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Abstract. We present a quantum theory for the interaction of a two level emitter with surface plasmon
polaritons confined in 1D waveguide resonators. Based on the Green’s function approach we develop the
conditions for the weak and strong coupling regimes by taking into account the sources of dissipation
and decoherence: radiative and non-radiative decays, internal loss processes in the emitter, as well as
propagation and leakage losses of the plasmons in the resonator. The theory is supported by numerical
calculations for several quantum emitters, GaAs and CdSe quantum dots and NV centers together with
different types of resonators constructed of hybrid, cylindrical or wedge waveguides. We further study the
role of temperature and resonator length. Assuming realistic leakage rates, we find the existence of an
optimal length at which strong coupling is possible. Our calculations show that the strong coupling regime
in plasmonic resonators is accessible within current technology when working at low temperatures (. 4K).
In the weak coupling regime our theory accounts for recent experimental results. Besides, we find highly
enhanced spontaneous emission with Purcell factors over 1000 at room temperature for NV-centers. We
finally discuss more applications for quantum nonlinear optics and plasmon-plasmon interactions.

1. Introduction

Cavity quantum electrodynamics (cavity QED) was invented to study and control the simplest
light-matter interaction: a two level emitter (called TLS or emitter throughout this paper)
with a light monomode [1]. At first associated with quantum optics, the emitter was an
atom or a collection of them, while the electromagnetic (EM) field was confined in a high-
finesse cavity [2]. Nowadays cavity QED experiments cover quite a lot of implementations.
Atoms may be replaced by other two level systems, artificial or not, such as quantum dots
or superconducting qubits. The light mode can be any single bosonic mode quantized in e.g.

ar
X

iv
:1

20
9.

17
24

v1
  [

co
nd

-m
at

.m
es

-h
al

l]
  8

 S
ep

 2
01

2



Weak and Strong coupling regimes in plasmonic-QED 2

superconducting cavities [3], nanomechanical resonators [4], carbon nanotubes [5], photonic
cavities [6] or (collective) spin waves in molecular crystals [7].

Cavity QED relies on the comparison between the “light-matter” coupling strength
per boson and the irreversible losses from both emitter and bosonic mode. Depending on
their ratio two main regimes appear: weak and strong coupling. In the weak regime losses
dominate and the emission spectrum consists of a single peak around the dressed TLS resonant
transition while the lifetime is modified because of the field confinement inside the cavity.
This modification is nothing but the Purcell effect. In the strong coupling (SC) regime
the coupling dominates the losses. In this case a double peak emerges in the emission
spectrum, arising from the emitter-resonator level anticrossing. Cavity QED is interesting
per se: it demonstrates the quantum nature of both light and matter, and serves e.g. for testing
quantumness in bigger and complex systems [8]. But, cavity QED is also a resource, e.g.
for optimizing single photon emission [9] or lasing [10]. Besides, systems in the SC regime
may behave as non linear media [11], generate photon-photon interactions [12] and are the
building blocks in quantum information processing architectures [13].

Though weak coupling (WC) regime is relevant, the ultimate goal is to reach the SC
regime. The former can be easily reached if the latter is set. Being in the SC regime is
determined by the EM field lifetime, confinement and dipole moment. Usually, when working
with macroscopic mirrors and atoms having small dipole moments, the field confinement is
not optimized but the cavity has extremely long lifetimes, i.e. very high finesse or quality
factors. In other setups like superconducting circuits all parameters – quality factor, dipole
moment and field confinement – are optimized such that the so called ultra-strong coupling
regime has been demonstrated [14, 15]. Circuits are promising on-chip setups but have to be
operated at microwave frequencies and mK temperatures.

