibility and relaxation times), in the Kramers’ range $\Delta U/k_B T \approx 10^{-2}$–20, experimentally the most relevant for superparamagnets. Technical details of some calculations are relegated to the appendices.

II. RELAXATION OF A QUANTUM SPIN

A. Spin Hamiltonian and balance equations

The minimal Hamiltonian capturing the physics of superparamagnets includes a uniaxial anisotropy term plus the Zeeman coupling with external fields.20 Here we study the longitudinal relaxation in the presence of fields parallel to the anisotropy axis ($\hbar=g\mu_B=kh=1$):

$$\mathcal{H} = -D S_z^2 - B S_z.$$

(1)

In the standard basis $S_m |m\rangle=|m\rangle|m\rangle$, this Hamiltonian exhibits a spectrum e_m with a double-well structure and minima at $m=\pm S$ (for $B_z<D(2S-1)$; see Fig. 1). The barrier heights are $\Delta U_{m}=e_m-e_{m',S}$, where m' is the index corresponding to the maximum level.21 For fields $B_z \gg D(2S-1)$ the barrier disappears and the spectrum approaches the custom equi-spaced Zeeman spectrum $e_m \approx -B_z m$ for $B_z/2D \gg S$.

The relaxation induced by the spin environment is typically described by a set of balance equations for the diagonal terms of the density matrix ρ (Ref. 22):

$$\dot{N}_m = (P_{m|m+1}N_{m+1} - P_{m+1|m}N_m) + (P_{m|m-1}N_{m-1} - P_{m-1|m}N_m),$$

(2)

where $N_m = \rho_{mm} = \langle m | \rho | m \rangle$ are the level populations. The transition probabilities $P_{m|m'}$ depend on the energy differences $\Delta_{mm'} = e_m - e_{m'}$. They fulfill the detailed balance condition

$$P_{m|m'} = e^{-\Delta_{mm'}} P_{m'|m},$$

(3)

which ensures that the Gibbs distribution $N_m^{(0)} = e^{-\beta e_m}/Z$ is a stationary solution of Eq. (2) ($\dot{N}_m=0$).

B. Spin plus bath formulation

The balance equations can be obtained in a phenomenological way: postulating the form (2) and then calculating the probabilities $P_{m|m'}$ by means of Fermi’s golden rule.23 They can also be obtained in a more rigorous way.14,19,24 One starts from a total Hamiltonian representing the spin and its environment:

$$\mathcal{H}_{\text{tot}} = \mathcal{H}(S) + \sum_q V_q f_q(S)(a_q^+ + a_q) + \mathcal{H}_B.$$

(4)

Here $\mathcal{H}_B = \sum_q \omega_q a_q^+ a_q$ is a bosonic bath modeling the excitations of the host material, $f_q(S)$ the spin-dependent part of the interaction, and V_q coupling constants. If the spin-bath coupling is weak, the equation of motion for the density matrix ρ can be obtained within perturbation theory. After the secular (rotating-wave) approximation and in the absence of transverse fields, the equations for each (sub)diagonal of the density matrix, $\rho_{m,m\pm k}$, become uncoupled form one another.25 In particular the populations ρ_{mm} form a closed set of kinetic equations, like Eq. (2).26,27

In this frame, the transition probabilities are given by

$$P_{m|m'} = |\bar{\ell}_{m,m'}|^2 W_{m|m'},$$

(5)

where $\bar{\ell}_{m,m'}$ are the matrix elements of the spin-dependent part of the coupling $F(S)$. When the spectral density of the bath, $J(\omega) = \pi \sum_q |V_q|^2 \delta(\omega - \omega_q)$, has the form $J = \lambda \omega^\kappa$ (λ is a spin-bath coupling strength), the rates $W_{m|m'} = W(\Delta_{mm'})$ are given by the following universal function:

$$W(\Delta) = \frac{\lambda \Delta^\kappa}{e^{\beta \Delta} - 1}.$$

(6)

When $\kappa=1$, the bath is Ohmic, while if $\kappa>1$, it is called super-Ohmic.28,29

Having molecular magnets in mind, we will consider a super-Ohmic bath ($\kappa=3$) and the coupling $F(S) \equiv (S_z S_x + S_y S_y)$, for which $\bar{\ell}_{m,m+1} = (2m+1)/2(S(S+1)-m(m+1))$.13,14,25 This models the interaction with three-dimensional (3D) phonons including one-phonon emission and absorption processes, the relevant ones at low temperatures.30 The modifications required to include other structures of the coupling, or other baths, would only involve the $P_{m|m'}$ and are easy to carry out.

C. Classical limit

As we would like to make the connection of our calculations with known results for classical superparamagnets, let us briefly consider the $S \rightarrow \infty$ limit of the balance equations (2). To this end we introduce the scaled anisotropy and field parameters:

$$\sigma = \beta DS^2, \quad \xi = \beta B S, \quad h = \frac{\xi}{(2 - 1/S)\sigma}.$$

(7)

Then the scaled Hamiltonian reads $\beta H = -\sigma(m)/S^2 - \xi(m/S)$. The first two quantities σ and ξ are equivalent to those used in the description of magnetic nanoparticles.7-9 The “reduced field” h is B_z measured in terms of the field for barrier disappearance $D(2S-1)$; it differs from the usual classical definition $h_c = \xi/(2 \sigma)$ due to the discreteness of the energy levels.
The quantities σ and ξ are kept constant when taking the limit $S \to \infty$. Then $m/S \to z$, while $h \to h_{cl}$ and $\beta H \to -\sigma z^{2} - \xi z = u(z)$. Physically more and more levels are introduced, towards a continuum, while keeping the anisotropy barrier and amount of Zeeman energy constant. In this limit the transition frequencies $\Delta_{m,m+1}$ tend to zero. Then, no relaxation is left in the classical case if $P_{m,m+1}(0)=0$. Such is the case for a pure super-Ohmic environment. A well-defined classical limit is obtained for an Ohmic bath, such as, for instance, in the Kondo coupling to electron-hole excitations.29 Besides, just adding two-phonon (Raman) processes in the interaction to phonons one gets $P_{m,m+1}(0) \neq 0$ too. In these cases, the balance equations (2) go in the limit $S \to \infty$ over a partial differential equation

$$\frac{\partial W}{\partial t} = \frac{\partial}{\partial z} \left[G(z) \left(\frac{\partial W}{\partial z} + \frac{u}{z} W \right) \right],$$

with $W(z, t)$ the probability distribution of z and $P_{m,m+1}(0)/S^{2} \to G(z)$ (see Appendix A for the details). For $G(z) \propto (1-e^{-z})$, Eq. (8) corresponds to Brown’s Fokker-Planck equation for classical superparamagnets in the absence of transverse field3 and to the rotational kinetic equations used in dielectric relaxation.31

III. ANALYSIS OF THE LONGITUDINAL RESPONSE

The purpose of this section is to present the theoretical tools necessary to describe the spin relaxation. To make a system to “relax” we must put it first in a nonequilibrium situation (e.g., subjecting it to a perturbation in the external field). The response to this probe informs about the relaxation mechanisms of the system. We will use linear-response theory to32 and the analysis of the eigenstructure of the balance equations.24

Equation (2) is indeed a set of linear differential equations for the level populations N_{m}. In matrix form it can be written as $dN/dt = -\mathcal{R}N_{m}$ with $[N]_{m} = N_{m}$ and \mathcal{R} the relaxation matrix. We assume \mathcal{R} diagonalizable and express the solution for N_{m} as

$$N = \sum_{i=1}^{2S} c_{i} e^{-\lambda_{i} t} |\lambda_{i}\rangle + |\lambda_{0}\rangle,$$33 with λ_{i} the eigenvalues of \mathcal{R} and $|\lambda_{i}\rangle$ the associated eigenvectors.33 The last term in Eq. (9) corresponds to the equilibrium solution—i.e., $|\lambda_{0}\rangle = N_{0}^{\text{eq}} = e^{-\beta e_{0}}$. The relaxation matrix \mathcal{R} must give Re(λ_{i}) >0, ensuring that the asymptotic solution will be the equilibrium one.24

A. Linear response theory

For the effect of an applied perturbation to reflect the intrinsic properties of the system the force should be suitably small. The weakness of the probe has the technical advantage of allowing one to use linear-response theory. Several “experiments” can be made to study the response: namely, subjecting the system to a sudden constant “force” or by removing a force after having kept it on for a long time. One can also consider the response to a force oscillating with frequency Ω. Linear-response theory provides the close relationship between these types of responses.

Assume first that we have excited the spin system with a constant field ∂B_{z}, keeping it on until the system is equilibrated (in a total field $B_{z}^{0} + \partial B_{z}$). Then, we switch the perturbation off and measure the response:

$$\Delta M_{z}(t) = \langle M_{z}(t) \rangle - \langle M_{z} \rangle_{0}. \quad (10)$$

Here $\langle M_{z} \rangle_{0}$ is the statistical average at equilibrium with $B_{z} = B_{z}^{0}$ and $\langle M_{z}(t) \rangle = \sum_{m} N_{m}(t)$. Since the asymptotic solution for the N_{m} is the equilibrium one in $B_{z} = B_{z}^{0}$, then $\langle M_{z} \rangle_{0} = \langle M_{z}(t \to \infty) \rangle$. Indeed, introducing the solution (9) for $N_{m}(t)$ in $\langle M_{z}(t) \rangle$, we find

$$\Delta M_{z} = \chi_{c} \partial B_{z} \sum_{i=1}^{2S} a_{i} e^{-\lambda_{i} t}, \quad (11)$$

where $\chi_{c} = \partial M_{z}(0)/\partial B_{z}$ is the equilibrium susceptibility. In linear response χ_{c} equals $[(M_{z}(0) - (M_{z}(\infty)))/B_{z}]$. The coefficients a_{i} are given in terms of the eigenvalues of the relaxation matrix \mathcal{R} and the coefficients c_{i} by [see Eq. (9)]:

$$a_{i} = \sum_{m=-S}^{S} m |\lambda_{i}\rangle_{m}. \quad (12)$$

Here c_{i} has been redefined as $\tilde{c}_{i} = c_{i}/\partial B_{z}$, to get rid of dependences on ∂B_{z}. The coefficients a_{i} obey the normalization condition $\sum_{i=1}^{2S} a_{i} = 1$ which follows from the definition (12) and the equality $\chi_{c} = \sum_{m} c_{m} |\lambda_{m}\rangle_{m}$. The \tilde{c}_{i} can be evaluated putting $t=0$ in Eq. (9). The initial condition is the system equilibrated at $B = B_{z}^{0} + \partial B_{z}$. The occupation numbers can be written in linear approximation as $N_{m}(t=0) \approx N_{0}^{\text{eq}}(t=0) + \Delta B_{z} \partial B_{z} N_{0}^{\text{eq}}(t=0) / \partial B_{z}$, so that the \tilde{c}_{i}’s obey

$$\frac{\partial N_{m}(0)}{\partial B_{z}} = \sum_{i=1}^{2S} \tilde{c}_{i} |\lambda_{i}\rangle_{m}, \quad (13)$$

which is an overdetermined set of $2S+1$ linear equations (there are $2S$ c_{i}’s). Both $|\lambda_{i}\rangle$ and then \tilde{c}_{i} can be obtained using standard linear-algebra numerical routines.34

Finally, let us consider the relation with the other relaxation experiments. The case with the system equilibrated at $B = B_{z}^{0}$ and a perturbation ∂B_{z} suddenly added is just the complementary situation to that discussed above. More interesting is the oscillating field probe. Here we define the dynamical susceptibility $\chi(\Omega)$ as the coefficient which relates (in the frequency domain) response and excitation:

$$\Delta M_{z}(t) = \chi(\Omega) \partial B_{z} \langle \tilde{g}(t) \rangle \Rightarrow \chi(\Omega) \int_{0}^{\infty} \text{d}t e^{-i\Omega t} \langle \tilde{g}(t) \rangle.$$

Then the response to a periodic perturbation, $\partial B_{z}(t) \propto e^{-i\Omega t}$, is given by

$$\chi(\Omega) = \chi_{c} \left[1 - i\Omega \int_{0}^{\infty} \text{d}t \frac{\Delta M_{z}(t)}{\Delta M_{z}(0)} e^{-i\Omega t} \right] = \chi_{c} \sum_{i=1}^{2S} \frac{a_{i}}{1 + i\Omega \lambda_{i}}. \quad (14)$$

Equations (11) and (14) provide the relation between the different relaxation experiments. The analysis of the response gives the time scales λ_{i}’s and the weights a_{i}’s of the modes involved in the relaxation process. Note finally that
FIG. 2. Eigenvalues of the relaxation matrix R for a spin $S = 10$ with $\sigma = \beta D S^2 = 15$ at zero field (solid symbols) and at $h=0.2$ (open symbols, normalized by the spin-bath coupling $\lambda = 10^{-3}$). The arrows mark the lowest nonvanishing eigenvalue Λ_1. Inset: field dependence of the coefficients a_i. Neither Λ_i nor a_i depends on the external probe but only on the intrinsic dynamics of the system, as was intended.

B. Eigenvalue and eigenvector structure

Attending at the evolution of N_i in Eq. (9), we see that the eigenvectors of R determine how the redistribution of the levels’ populations occurs ($[\Delta N]_{nm} = \Lambda_{nm}$), while the eigenvalues give the associated time scales Λ_{-1}. They can be obtained by numerical diagonalization of R and are plotted, indexed in increasing order, in Figs. 2 and 3 for $S=10$.

Apart from the zero eigenvalue (not plotted), the eigenvalues correspond to two, well-separated, sets of time scales (on the one side Λ_1 and $\Lambda_2 \rightarrow \Lambda_{25}$ on the other). From the structure of the corresponding eigenvectors (Fig. 3) we see that the dynamics associated with $|\Lambda_1\rangle$ produces an increment in the population at the bottom of one well and depopulation at the other (or the other way around, since the global sign of the eigenvectors does not matter). Since this transfer occurs across the barrier, the mode $|\Lambda_1\rangle$ is associated to the overbarrier dynamics. On the other hand, $|\Lambda_2\rangle$ represents the transfer from $m=0$ to both wells or vice versa (not changing the net population of the wells). Further, $|\Lambda_3\rangle$ and $|\Lambda_4\rangle$ account for dynamics involving $m = \pm 1$ and $m = \pm S$, respectively, and so on. Eventually $|\Lambda_{17}\rangle - |\Lambda_{20}\rangle (20 = 2S)$ involve the levels closer to the bottom of the wells. All these processes are called intrawell ones, since no activation over the barrier is involved. Thus the slow, and well-separated, time scale Λ_1 corresponds to the overbarrier dynamics, whereas the set of close (in logarithmic scale) intrawell processes is responsible for the fast dynamics.

Let us briefly comment on two aspects of the eigenstructure. First, apart from Λ_0, Λ_1, and Λ_2, the remaining eigenvalues appear doubly degenerated (at $B_z=0$). Physically each member of the degenerate pair describes identical processes in different wells, and at zero field both wells are equivalent. When $B_z \neq 0$ the equivalence is broken and the degeneration lifted.

Second, a connection with the classical case can be drawn. The Fokker-Planck limit (8) of the balance equations (2) defines a Sturm-Liouville problem. From the corresponding theory we know that the eigenvalues of the differential operator are real and can be ordered: $\Lambda_0^d \leq \Lambda_1^d \leq \Lambda_2^d \leq \cdots$. Their corresponding eigenvectors $|\Lambda_i^d\rangle$ have i nodes as a function of $z (\sim m/S)$. Now, for $B_z=0$ the problem is invariant under the transformation $z \to -z$. Then, the parity operator and the relaxation matrix can be diagonalized si-
multaneously, so that there exists a basis where the eigenstates are even or odd under $z \rightarrow -z$. Well, $|\Lambda^c|$ (the Gibbs solution) is an even function with zero nodes. Next $|\Lambda^d|$ (the overbarrier transfer) is an odd function since it has 1 node, $|\Lambda^d|$ an even function (with 2 nodes), and so on. These features are retained in the discrete ($S<\infty$) case (Fig. 3). Actually, from the degenerate states (e.g., $|\Lambda_2\rangle$ and $|\Lambda_4\rangle$) we can form the symmetrical and antisymmetrical combinations, $|\Lambda_3\rangle=|\Lambda_4\rangle$, fully recovering the even-odd picture just discussed.