A possible alternative at optical or telecom frequencies, with their plethora of
applications in quantum communication, is provided by the subwavelength confined EM fields
of surface plasmon polaritons (SPP) in plasmonic waveguides [16]. By making resonators
out of those waveguides, the energy density and therefore the coupling is highly enhanced.
The payoff is that metals introduce considerable losses, further increasing with higher
confinement. Therefore, it is not clear under which conditions SC could be reached with
plasmonic resonators. On the other hand, advanced architectures of plasmonic waveguides
present a good trade off between confinement and losses [17], e.g. hybrid [18], wedge [19] or
channel [20] waveguides . Plasmonic waveguides have already shown impressive uses, such
as focusing [21,22], lasing [23], superradiance [24], mediators for entanglement between quits
[25] and single plasmon emission, [9]. Still, a very challenging perspective is their use for
achieving quantum cavity QED with plasmons in the SC regime [26]. Plasmonic QED is not
just another layout for repeating what has been done in other cavity QED implementations but
offers interesting advantages. As shown in this paper SC can be obtained inside nanometric
resonators. It can be mounted on a chip in combination with dielectric waveguides. The latter
have minor losses but weakly interact with quantum emitters.

In this paper we provide a quantum theory for the coupling between quantum dipoles and
resonators made out of one dimensional (1D) plasmonic waveguides. Our theory consistently
includes the losses and maps to a Jaynes-Cummings model and, therefore, to the physics
and applications of traditional cavity QED. We numerically explore a variety of resonator
layouts and several quantum emitters. With all this at hand we set the conditions to reach the
SC regime. We also motivate the study of these systems in the less demanding WC regime
because of very high achievable Purcell factors into the plasmon channel of more than 1000.

The paper is organized as follows. We first develop the light-matter interaction
in plasmon resonators within the Green’s function approach. In section 3 the different
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realizations for plasmonic resonators and emitters are discussed. We continue in section 4
with numerical results setting the parameter landscape for weak and SC regimes. Section 5
is devoted to emphasize different applications. Some technical details are discussed in the
appendices.

2. Interaction of a plasmonic structure and an emitter

2.1. Green’s function approach for dissipative field quantization

Surface plasmon polaritons (SPPs or just plasmons) are surface wave quanta bound to the
interface between two media characterized by permittivities (ε(ω) = ε ′(ω)+ iε ′′(ω)) with
real parts of different signs and negative sum. Usually, the interface separates a dielectric
(ε ′(ω) > 0) and a metal, which presents ε ′(ω)� 0 at optical frequencies, see e.g. Ref [27].
On the other hand, the imaginary part, ε ′′(ω) is responsible for dissipation in the metal
(in order to minimize this dissipation, usually the metal used is either silver or gold).
Complex permittivities can be easily incorporated in the macroscopic Maxwell equations.
However, a problem arises when trying to quantize the EM field: Maxwell equations with a
complex permittivity, ε ′′(ω) 6= 0, cannot be obtained from a Lagrangian and consequently, a
straightforward canonical quantization is not possible. On the other hand, (linear) dissipation
can be modeled by coupling the EM field to an additional bath of harmonic oscillators: the
system-bath approach [28]. Importantly, the system and bath can be cast to a total Lagrangian
and consequently this allows the quantization of the EM field in dispersive media [29, 30].
To apply this quantization to complex geometries – needed for plasmonic structures – the
theory can be conveniently reformulated by means of the Green’s tensor of the classical
problem [31–34]. The usefulness of this approach can be appreciated by looking at a key
result, the quantum expansion of the electric field

~E(~r,ω) = i

√
h̄

πε0

ω2

c2

ˆ
d3r′

√
ε ′′(~r′,ω)

↔
G (~r,~r′,ω)

(
f †(~r′,ω)− f (~r′,ω)

)
(1)

and an analogous expression for the magnetic field. Here, the electric field can be expanded in
normal modes where the coefficients are given by the Green’s function of the classical field.
These normal modes of the combined EM field and the dispersive media are represented
by theerro bosonic creation (annihilation) operators f †(~r,ω) ( f (~r,ω)). They obey the
commutation relation

[
f (~r,ω), f †(~r′,ω ′)

]
= δ (ω,ω ′)δ (~r−~r′). We used ε0 to denote the

vacuum permittivity and c is the speed of light. Finally,
↔
G (~r,~r′,ω) is the dyadic Green’s

function of the classical field defined by [27, 33][
∇×∇×−ω2

c2 ε(~r,ω)
]↔

G (~r,~r′,ω) =
↔
I δ (~r−~r′) . (2)

Therefore, within this formalism the quantum fields Eq. (1) are determined by the classical
Green’s function, Eq. (2).