IV. ANALYTICAL APPROACH

In general, the spin response will involve 2S modes [see Eqs. (11) and (14)]. However, taking into account the eigenvalue structure of Sec. III B, we can approximate the response in terms of two main processes: one accounting for the overbarrier transfer, with characteristic time Λ^{-1}_1, and a second one describing the intrawell dynamics with a time scale Λ^{-1}_w. The latter is a sort of collective mode which describes the close set of intrawell processes (Fig. 2). This motivation for the two-mode approximation is reinforced by the good results it yields in the classical limit.9

A. Bimodal approximation

Suppose that the relaxation can be approximated by two exponentials with normalized weights a and $1-a$,

$$\Delta M_\ell (t) \equiv \chi_z \delta B_c \left[a e^{-\Lambda_1^{-1} t} + (1-a) e^{-\Lambda_w^{-1} t} \right]$$

or, in the frequency domain, by

$$\frac{\chi(\Omega)}{\chi_z} \equiv \frac{a}{1 + i \Omega \Lambda_1^{-1}} + \frac{1-a}{1 + i \Omega \Lambda_w^{-1}}.$$ \hspace{1cm} (15)

This bimodal description is exact for $S=1$ ($2S=2$; see Appendix D). In general a and Λ_w are coefficients to be identified with known quantities of the problem. This can be done following the approach of Kalmykov and co-workers in the classical case.9 They observed that we have two unknown parameters (a and Λ_w), while $\chi(\Omega)$ can be found analytically in two limits: namely, the low-Ω and high-Ω ranges. Then, from the susceptibility in these limits, the parameters a and Λ_w in the two-mode approximation can be obtained.

The low-frequency behavior of $\chi(\Omega)$ is given by [set $\Omega =0$ in the integrand of Eq. (14)]

$$\chi(\Omega) \equiv \chi_z (1 - i \Omega \tau_{\text{int}} + \cdots),$$ \hspace{1cm} (17)

with τ_{int} the integral relaxation time. This is defined as the area under the magnetization relaxation curve after a sudden change δB_c in the field at $t=0$:

$$\tau_{\text{int}} = \int_0^\infty dt \frac{\Delta M_\ell (t)}{\Delta M_\ell (0)}.$$ \hspace{1cm} (18)

Next, in the high-Ω limit the susceptibility can be approximated by [expand $\Delta M_\ell (t)$ around $t=0$ in Eq. (14) and use $\int_0^\infty dt e^{-\Omega t} = n! / (i \Omega)^{n+1}$]:

$$\chi(\Omega) \equiv \chi_z \frac{i}{\Omega \tau_{\text{eff}}} e^{-\Omega \tau_{\text{int}}}, \quad \tau_{\text{eff}}^{-1} = \frac{d}{dt} \left(\frac{\Delta M_\ell (t)}{\Delta M_\ell (0)} \right)_{t=0}.$$ \hspace{1cm} (19)

Note that $1/\tau_{\text{eff}}$ is (minus) the initial slope of the relaxation curve (short times \rightarrow high frequencies).

On forcing the proposed formula (16) to obey the exact asymptotic equations (17) and (19), one finds $\tau_{\text{int}} = a/\Lambda_1 + (1-a)/\Lambda_w$ and $\tau_{\text{eff}} = a \Lambda_1 + (1-a) \Lambda_w$. These equations can be solved for a and Λ_w, yielding

$$a = \frac{\tau_{\text{int}}/\tau_{\text{eff}} - 1}{\Lambda_1 \tau_{\text{int}} + 1/(\Lambda_1 \tau_{\text{eff}}) - 2^{-1}},$$ \hspace{1cm} (20)

$$\Lambda_w = \frac{\tau_{\text{eff}}^{-1} - \Lambda_1 \tau_{\text{eff}}}{1 - \Lambda_1 \tau_{\text{int}}^{-1}}.$$ \hspace{1cm} (21)

This reduces the problem to the obtainment of the three characteristic times τ_{int}, Λ_1^{-1}, and τ_{eff}. Naturally, they could be expressed in terms of the relaxation eigenvalues: $\tau_{\text{int}} = \sum a_i/\Lambda_i$ and $\tau_{\text{eff}} = \sum a_i \Lambda_i$. However, the goal is to bypass the eigenvalue (numerical) computation by calculating them directly (including Λ_1). This will result in a closed expression for the bimodal ansatz (16).

B. Calculation of τ_{int}, Λ_1, and τ_{eff}

In the classical limit, Brown3 calculated the lowest non-vanishing eigenvalue Λ_1 in the high-barrier case, while Coffey and co-workers31 derived τ_{eff} (V/σ). On the other hand, Garanin calculated τ_{int} for a system of quantum balance equations to which Eq. (2) can be reduced. In this subsection we generalize those results for Λ_1 and τ_{eff} to the quantum case (recovering the classical formulas in the limit $S \rightarrow \infty$), and extend the result for τ_{int} to the generic system (2) of balance equations.

1. Integral relaxation time, τ_{int}

The calculation of τ_{int} is based on the susceptibility can be calculated analytically up to first order in Ω. On so doing, one finds, for τ_{int} (see Appendix B),

$$\tau_{\text{int}} = \frac{\beta}{\chi_z} \sum_{j=m=0}^{S} \frac{\Phi_m^0}{N_{m-j}^{(0)} P_{m+1}^{(0)}},$$ \hspace{1cm} (22)

where $\Phi_m = \sum_{m'=0}^{m} N_{m-j}^{(0)} (M_z - j)$. Notice that Φ_m only involves equilibrium averages, being independent of the spin-bath coupling model.

The dependence of P_{m+j} in the denominator on the energy differences gives minima in the relaxation rate at the crossing fields.\(^{37}\) They must not be confused with the maxima in the rate due to tunneling.10-12

2. Lowest eigenvalue Λ_1

The calculation of Λ_1, which corresponds to the Kramers’ rate, constitutes an important task by itself. Needless to say its relevance in the theory of activated processes.5,6 In the classical case it is possible to derive an expression for Λ_1, giving good results for not too strong fields.38 In the quantum case, these exists a closed analytical expression for Λ_1 only
for $B_z=0$ due to Villain and co-workers,17 which was later on reexamined and improved by Würger.18 Their result can be written in a form appropriate for future comparison as

$$\Lambda_1^{-1} = \sum_{m=0}^{S-1} \frac{\theta_m}{P_{m+1}^{(0)} P_{m+1}^{(1)}},$$

with $\theta_m = \sum_{j=0}^{S} N_j^{(0)} N_j^{(1)}$.

Both Λ_1 from Eq. (23) and τ_{int}^{-1} from Eq. (22), together with the exact numerical eigenvalue Λ_1 are displayed in Fig. 4 showing their agreement at $B_z=0$. However, as we increase the field τ_{int}^{-1} and Λ_1 deviate from each other. This is natural; should $\tau_{\text{int}}^{-1} = \Lambda_1$, the response would be always described by one mode: namely, the overbarrier (i.e., $a \equiv 1$ in the bimodal approximation). The same departure was found in the classical limit.7,8 The physical reason for the disagreement between τ_{int}^{-1} and Λ_1 is the intrawell processes entering into scene at a finite $h=H_0/(2S+1)$. Formally, at $h \ll 1$, the quantity $\Phi_m^{(s)} / P_{m+1}^{(0)} P_{m}^{(0)}$ in Eq. (22) is highly peaked at the barrier ($m=m_0$) and it is well approximated accounting only for the overbarrier process; then, $\tau_{\text{int}}^{-1} \approx \Lambda_1$. Increasing the field, however, $\Phi_m^{(s)}$ develops a second peak around the bottom of the lower well, $m=S-1$, and the sum acquires a relevant contribution from the intrawell processes9 (see also Fig. 7 in Appendix C).

Therefore, if we want to have a closed formula under the bimodal approximation, we need to generalize the analytical expression for Λ_1 to arbitrary fields. To this end, one can seek for an observable where only overbarrier processes are reflected; then, its associated integral relaxation time may approximate well Λ_1. This worked in the classical case, where Garanin3 introduced the so-called new integral relaxation time τ_3. We will follow his steps to generalize τ_3 to the quantum case, choosing as observable the difference of the well populations $\Delta = N_+ - N_-$. To obtain the associated integral relaxation time, we need the low-Ω behavior of Δ, involving the “static” response $\chi_\Delta \sim \partial_B^2 \Delta$ [cf. the case of the magnetization (17)]:

$$\chi_\Delta(\Omega) = \frac{\partial \Delta(\Omega)}{\partial B_z} \equiv \chi_\Delta(1 - i\Omega \tau_3 + \cdots).$$

(24)

The calculation is carried out in Appendix B, yielding

$$\tau_3 = \sum_{m=0}^{S-1} \frac{\Phi_m^{(0)} \Phi_m^{(1)}}{\chi_\Delta(m=0)} P_{m+1}^{(1)} P_{m+1}^{(0)}$$

(25)

with $\Phi_m^{(s)} = \sum_{j=-S}^S V_j^{(s)} (M_z - j)$, as before, but $\Phi_m^{(1)} = \sum_{j=-S}^S V_j^{(1)} |\Delta - \text{sgn}(j-m_0)|$. It results that $\Phi_m^{(s)}$ is nearly constant. Then the sum in Eq. (25) has only one main contribution (around the barrier $m=m_0$, due to the minima in $P_{m+1}^{(1)}$), not reflecting the dynamics inside the wells, as it was intended.

Figure 4 also shows that at zero field, τ_3 matches Würger’s result (23) for Λ_1. In fact, it can be seen analytically that our $\tau_3|_{\Omega=0}$ reduces in the high-barrier regime to Eq. (23) (see Appendix C). Another limit where an expression for Λ_1 is available is the classical case. Taking the limit $S \rightarrow \infty$ in τ_3 we obtain, in the high barrier regime ($\sigma \gg 1$),

$$\Lambda_1 \equiv \pi \sigma^{1/2} \sqrt{2G(h)}[(1+h) \exp\{-\sigma(1+h)^2\} + (1-h) \exp\{-\sigma(1-h)^2\}]$$

(26)

For $G(z)=(1-z^2)/2 \tau_B$ (Appendix A), we recover Brown’s result for Λ_1. Finally, in the quantum case and $h \neq 0$, we have to check τ_3 with the numerical results for $\Lambda_1^{(1)}$; this is also done in Fig. 4. There we see that, in contrast to the ordinary integral relaxation time, $\tau_3^{(1)}$ provides a remarkable approximation for the Kramers’ rate at all fields.

3. Effective time τ_{eff}

We conclude with the effective time. By definition τ_{eff} is basically the initial slope of the magnetization; see Eq. (19). Our initial condition is the system at thermal equilibrium with $B_z=B_z^0+\delta B$. Then, $N_m^{(0)}(0)$ is known, whence $N_m^{(0)}(0)$ follows directly [through Eq. (2)]. Next, $dM_z/dt|_{t=0}$ is calculated from $N_m^{(0)}(0)$ (see Appendix B for details). From these one gets
\[\tau_{\text{eff}}^{-1} = -\beta \sum_{m=-S}^{S} N_m^{(0)} P_{m+1|m}, \]

which is the expression needed for \(\tau_{\text{eff}} \).

The classical \((S \gg 1)\) limits of Eqs. (22), (25), and (27) recover the expressions derived in several works from the Fokker-Planck equation (8). They are the sought analytical expressions for the characteristic times \(\tau_{\text{int}}, \Lambda_1^{-1}, \) and \(\tau_{\text{eff}} \) in the quantum case. Together with Eqs. (20) and (21) they provide a closed formula for the response under the bimodal approximation, which can be checked against exact numerical results.

V. RESULTS FOR THE DYNAMIC RESPONSE

In this section we present the full dynamical response of the spin. We compare exact numerical results with the approximate bimodal formula constructed in the previous section. We also present simplified expressions in the Kramers' regime.

The basic phenomenology is shown in Fig. 5. At weak fields the response is dominated by the overbarrier mode (the intrawell modes are active, but by symmetry they do not contribute to the average response \(\langle M_z \rangle \)). Increasing the field or lowering \(T \) (raising \(\sigma \)) the fast modes show up in the response, leading to a peak at high frequencies.

To obtain numerically exact results for the response [see Eqs. (11)–(14)], we compute numerically all the eigenvalues \(\Lambda_i \) and amplitudes \(a_i \). Comparison between them and the analytical formula (16) is shown in Fig. 5. The left panels display the susceptibility spectra in various longitudinal fields at large \(\sigma \) and the agreement with the bimodal approximation. The \(\sigma \) dependence is presented in the right panels for a fixed \(h \). The slow dynamics at \(\Omega \sim \Lambda_1 \) is always captured by the formula. However, reducing sufficiently \(\sigma \) the bimodal approximation starts to fail at high frequencies \(\Omega \sim \Lambda_w \). Specifically, the second peak in the (exact) imaginary part is no longer a single Lorentzian and a broadening with respect to the analytical curve is observed.

The reason for the overall agreement between the bimodal approximation and the exact results can be understood as follows. The overbarrier dynamics must be well captured, since it is exactly given by \(\Lambda_1 \), while \(\Lambda_1 \) is remarkably approximated by \(\tau_{\Delta} \) (see Sec. IV). On the other hand, in the two-mode approximation we assumed that the intrawell

FIG. 5. Real parts (top) and imaginary parts (bottom) of the dynamical susceptibility of a spin \(S=10 \) with \(\lambda=10^{-9} \) at \(T=0.1 \). The symbols represent exact numerical results and the solid lines the bimodal formula (16). Left panels: spectra at \(\sigma=15 \) in various applied fields \(h = B_\perp/D(2S-1) \). The thick dashed lines are again the bimodal formula but with the simplified \(a, \Lambda_1, \) and \(\Lambda_w \) from Eqs. (29)–(31). Right panels: spectra for a fixed field \(h=0.2 \) at various \(\sigma \).
modes are close to one another, so that they can be described with the collective scale Λ_w. We have checked that their degree of closeness does not depend on σ so as to explain the disagreement for low σ and high Ω in Fig. 5. What happens is that at high σ the bimodal approximation works very well because only intrawell processes involving a few lowest well states are active, yielding $a_i \sim 0$ for the rest of the modes. In the example shown, $S=10$, one indeed sees that at $\sigma=15$, only a_{17} and a_{18} contribute [involving $m=\pm S$ and $m=\pm (S-1)$] and to a smaller extent a_{16} and a_{19} (see the inset in Fig. 2). But lowering enough the barrier, more and more intrawell modes play a role, broadening the curve. Anyway, we have to go as down as to $\sigma=6$ to find large disagreements, while most experiments in these systems are performed at $\sigma \approx 10-20$.

A. Intrawell versus overbarrier processes

Let us study in more detail the relative importance of the intrawell and overbarrier dynamics in the response, a subject that received some attention in the classical case. The competition between them becomes mediated by a in our Eq. (16). In particular when $a=1$ only relaxation across the barrier takes place while at $a=0$ the opposite occurs.

From Fig. 5 we learned that the relative weight of the two modes depends both on the field and the barrier height. Therefore, we need to assess the h and σ dependences of a. This is drawn in Fig. 6 for different S, along with the numerical a_i, and the main features are as follows. Concerning the h dependence, the transition from overbarrier-dominated ($a \rightarrow 1$) to intrawell-dominated response ($a \rightarrow 0$) takes place in a relatively small interval of h. Second, the transition occurs at larger values of h for smaller S [approaching the classical result $h_c \approx 0.15-0.17$ (Refs. 7 and 8)]. In addition, the σ dependence of a shows that the value of S is also crucial in the low-temperature limit $\sigma \rightarrow \infty$. There a tends to 1 or to 0 depending on S.

Let us try to explain qualitatively these results, invoking a statistical mechanical argument. Inspecting the level structure of the spin Hamiltonian, we see that at $B_z=D$ the levels $-m$ and $m-1$ become degenerated. Such field corresponds to $[h=B_z/D(2S-1)]$

$$h^* = \frac{1}{2S-1}. \quad (28)$$

Then, if $h < h^*$, the first excited level is $m=-S$ (in the other well), whereas if $h > h^*$, it becomes $m=S-1$ (inside the same well). At large σ it suffices to consider the fundamental state and the first excited level only. Then, when $\sigma \rightarrow \infty$, if $h < h^*$, intrawell processes are inhibited, because only $m=S$ and $m=-S$ are populated, giving $a=1$. On the contrary if $h > h^*$, the states that contribute are $m=-S$ and $m=S-1$, in the same well, so that $a=0$.

The above argument also serves to explain the large σ limits in Fig. 6, because the field used, $h=0.15$, is lower than h^* for $S=1,2,3$ and greater than $h^*(S \approx 4)$. On the other hand, we have $h^* \rightarrow 0$ when $\sigma \rightarrow \infty$. This is in agreement with the classical results where $a \rightarrow 0$ as soon as one makes $h \neq 0$ in the limit $\sigma \rightarrow \infty$. Eventually our statistical-mechanical argument also explains the S dependence of the field for the onset of intrawell modes (at higher h the smaller S is). Specifically, it gives a step function $\Theta(h^*-h)$ at $\sigma \rightarrow \infty$, while the actual curves can be understood as a smoothing of such an...
abrupt step due to finite temperature (Fig. 6).

B. Approximate expressions in the Kramers’ regime

To present approximate formulas for the two time scales of the response, Λ_1 and Λ_w, in the high-barrier (Kramers) regime and for the parameter a controlling their relative weight. In this regime a is well described by the formula (see Appendix C)

$$a^{-1} \equiv 1 + \frac{1}{4S^2} e^{\sigma(q+1)^2(h-h')},$$

where $q=(S-1)/S$ and $h'=1/(2S-1)$. Returning for a moment to the previous discussion, note that this formula captures the h, σ and S dependences of Fig. 6; for instance, it approaches the step function $\Theta(h-h')$ when $\sigma \to \infty$ and gives its smoothing for finite σ.