2.2. Emitter-plasmon interaction

We are interested in the interaction of these quantum fields with a TLS. The actual physical
implementation of the emitters will be discussed in detail in section 3.3. In the dipole
approximation the interaction can be represented by the emitter’s dipole transition strength
~d and the electric field at the position of the emitter (~re) [35, Chap. 14]

Hint =−σx~d ·~E(~re) . (3)
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with ~E(~re) =
´

∞

0 dω~E(~re,ω). We use Eq. (1) and define the collective mode´
d3r′ g(ω,r′,re) f (r′,ω) ≡ g(ω) f (ω). Applying the rotating wave approximation we can

write the full Hamiltonian of the emitter coupled to the “field+media” modes as

H/h̄ =
ωe

2
σz +

ˆ
∞

0
dω ωa†(ω)a(ω) +

ˆ
∞

0
dω

(
g(ω)σ−a†(ω)+h.c.

)
+Hγe (4)

This is the spin-boson model where the emitter is represented by standard Pauli matrices σx,y,z,
σ± = σx± iσy , and has a level spacing of ωe. Then, we split these modes in a contribution
of modes attributed to plasmonic modes (a), originating from the part of the Green’s function
that describes propagating plasmons. The coupling to the rest of the modes is encapsulated in
Hγe , eventually responsible for an exponential decay into other channels. The coupling of the
emitter to the plasmon modes is characterized by |g(ω)|2, also called spectral density and can
be expressed by noticing that,

[
f (ω), f †(ω ′)

]
= δ (ω,ω ′)→ |g(ω)|2 =

´
d3r′ |g(ω,r′,re)|2

together with a property of the Green’s function by [27, 31]

|g(ω)|2 = 1
h̄πε0

ω2

c2
~dT Im[

↔
Gspp (ω,~re,~re)]~d . (5)

Here,
↔
Gspp is the part of the Green’s tensor attributed to plasmons in the nano-structure.

Finally, we mention that we work in the regime that coupling to the non-radiative channels
(Hγe ) is weak and non-resonant. Thus, it will be modeled by phenomenologically decay rates,

γe = γrad + γint + γnonrad . (6)

Emission into free space radiating EM modes is depicted by γrad. Internal loss processes in the
emitter, such as non-radiative electron-hole recombinations in quantum dots, are quantified by
γint. Furthermore, another emitter loss channel specific to plasmonic structures arises. If the
emitter is placed close to a metal surface, it couples to non-propagating, quickly decaying
evanescent modes and the energy is dissipated through heating of the metal. The associated
rate will be called γnonrad and can assume very high rates when an emitter is close to a metal
surface [36, 37] . To avoid the latter, one may lift the TLS away from the metal surface, and
place it at an intermediate region close enough to still couple efficiently to plasmons.

2.3. Green’s function of plasmonic structure

A strategy for confining the EM field to a small area, and consequently enhance light-
matter interaction, is by using one dimensional metallic structures (waveguides) that support
propagating plasmons. The plasmonic modes of the waveguide confine the EM field in two
dimensions. Since they are mixed photon-media excitations, the confinement can exceed the
one of free space photons that is limited by diffraction. To further enhance the interaction
the plasmons can be stored in resonators. These can be manufactured out of plasmonic
waveguides by placing two mirrors or building a ring, see Fig. 1 for a sketch.

2.3.1. Waveguide Surface plasmons on an infinite open waveguide can be described by
~E(~r) = ~E(~rt)e±ik(ω)z, with the transverse field profile ~E(~rt) where z is the coordinate parallel
and~rt ≡ {x,y} perpendicular to the waveguide. Due to propagation losses of the plasmons,
their propagation constant k(ω) = k′(ω)+ ik′′(ω) is a complex quantity. The Green’s function
Gspp(ω,~r,~r′) can be constructed out of the (approximately) orthogonal electric field modes
[38, 39]

↔
Gspp (ω,~r,~r′)≈ c2

ωvg

~E(~rt)⊗~E∗(~r′t)´
A∞

d2r̃tε(~̃rt)
∣∣E(~̃rt)

∣∣2 k G1d(ω,z,z′) (7)
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γr
DBR

γe

Γguide

γr

a)

b)

c)