Let us go now into the Kramers’ rate. At low temperatures Δ_1 can be expressed in terms of the barriers $\Delta U_k = \varepsilon_{m_k}$ relative to H_S in a clear Arrhenius form (Appendix C)

$$\Lambda_1 \equiv (e^{-\beta\Delta U_+} + e^{-\beta\Delta U_-}) \left(\frac{1}{P_{m_k+1|m_k}} + \frac{1}{P_{m_k-1|m_k}} \right)^{-1}.$$

(30)

Recall that the transition probabilities $P_{m|m'} = |\tilde{e}_{m,m'}|^2 W_{m|m'}$ [Eq. (5)] involve the coupling matrix elements $\tilde{e}_{m,m+1} = (2m+1)S(S+1) m (m \pm 1)$ and the rates $W_{m|m'} = \lambda \Delta_{m,m'}^k (e^{\beta \Delta_{m,m'}^k} - 1)$. Equation (30) generalizes the zero-field result of Villain and co-workers. In addition, with the appropriate $\tilde{e}_{m,m+1}$ and the spectral index κ (in $J = \lambda \omega^a$, our formula is also applicable to other couplings and baths.

Finally, we turn to the fastest mode Λ_w. In order to fix some time scale in the problem, we measure Λ_w relative to Λ_1. Under the same assumptions used to obtain the above a and Λ_1, we find for Λ_w/Λ_1,

$$\frac{\Lambda_w}{\Lambda_1} = \frac{1}{4S^2} a \left(\frac{1}{P_{m_B+1|m_B}} + \frac{1}{P_{m_B-1|m_B}} \right) \times (e^{\beta \Delta U_+} P_{S\rightarrow S-1} + e^{\beta \Delta U_-} P_{S\rightarrow S+1}).$$

(31)

Note that Eq. (29) depends only on parameters of the spin Hamiltonian, being independent of the coupling model (as in the classical case); naturally, the same holds for the barriers ΔU_k. However, the transition rates at the wells $P_{m_S+1|m_S}$ and at the barrier $P_{m_S-1|m_S}$ are quite sensitive to the interaction. Thus Λ_1 or the ratio Λ_w/Λ_1 can be used to compare different couplings or baths.

Formulas (29)–(31) provide simple expressions appropriate for the experiments in the superparamagnetic range, out-of-resonance conditions. Their reasonable agreement with the exact numerical results can be seen in Fig. 5 (dashed lines). It is worth recalling that their derivation assumes that the first few levels are populated and they are therefore valid for $\sigma/S \simeq 1$ (Appendix C). Then, in contrast to their exact counterparts, one cannot use Eqs. (29)–(31) to take the classical limit. Still, they result to be accurate enough down to $\sigma/S \simeq 1$. Thus, they allow one to make the connection with several classical results for $\sigma \gg 1, 42, 43$

Under resonant conditions ($\varepsilon_{m_0} = \varepsilon_{m_0-2}$), a transverse field would induce tunneling and the balance equations lose the three-term recurrence form which allowed us to derive the closed-form solutions. However, we expect that our expressions would still work after some modifications. For instance, the exponential decrease of the tunnel probability as m increases into the wells makes tunneling effective only through a few states near the top of the barrier. Then, we could try our formulas replacing m by not by the barrier top, but for the level at which the activated tunnel proceeds $|m| \leq 3.4$ in Mn_12.

VI. SUMMARY

The relaxation theory of a quantum superparamagnet has been developed. We have studied the minimal model: namely, a spin of arbitrary S with uniaxial anisotropy in a longitudinal field. Scarce results were available for the full dynamical response in the presence of external fields. Still, the popular single-Debye form for the susceptibility spectra could be expected to fail, in analogy with the classical situation. Here, these topics have been addressed in the frame of quantum balance equations grounded on the system-plus-bath approach to quantum dissipative systems.

We began by analyzing the eigenstructure of the relaxation matrix associated to the linear system of balance equations. The form of the eigenvectors allowed us to identify and classify the different relaxation mechanisms. In this way, full content has been given to popular statements about the relation between eigenvalues and relaxation modes. Besides, we have put it in connection with the Sturm-Liouville eigenstructure of the classical Fokker-Planck limit (parity, nodes, etc.).

Two main processes emerge: activation over the anistropy barrier, with a time scale Λ_1^{-1}, and a bunch of close (in logarithmic scale) fast intrawell modes, with an “average” time scale Λ_w^{-1}. The identification and separation of the relaxation constants suggest the introduction of an approximate two-mode expression for the dynamical susceptibility. Then, following the approach of Kalmykov et al., in the classical case, the parameters of that formula have been expressed in terms of three characteristic quantities: integral relaxation time τ_{int}, lowest nonvanishing eigenvalue Λ_1 (Kramers’ rate), and initial slope of the magnetization decay τ_{eff}. The usefulness of the classical approach stemmed from these three times being obtainable analytically (which was done over the years for different relevant situations). Then, we were left with the task of finding them all in analytical form in the quantum domain. This has been accomplished here, obtaining formulas for the quantum τ_{int}, Λ_1 (via the integral relaxation time for the population difference τ_3), and τ_{eff}, which recover the classical results when taking the $S \to \infty$ limit. With them, one has a bimodal equation for the dynamical susceptibility of a spin with arbitrary S where all ingredients can be expressed in closed form.

We have compared exact numerical results with such bimodal expression; the formula results to be quite accurate, especially in the superparamagnetic regime ($\Delta U/k_B T \sim 10–20$, the range of major experimental activity). Its limits
of validity have been assessed and interpreted in physical terms. Furthermore, in the range where the bimodal description works best, we have derived simple analytical expressions for λ_1, λ_w, and a (the parameter controlling the weights of the two effective modes). These expressions generalize (quantum) formulas available at zero field and can be applied to other structures of the coupling and spectral densities of the bath (e.g., Kondo coupling to electron-hole excitations).

The onset of competence of the intrawell and overbarrier modes had been quantified to occur at $h_c \sim 0.15 \pm 0.17$ in the classical case. Here we have found that the equivalent quantity depends on the spin value σ.

In nonresonant conditions, the onset of competence of the dynamics inside the wells would require frequencies in the MHz to GHz range to be observed. The full observation of the second peak would require frequencies in the kHz to MHz range, taking care of not leaving the validity range $\sigma/\Sigma \in [1, 2]$. Here we have found that $h_c = 0.3$, $h_c(6) = 0.2$, and $h_c(10) = 0.15$, approaching indeed the classical estimates.

The onset of competence of the intrawell and overbarrier modes had been quantified to occur at $h_c \sim 0.15 \pm 0.17$ in the classical case. Here we have found that the equivalent quantity depends on the spin value σ.

The formulas derived cover experiments even under moderate-to-strong fields, where little work had been done. The onset of competence of the dynamics inside the wells with the overbarrier mode ($h_c \sim 0.15 \pm 0.1$) would occur at fields of a few tesla (for Mn$_{12}$; $2\Delta S \sim 10$ T), so that comparison with experimental data would be possible. The full observation of the second peak would require frequencies in the MHz to GHz range (assuming the low-Ω peak at ~ 1 Hz), but the associated raising of the real part could be detected at low frequencies. We finally remark that the treatment employed covers from the deep quantum case ($S < 1$) all the way up to the classical regime ($S \gg 1$). Thus, the equations derived recover, in the limit $S \rightarrow \infty$, the classical works on magnetic nanoparticles.

ACKNOWLEDGMENTS

This work was supported by DGES, Project No. BFM2002-00113, and DGA, Project PRONANOMAG, and Grant No. B059/2003. We acknowledge F. Luis, L. Martín-Moreno, and D. Prada for useful discussions and their support during this work.

APPENDIX A: CLASSICAL LIMIT OF BALANCE EQUATIONS

In this appendix we consider the classical limit of the balance equation (2). Any limit procedure requires one to specify which quantities are kept constant and which scaled variables are needed to monitor the evolution. For the classical limit, a natural choice is to maintain a fixed σ and ξ. At constant T this implies keeping the anisotropy-barrier height $\Delta_{m,m'+1}$ and Zeeman energy constant. This means that the levels tend to a continuum, so $\Delta_{m,m'+1} \rightarrow 0$. Then we need the behavior of $P_{m,m'+1}$ near $\Delta_{m,m'+1} = 0$. Expanding $P_{m,m'}$ up to first order, with $d_j f(x)|_{x=\pm 0} = -d_j f(-x)|_{x=\pm 0}$, and the detailed balance condition (3),

$$
\frac{dP_{m,m'}}{d\Delta_{m,m'}}|_{\Delta_{m,m'} = 0} = -\beta \frac{1}{2} P_{m,m'}(\Delta_{m,m'} = 0);
$$

therefore,

$$
P_{m,m'} = P_{m,m'}(0) - \beta \frac{1}{2} \Delta_{m,m'} + O(\Delta_{m,m'}^2). \tag{A1}
$$

Now, it is convenient to introduce the notation

$$
P_m = P_m(0), \quad P_{m,m-1} = P_{m-1,0}, \tag{A2}
$$

identifying through this appendix $\Delta_{m,m'} = \beta \Delta_{m,m'}$ and inserting Eq. (A1) into Eq. (2),

$$
\dot{N}_m = \left(P_m + \frac{P_m}{2} \Delta_{m,m+1} \right) N_{m+1} - \left(P_m - \frac{P_m}{2} \Delta_{m,m+1} \right) N_m + \left(P_{m-1} - \frac{P_{m-1}}{2} \Delta_{m,m-1} \right) N_{m-1} - \left(P_{m-1} + \frac{P_{m-1}}{2} \Delta_{m,m-1} \right) N_m, \tag{A3}
$$

where we have utilized Eq. (A2). Now, writing $P_{m-1} = P_m + [P_{m-1} - P_m]$ and multiplying the right-hand side of Eq. (A3) by S^2/Σ^2 we obtain

$$
\dot{N}_m = \frac{P_m}{S^2} \left[(S^2 - 2N_m + N_{m-1}) \right] + \frac{P_m}{S^2} \left[\frac{S^2}{2} (\Delta_{m,m+1} N_m + \Delta_{m,m+1} N_{m+1}) \right. \\
\left. - \Delta_{m,m-1} N_m - \Delta_{m,m-1} N_{m-1} \right] + S \left(\frac{P_m}{S^2} - \frac{P_{m-1}}{S^2} \right) \left[S(N_m - N_{m-1}) \right. \\
\left. + \frac{S}{2} \Delta_{m,m-1} (N_m + N_{m-1}) \right]. \tag{A4}
$$

In the first line of Eq. (A4) we recognize the usual discretization of the second derivative.
where $W(z, t)$ is the classical spin distribution. The third line can be identified with the discretizations of the first derivatives:

$$S^2(N_m - N_{m-1}) \rightarrow \frac{\partial^2 W(z, t)}{\partial z^2}, \quad (A5)$$

where $S \Delta m_{1,2} = \beta S(e_{m+1} - e_m) \rightarrow \frac{\partial u(z)}{\partial z},$

$$S \Delta m_{1,2} = \beta S(e_{m+1} - e_m) \rightarrow \frac{\partial u(z)}{\partial z},$$

$$S \left(\frac{P_{m+1}}{S^2} - \frac{P_m}{S^2} \right) \rightarrow \frac{\partial G(z)}{\partial z}; \quad (A6)$$

here, we have utilized that $\frac{P_m}{S^2} \rightarrow G(z)$. The function $G(z)$ depends on the specific form of P_m and $u(z)$ is the classical energy function $[u(z) = \beta H(t)]$. Finally, the second line is the discretization of $\frac{\partial^2}{\partial z^2} \left(\frac{\partial^2}{\partial z^2} \right) W(z, t)$, since

$$\frac{S^2}{2}(\Delta m_{1,2} N_m + \Delta m_{1,2} N_{m-1} - \Delta m_{1,2} N_m - \Delta m_{1,2} N_{m-1})$$

$$\rightarrow \frac{\partial}{\partial z} \left(\frac{u(z)}{\partial z} \right) W(z, t). \quad (A7)$$

Using Eqs. (A5)–(A7), we obtain the continuum version of Eq. (2). Eq. (8), where $G(z) = P_{m+1}|m|/S^2$. Let us emphasize that this derivation only makes use of detailed balance condition (3), and a nonvanishing transition probability at zero frequency $P_{m+1}|m|$, which has been tacitly assumed from the beginning.

In this problem (no transversal field, rotating-wave approximation) we could take advantage of the system of balance equations to take the classical limit directly in terms of the N_m. On the other hand, when the off-diagonal density matrix elements need to be considered, taking the classical limit requires a spin coherent state representation (phase space) for the density matrix.\(^{35}\)

We conclude making the connection with Brown’s classical theory.\(^3\) It starts from a Landau-Lifshitz equation describing the precession of the magnetic moment: $\gamma^2 \mathbf{m} / \partial t = \mathbf{m} \times (\mathbf{B} + \mathbf{b}(t)) = (\lambda_{1,2} / m) \mathbf{m} \times (\mathbf{m} \times \mathbf{B})$, with $\lambda_{1,2}$ the damping constant and $\mathbf{b}(t)$ a fluctuating field. This is assumed with isotropic statistical properties and white noise spectrum. In the absence of transverse fields this Langevin equation corresponds to the Fokker-Planck equation (8) with $G(z) = (1 - z^2) / 2 \tau_D$ and $\tau_D^2 = \lambda_{1,2} / 2 \beta / \gamma$. (For the comparison below, recall that the magnetic moment over the gyromagnetic ratio m / γ corresponds to the spin value S.)

To recover this theory from the spin-plus-bath formulation, we consider an Ohmic bath $J(\omega) = \lambda \omega$ (corresponding to the white noise assumption), a linear coupling $F = \frac{1}{2} (\eta_S^1 + \eta_S^2)$ (corresponding to field-like fluctuations), where in the parameters incorporating the symmetry of the coupling, $\eta_S = \eta_S^1 \pm \eta_S^2$; we set $\eta_S = \eta_S^1 = 1$ (i.e., isotropic fluctuations). Then, from the coupling matrix elements $\epsilon_{m,m+1} = \sqrt{S(S+1) - m(m+1)}$ and Ohmic rate function $W(\Delta) = \lambda \Delta / (\epsilon^2 - 1)$ (see Sec. II B), one finds $G(z) = P_{m+1}|m|/S^2 = (\lambda / 2 \beta) (1 - z^2)$. Thus, comparing with τ_D and identifying

$$\lambda = \lambda_{1,2} / 2 S, \quad (A8)$$

we make the connection with the quantities entering in Brown’s classical model. Finally, if we had considered a coupling $F(\Delta) \propto (S_S + S_S^2)$, as the one used in the main text to deal with phonons, its classical limit [including two-phonon processes to ensure $P_{m+1}|m| \neq 0$] would involve $G(z) \propto z^2 (1 - z^2)$.

APPENDIX B: DETAILS FOR THE CALCULATION OF $\tau_{\text{int}}, \tau_{\Delta}$, AND τ_{eff}

Here we calculate the three time constants $\tau_{\text{int}}, \tau_{\Delta}$, and τ_{eff}, which characterize the magnetization relaxation in the bimodal approximation (see Sec. IV).

1. τ_{int}

As τ_{int} describes the low-Ω behavior of the susceptibility our purpose here is to obtain $\chi(\Omega)$ up to first order in Ω (as Eq. (17)). For future convenience, we write N_m as

$$N_m = N_m^0 + N_m^1 = N_m^0(1 + \beta q), \quad (B1)$$

where N_m^0 and N_m^1 are the zero- and first-order (in βB_2) parts of the evolution for N_m. Inserting (B1) into Eq. (2) we obtain the set of equations necessary to calculate the response in linear approximation:

$$P_{m+1}|m| - P_{m-1}|m| = i \Omega q_m + P_{m+1}|m| q_m^0 - q_m$$

$$+ P_{m-1}|m| q_m - q_m; \quad (B2)$$

here, $P_{m|m}' = P_{m|m}'(B_2 = B_2^0)$. To write Eq. (B2) in terms of $P_{m+1}|m|$ and $P_{m-1}|m|$ the detailed balance equation (3) and the equality $e^{i \omega n} N_m^0 = N_m^0$ have been utilized.