γe

γe

Figure 1. (a) Sketch of an emitter (red dot) coupled to an open plasmonic wave guide. It emits with rate
Γguide into propagating surface plasmons and with rate γe into other modes. (b) Linear resonator defined by a
waveguide enclosed by mirrors (here distributed Bragg reflectors, DBR). The excitations from the resonator
are lost with rate γr . The length of the resonator has to be multiples of half the plasmon wavelength for
resonances to occur. (c) A circular resonator configuration.

where the speed of light and group velocities are c and vg(ω) = ∂ω/∂k ‡ respectively. This
is the Green’s function of the bound surface plasmons for the area outside of the metal. The
formula is split in a part perpendicular to the waveguide and a part along the waveguide, G1d,
that matches the 1D (scalar) Green’s function [40, Chap. 2]

G1d(ω,z,z′) =
i

2k
eik|z−z′| . (8)

Evaluating the coupling strength g(ω) at the optimal position in the waveguide, using Eq. (5)
and Eq. (8) we get

|g(ω)|2 = 1
2π

Γ0
3

πε
3/2
d

c
vg

A0

Aeff
≡ 1

2π
Γguide , (9)

where Γ0 is the “free space spontaneous emission”, Γ0 = ε2
d ω3|d|2/3π h̄ε0c3 if the emitter is

placed in a homogeneous medium with permittivity εd and we finally we define Γguide to be
the emission rate into surface plasmons of the open waveguide. Here, εd is the permittivity of
the dielectric the emitter is placed in. The diffraction limited area in vacuum, A0 = (λ0/2)2,
is the minimum area light of wavelength λ0 can be confined to in vacuum. Furthermore, we
introduced the effective mode area of the plasmon field

Aeff(rt) =

´
A∞

d2r̃tε(~̃rt)
∣∣E(~̃rt)

∣∣2
max{ε(~rt) |E(~rt)|2}

. (10)

It is inversely proportional to the maximum energy density and therefore quantifies the
achievable coupling strength.

‡ Through this work we compute vg numerically by evaluating the derivative: vg(ω) = ∂ω/∂k.
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2.3.2. Resonator In a resonator, the 1D Green’s function can be obtained by summing all
the reflected contributions of a wave originating from a δ−source [40, 41]. The details can
be found in Appendix B. We will look at two resonator configurations. Either a linear
resonator of length L terminated by two mirrors with reflectivity |R| or a circular resonator
with circumference L.

In both configurations the spectral density |g(ω)|2 is peaked around the resonance
frequencies ωr = 2πvp/λ as shown in Fig. 2. Here, vp is the phase velocity and λ = λ0vp/c
the wavelength of the SPPs. The condition for resonance is

L =
λ

2
m =

πvp

ωr
m (11)

Where m counts the number of the field antinodes in the resonator and has to be an even
integer for circular resonators and any integer for the linear configuration.

In a real system, the resonator will have losses, with different contributions that can be
encapsulated in the coefficient γr

γr = 2vg

(
k′′(ωr)−

1
L

ln |R|
)
≡ γprop + γleak . (12)

where γprop are plasmon propagation losses and γleak leakage through the mirrors in the linear
resonator. For the circular resonator radiative losses due to bending have to be added but will
not be treated in detail here.

Taking into account losses, the spectral density can be approximated close to the resonant
frequency by (see Fig. 2, and Appendix B for a derivation)

|g(ω)|2 ≈ g2 2
π

γrωrω

(ω2−ω2
r )

2 + γ2
r ω2 (13)

where we assumed that the resonator linewidth is small compared to the resonance position,
γr� ωr, i.e. we have a well defined resonance. The coupling amplitude is given by

g =

√
Γguide

vg

L
. (14)

We assumed that the emitter is positioned at a field antinode in the linear resonator to yield
maximum coupling. In the circular resonator the emitter can be placed anywhere along the
waveguide.