We are interested in the low-frequency behavior, so we expand

$$q_m^0(\Omega) \equiv q_m^0 + \Omega q_m^{(1)} \quad (B3)$$

We substitute (B3) into Eq. (B2), and we solve it perturbatively in Ω. The zero-frequency order gives

$$P_{m+1}|m| - P_{m-1}|m| = P_{m+1}|m| q_m^0 + P_{m-1}|m| q_m^0.$$

$$\quad (B4)$$

Since Eq. (B4) depends only on the differences $q_m^0 - q_m^0$, and defining

$$q_m^0 = q_m^0 - q_m^0,$$

(B5)

Eq. (B4) can be cast in a two-term recurrence. With the “boundary” condition $P_{-s-1}|s = 0$ the solution reads

$$q_m = 1$$

(B6)

and accordingly to (B5) and (B6),
\[q_m^{(0)} = m - M_z, \quad (B7) \]

where \(M_z \) is the magnetization. To obtain Eq. (B7) the normalization condition

\[\sum_{m=-S}^{S} N_m^{(0)} q_m^{(0)} = 0 \quad (B8) \]

has been used. The above condition comes from \(\Sigma_m N_m^{(1)} = 0 \). Besides this follows from the unicity of the Fourier expansion of the norm and \(\Sigma_m N_m^{(0)} = 1 \) plus \(\Sigma_m N_m = 1 \). Now, we write Eq. (B2) up to first order in \(\Omega \),

\[0 = i \Omega q_m^{(0)} + P_{m+1|m}(q_m^{(1)} - q_m^{(0)}) + P_{m-1|m}(q_m^{(1)} - q_m^{(0)}). \quad (B9) \]

Once more, Eq. (B4) depends only on the differences. Introducing

\[r_m = P_{m+1|m} e^{-\beta \epsilon_m}(q_m^{(1)} - q_m^{(0)}), \quad (B10) \]

Eq. (B9) transforms onto a two-term recurrence relation, obtaining for the \(r_m \) elements,

\[r_m = -i \Omega \sum_{j=-S}^{m} q_j^{(0)} e^{-\beta \epsilon_j}, \quad (B11) \]

where we have again invoked \(P_{-S-1|-S}=0 \). Now, Eq. (B11) with (B10) and the first-\(\Omega \)-order normalization condition

\[\sum_{m=-S}^{S} N_m^{(0)} q_m^{(1)} = 0 \quad (B12) \]

permit us to write \(q_m^{(1)} \) as

\[iq_m^{(1)} = \sum_{i=-S}^{m-1} \Phi_i - \sum_{j=-S}^{S} N_j^{(0)} \sum_{i=-S}^{j-1} \Phi_i - \sum_{j=-S}^{S} N_j^{(0)} \cdot (B13) \]

where the auxiliary function \(\Phi_i \) is given by

\[\Phi_m = \sum_{j=-S}^{m} (M_z - j) N_j^{(0)}. \quad (B14) \]

The low-\(\Omega \) expansion (17) and (B1) allows to express \(\tau_{\text{int}} \) as

\[i \tau_{\text{int}} = \frac{\beta}{\chi_z} \sum_{m=-S}^{S} m N_m^{(0)} q_m^{(1)}. \quad (B15) \]

Introducing Eq. (B13) in Eq. (B15) and using the equalities

\[\sum_{j=-S}^{S} N_j^{(0)} \sum_{i=-S}^{j-1} \Phi_i = \sum_{i=-S}^{S-1} \Phi_i \sum_{j=-S}^{S} N_j^{(0)} \quad (B16) \]

and

\[-M_z \sum_{j=1}^{S} N_j^{(0)} + \sum_{j=1}^{S} j N_j^{(0)} = \Phi_1, \quad (B17) \]

we finally obtain the formula (22) for the integral relaxation time.

2. \(\tau_{\Delta} \)

The time constant \(\tau_{\Delta} \) arises when instead of the magnetization susceptibility, one considers the low-\(\Omega \) response of the difference of the well populations \(\Delta \):

\[\Delta = N_+ - N_- = \sum_{m=-S}^{S} \text{sgn}(m-m_b) N_m, \quad (B18) \]

with \(\epsilon_m \) the maximum level. Notice that the derivation of \(\tau_{\Delta} \) must follow the same steps that for the derivation of \(\tau_{\text{int}} \). Further, taking into account the definition of \(\Delta \) and from the low-\(\Omega \) expansion for \(\chi_\Delta(\Omega) \) [see Eq. (24)], \(\tau_{\Delta} \) is given in terms of \(q_m^{(1)} \), Eq. (B13), as

\[i \tau_{\Delta} = \frac{1}{\chi_\Delta} \sum_{m=-S}^{S} \text{sgn}(m-m_b) N_m^{(0)} q_m^{(1)}. \quad (B19) \]

Finally, using equalities (B16) and

\[-\Delta \sum_{j=-S}^{S} N_j^{(0)} \sum_{j=-S}^{j-1} \text{sgn}(m-m_b) N_j^{(0)} = \Phi_j^N, \quad (B20) \]

where \(\Phi_j^N \) is defined as

\[\Phi_j^N = \sum_{j=-S}^{m} N_j^{(0)} [\Delta - \text{sgn}(j-m_b)]. \quad (B21) \]

formula (25) is readily obtained.

3. \(\tau_{\text{eff}} \)

First we notice that the definition for \(\tau_{\text{eff}} \), Eq. (19) can be rewritten in terms of \(N_m(t) \) as

\[\tau_{\text{eff}}^{-1} = -\frac{1}{\Delta M_z(0)} \sum_{m=-S}^{S} m \dot{N}_m(0). \quad (B22) \]

\(\dot{N}_m(0) \) is obtained directly from the balance equation making \(t=0 \) in Eq. (2). Now, we recall that the system is initially at equilibrium with field \(B_z = B_0 + \delta B_z \). Up to first order in \(\delta B_z \) this can be written

\[N_m(0) = N_m^{(0)} + \delta B_z N_m^{(0)}(m-M_z). \quad (B23) \]

Next, we insert Eq. (B23) into Eq. (2). Considering

\[P_{m,m+1} N_{m+1}^{(0)} = P_{m+1|m} N_m^{(0)} \quad (B24) \]

Eq. (B22) reads

\[\tau_{\text{eff}}^{-1} = \frac{\beta}{\chi_z} \left(\sum_{m=-S}^{S} m P_{m,m+1} N_{m+1}^{(0)} - \sum_{m=-S}^{S} m P_{m+1|m} N_m^{(0)} \right). \quad (B25) \]

Finally, performing the change \(m \rightarrow m+1 \) in the first summand we obtain the final formula (27) for the inverse of the effective time.

APPENDIX C: APPROXIMATE FORMULAS IN THE HIGH-BARRIER CASE

Here we derive approximate expressions for \(a, \Lambda_1 \), and \(\Lambda_w \) in the high-barrier case.
The technical difficulties deal mainly with the calculation of the sums in \(\tau_{\text{int}}, \tau_{\Delta}, \) and \(\tau_{\text{eff}}. \) For that let us first consider the main approximation to handle with \(\Phi_m^N \) and \(\Phi_m^o \Phi_m^N. \) In the range considered \(\Phi_m \) can be well approximated by

\[
\Phi_m \equiv \Phi_B, \quad m < S - 2,
\]

\[
\Phi_m \equiv \Phi_B + \Phi_w, \quad m \equiv S - 1,
\]

where \(\Phi_B \equiv \sum_{j=-S}^{S}(M_z - j)N_j^{(0)} = \Phi_{mb} \) and \(\Phi_w \equiv \sum_{j=m\pm1}^{S}(M_z - j)N_j^{(0)} = \Phi_{w-1} - \Phi_{mb}. \) Besides there are two main contributions in the sum for \(\tau_{\text{int}} \) one around \(m_b \) and the other one around \(m \equiv S - 1 \) (see Fig. 7). This last peak in the sum is due to \(\Phi_w. \) On the other hand, the quantity \(\Phi_m^o \Phi_m^N \) results in being well approximated for practical purposes by the constant

\[
\Phi_m \Phi_m^N \equiv \Phi_B \Phi_B^N, \tag{C2}
\]

with \(\Phi_B = \sum_{j=-S}^{S}(\Delta + 1)N_j^{(0)} = \Phi_{mb}^N. \) Then the sum for \(\tau_{\Delta} \) has only one main contribution around \(m_b \) (see Fig. 7).

Now, we give the main steps to calculate the formula (29) for \(a. \) In the bimodal approximation \(\tau_{\text{int}} \equiv a/\Lambda_1 + (1-a)/\Lambda_w. \) Then, and taking into account that \(\Lambda_w \gg \Lambda_1 \) and \(\Lambda_1 \equiv \tau_{\Delta}, \)

\[
a \equiv \frac{\tau_{\text{int}}}{\tau_{\Delta}}, \tag{C3}
\]

Next we use approximations (C1) and (C2). Neglecting the second peak in the sum, which is produced by intrawell dynamics [it would contribute to the summand \((1-a)/\Lambda_w, \) we write

\[
a \equiv \frac{\Lambda_1}{\chi_c} \tag{C4}
\]

here, we have also used that in the high-barrier limit \(\Phi^B = S\Phi^N \) (see Fig. 7). Notice that (C4) depends only on equilibrium magnitudes. To compute \(\chi_c \) and \(\chi_{\Delta} \) we approximate the partition function by

\[
Z \equiv e^{\sigma(2 \cosh \xi + e^{\sigma(q^2-1)} \cosh q \xi)}, \tag{C5}
\]

with \(q = (S-1)/S. \) This form for \(Z \) has been calculated considering only the states \(m = \pm S \) and \(m = \pm (S-1). \) Restricting ourselves to the lowest states becomes justified when \(\sigma \gg 1. \) However, at sufficiently high \(b, \) levels in the right well with \(m < S - 1 \) have less energy than \(m = S + 1 \) even \(m = -S; \) then, they would be more populated. On the other hand, this is the minimal model which includes sufficient states to deal with intrawell and overbarrier contributions. Then, from (C5) we obtain \(\chi_c \) and \(\chi_{\Delta}. \) Finally, considering only the leading terms in \(\sigma \) we obtain the final expression (29) for \(a. \)

Now we turn our attention to \(\Lambda_1. \) In the main text we have argued that \(\Lambda_1 \equiv \tau_{\Delta}^{-1}. \) Then, and considering (C2), we write

\[
\Lambda_1^{-1} \equiv \tau_{\Delta} = \frac{\beta}{\lambda_{\Delta}} \Phi_B \Phi_B^N \sum_{m=-S}^{S-1} \frac{1}{N_m^{(0)} P_{m+1|m}}. \tag{C6}
\]

We use now \(\theta_m \) [see Eq. (23)]—i.e., \(\theta_m = \sum_{j=m-1}^{S} N_j^{(0)}; \) then, it can be checked that

\[
\Delta \equiv 2\theta_{mb} - 1 \tag{C7}
\]

and

\[
\chi_{\Delta} \equiv 2\theta_{mb} \theta_{mb} = 2\beta \Phi^B. \tag{C8}
\]

Thus \(\Lambda_1^{-1} \) reads:

\[
\Lambda_1^{-1} \equiv (1 - \theta_{mb}) \theta_{mb} \sum_{m=-S}^{S-1} \frac{1}{N_m^{(0)} P_{m+1|m}}. \tag{C9}
\]

First, Eq. (C9) equals the Würger result (23), since \(\theta_m \equiv \theta_{mb} = 1/2. \) Furthermore, the sums for \(\theta_{mb}, \) and \(\sum 1/N_m^{(0)} P_{m+1|m} \) can be evaluated following Garanin in some limiting cases. In particular the classical limit can be carried out. In this limit the sum is converted into an integral, which in turn can be solved. Then using approximate expressions for the classical \(Z \) when \(\sigma \gg 1 \) (see Sec. II of Ref. 46) and the same for \(\theta_{mb}, \) we recover the Brown result (26) for \(G(z) \propto (1-z)^2 \) [see Eq. (8)]. Eventually, one also considers \(\sigma/S > 1 \) to evaluate the sums in (C9). In this case, it becomes sufficient consider only the two main terms in the sum: namely, \(1/N_m^{(0)} P_{m+1|m} \) and \(1/N_m^{(0)} P_{m-1|m} \). In addition we only take into account the leading terms in \(\sigma \) for \(\theta_{mb} \) obtaining the Arrhenius formula (30) for \(\Lambda_1. \)

Finally we consider \(\Lambda_w. \) In the expression for \(\Lambda_w \) [Eq. (21)], the denominator can be approximated by \(\Lambda_1 \tau_{\text{int}}^{-1} \equiv a - 1 \) [see Eq. (C3)]. Finally assuming \(\tau_{\text{eff}} \gg \Lambda_1 \) (see Fig. 4) \(\Lambda_w \) reads

\[
\Lambda_w \equiv \frac{\tau_{\text{eff}}^{-1}}{1-a}. \tag{C10}
\]

Then,
\[
\frac{\Lambda_{\omega}}{\Lambda_1} = \frac{1}{4\delta^2} + a \left(\sum_{n=1}^{S-1} N_m^0 p_{m+1} \right) \left(\sum_{m=1}^{S-1} N_m^0 p_{m+1} \right) \cdot (C11)
\]

To obtain this formula we have used Eq. (C6) for \(\Lambda_1 \) and Eq. (C4) for \(a \) together with \(\Phi_B \equiv 5\Phi^N \). Now, taking only leading terms in the sum we readily obtain (31) in the regime of interest.

APPENDIX D: EXACT ANALYTICAL SUSCEPTIBILITY FOR \(S=1 \)

When \(S=1 \) it is possible to derive an exact analytical expression for \(\chi(\Omega) \). For that, we calculate the eigenvalues of the, in this case, \(3 \times 3 \) relaxation matrix \(R \), obtaining

\[
\Lambda_{1,2} = (\Gamma_+ + \Gamma_-) \mp \chi(\Gamma_+ - \Gamma_-)^2 + 4P_{10}^0P_{01}^0/(1-10)^2.
\]

(D1)

plus the zero eigenvalue \(\Lambda_0=0 \). Here \(\Gamma_\pm = P_{\pm 10}/(1+\exp(\beta(e_{\pm 1} - e_0))) \). Notice that the bimodal description is exact for \(S=1 \) (\(\Lambda_n = \Lambda_2 \)). Besides, using the general relation of \(\tau_{\text{eff}} \) with the eigenvalues, \(\tau_{\text{eff}}^{1} = \sum a_\lambda \Lambda_{\lambda - i} \), i.e., \(\tau_{\text{eff}}^{1} = a_\lambda \Lambda_{\lambda - i} + (1 - a) \Lambda_2 = \Lambda_2 - \tau_{\text{eff}}^{1} \).

(D2)

with \(\tau_{\text{eff}}^{1} = \beta(\langle \chi \rangle Z)(P_{10}^0 + P_{01}^0)/(1-10)^2 \).

The two modes \(\Lambda_1 \) and \(\Lambda_2 \) and \(a \) are introduced into Eq. (16) obtaining the exact expression for the response.

20. The sources of magnetic anisotropy can be the interactions of the cluster spins with their neighbors’ electric fields (magnetocrystalline anisotropy), dipole-dipole interactions inside the cluster (magnetostatic or “shape” anisotropy), spins at the cluster boundaries (surface anisotropy), etc.
21. The maximum level is given by \(m_{\omega} = -B_0/2D + F \), with \(F = \mathcal{N}[B_0/2D + S + 1/2] - 1/2 \) and \(\mathcal{N}[x] \), the fractional part of \(x \).
23. N. G. Van Kampen, Stochastic Processes in Physics and Chem-
relaxation time diverges, since $P_{m1}^{n}(0)=0$ in the model used.

In contrast with the other time constants, τ_{eff} has the structure of an equilibrium average (of an operator with diagonal matrix elements P_{m1}^{n}). Then in the classical limit [for an Ohmic bath and linear coupling $F(\mathbf{S})$; see Appendix A], one uses $P_{m1}^{n}/S^{2}\rightarrow1-\zeta^{2}$ and recovers the equilibrium average form $\tau_{\text{eff}}^{\text{eq}}\sim1-(\zeta^{2})$ of the classical case (Ref. 31).

41 Using the sum rule $\sum_{i=1}^{N}a_{i}=1$, together with the expressions $\tau_{\text{int}}=\Sigma_{i}a_{i}/\Lambda_{i}$ and $\tau_{\text{eff}}=\Sigma_{i}a_{i}/\Lambda_{i}$, one gets, from Eq. (21),

$$\Lambda_{w}=\frac{\sum_{i>j}^{N}a_{i}(\Lambda_{i}-\Lambda_{j})}{\sum_{i>j}^{N}a_{i}(\Lambda_{i}/\Lambda_{j}-1)}=\tilde{\Sigma}_{i}a_{i}/\tilde{\Lambda}_{i}.$$

Thus, Λ_{w} is indeed an average over the fast modes when these are well separated from the overbarrier rate.

42 For instance, Storonkin’s bimodal formula (Ref. 43), derived rigorously for zero field and $\sigma\gg1$, involves $\Lambda_{w}=2\lambda_{LL}B_{w}$ with λ_{LL} the Landau–Lifshitz damping and B_{w} the anisotropy field [the same follows from Garanin’s heuristic expression (Ref. 8) at $h\rightarrow0$]. Using an Ohmic bath and a linear coupling $F(\mathbf{S})$ (see Appendix A), we find from Eqs. (29)–(31) that $\Lambda_{w}=2\lambda_{LL}/\Delta_{SS},-1$. As the ground-state splitting $\Delta_{SS},-1=\varepsilon_{S}-\varepsilon_{S,-1}$ corresponds to B_{w}, identifying $2\lambda_{LL}\rightarrow\Lambda_{LL}$ [Eq. (A8) in Appendix A] we make the connection with Storonkin’s classical results.