Let us comment on the dependence γleak ∼ 1/L. Notice that γleak is the energy loss per
time through the resonators mirrors. Therefore the leakage must be proportional to the energy
density at the mirrors which is ∼ 1/L. In a proper resonator with highly reflective mirrors we
can expand − ln |R| ≡ − ln(1−|T |)∼= |T | for small transmission and absorption coefficients,
|T | � 1. Thus, the leakage is proportional to the transmittance. In contrast to the leakage, the
propagation losses γprop do not depend on the resonator length since the linewidth (and the
loss rate) quantify the losses per unit of time and not per resonator round-trip of the plasmons.
The propagation losses are proportional to the imaginary part of the plasmon wavevector k′′

or, in other words, inverse to the plasmon propagation length defined as `≡ 1/(2k′′).

2.4. The JC-model: Plasmonic QED

We now use a mathematical result with an enormous physical relevance: The bosonic bath
coupled to a TLS with a peaked spectral density, |g(ω)|2 like Eq. (13) can be split in a single
boson mode with frequency ωr, coupled to a bath characterized by a dissipation rate γr, i.e.
the |g(ω)|2 width [42–45]. Physically, the ωr-mode is the single resonator mode. In the end,
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|g
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)|
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g2

0 0.1-0.1

Figure 2. Spectral density|g(ω)|2 of the resonator for different losses (blue γr = 0.01ωr and red γr = 0.1ωr).
The solid line is the exact spectral density of a resonator following Eq. (B.4) while the circles are the
approximation with Eq. (13).

the plasmonic resonators discussed here can now be approximated by the Jaynes-Cummings
model

HJC/h̄ =
ωe

2
σz +ωra†a+g

(
σ−a† +σ+a

)
(15)

with additional losses from the emitter (with rate γe) and from the resonator (with rate γr). This
physics can be encoded in an Optical Master Equation for the density matrix ρ , after tracing
out the bath degrees of freedom. It takes the form of the celebrated Markovian Lindblad
master equation [46, 47],

ρ̇ = − i
h̄
[HJC,ρ] (16)

+ γr
(
aρa†− 1

2
{

a†a,ρ
})

+ γe
(
σ−ρσ+−

1
2
{σ+σ−,ρ}

)
+

γd

4
(
σzρσz−ρ

)
.

Here, we have also introduced an additional phenomenological pure dephasing term γd that
models broadening of the spectral emission observed in solid state emitters, by e.g. coupling
to phonons [48–52].

This is the expected and desired result. Making resonators out of waveguides pursues
building cavity-QED systems. As a consequence many of the results from Jaynes-Cummings
physics in cavity QED can be imported to quantum plasmonic systems. We emphasize
that, within the formalism sketched here, the master equation has been obtained from a
first principles theory. Therefore, parameters like the coupling between the single plasmon
resonator mode and the emitter, g, and the decoherence rates γr and γe can be computed from
the emission spectra of the qubit and the Green’s function of the plasmonic structure.

3. Realization of plasmonic QED

In this section we specify the actual emitters and resonator architectures studied in this work.
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3.1. Waveguides

The plasmon resonators treated in this work are made out of waveguides. Therefore, the
final resonator properties depend critically on the specific waveguides used, especially on
the achievable field confinement and plasmon propagation length. Plasmon waveguides are
quasi-1D translational invariant metal-insulator structures. They possess propagating SPP-
eigenmodes with exponentially decaying evanescent fields in both the metal and the dielectric.
The waveguides we focus at may reach high field confinements along with low propagation
losses. Usually there is a trade-off between confinement and propagation length, but the
actual values are geometrically dependent. We pick three different waveguide geometries
which offer long propagation lengths along with high field confinements, as well as good
fabrication techniques: The first type are small diameter metal nanowires [16]. The second
type are sharp metal wedges [19,53] offering high field strengths at their tips. Finally, the third
class are hybrid waveguides [18, 23], formed by a high refractive index dielectric nanowire
(silicon ε = 12.25) placed close to a metal surface. There, the SPP of the plane and the
mode of dielectric create a hybrid mode with strong field confinement in the gap. Transversal
cuts through the three waveguides are plotted in Fig. 3 along with a sketch of their field
energy distribution. The propagation length and confinement of these waveguides depend
on the concrete geometrical parameters of the waveguides. In the hybrid waveguide the
main parameter is the gap size between the dielectric and the metal surface. The nanowire
properties depend on the radius and the wedge on the tip angle and the tip radius. For
smaller wires, smaller gaps or tighter angles, respectively, the field confinement increases
and the propagation lengths decrease. Finally, we consider that the metal waveguides are
made of silver, which offers best propagation lengths at optical and telecom frequencies and
are embedded in PMMA (εd = 2).

3.2. Resonators

In our calculations we consider two architectures, a circular and a linear resonator as sketched
in Fig. 1.

3.2.1. Circular resonator The circular resonator is formed by bending a waveguide and
connecting its ends. The fundamental disadvantage is that the energy is converted from
propagating modes to free radiation at bending [54, 55]. On the other hand these losses
decrease exponentially with increasing the radius of the ring. Moreover it is expected that
bending losses are smaller for higher confined modes. Circular waveguides cannot be yet
build using chemically synthesized nanowires and one has to reside to lithographically built
waveguides, which offer worse propagation lengths due to their polycrystalline nature and the
associated radiative and non-radiative losses at domain interfaces.

3.2.2. Linear resonator Linear resonators can be built by placing reflective mirrors in
the waveguide. Here scattering losses and transmission through these mirrors have to be
avoided for having good resonators. Although distributed Bragg reflectors were predicted
to be limited to low reflectivities for plasmons on 2D metal surfaces [56], recent resonator
realizations showed high reflectivities when using modes highly confined to waveguides and
alternating dielectric layers with small refractive index differences [9]. In comparison to
optical and microwave cavities, where mirror absorption, scattering and transmission losses
can be reduced to several ppm [57, 58], plasmon mirrors are expected to exhibit losses in the
order of a few percent.
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100nm

h

r

θ

wire wedgehybrid

Figure 3. Model of the three waveguides treated in this work. Below the relative energy density of each
waveguide is sketched. The parameters used here are r = 50nm, h= 25nm, θ = 40° and the SPP eigenmodes
are numerically computed for a frequency corresponding to a free space wavelength λ0 = 1550nm.

3.3. Quantum emitters

Emitters should be photostable with a high dipole moment to interact strongly with the
resonator field and ideally should be embeddable into a solid state substrate or on top of
a surface without destroying them. Interesting candidates are color centers in crystals or
semiconductor quantum dots (QDs) grown on surfaces or chemically synthesized as nano-
spheres.

The emission spectrum of single atomic emitters traditionally studied in quantum optics
is simply a Lorentzian with a very narrow transform limited linewidth given by the time-
energy uncertainty relation. In contrast, solid state emitters have higher dipole moments but
are also coupled strongly to their solid state environment. Therefore, the transform limited
line, also called zero-phonon-line (ZPL), is dominated and covered by phonon sidebands,
giving rise to a very broad non-transform limited spectrum [48, 50, 52, 59]. As used in
section 2.2, this broad peak can be modeled phenomenological by an additional source of
dephasing in the master equation (16) [48–52]. At lower temperature the phonon sidebands
mostly vanish and the ZPL can be observed.

The first emitter we consider is nitrogen-vacancy(NV) centers in diamond [60]. At room
temperature(RT) a single center can be found embedded in diamond nanocrystals of sizes
down to a few nm. They feature high stability and at room temperature a about 80nm broad
(FWHM) peak centered around ≈ 670nm. The strong overall dipole moment (including RT
sidebands) is responsible for a spontaneous emission rate of 0.04GHz at room temperature.
At lower temperatures (2K) the ZPL prevails at 638nm with an spontaneous emission of
0.013GHz. NV-centers are interesting due to their stability, homogeneous properties and
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long spin coherence times, making them ideal for quantum information processing tasks as
has been recently reviewed in Ref. [60].

The second emitter we investigate are chemically synthesized CdSe semiconductor
quantum dots. These spherical nanocrystals with diameters around several nm can also be
operated at RT and show a size-tunable emission wavelength in around the red spectrum. An
example is a quantum dot with a ≈ 20nm broad peak at 650nm [61, 62] and spontaneous
emission of 0.05GHz at room temperature [62] . Finally, we study quantum dots made out of
InAs clusters in GaAs [63,64]. They can exhibit very strong dipole moments and spontaneous
emission rates above 1GHz at cryogenic temperatures (T ∼ 4K).

4. Weak and strong coupling

4.1. Strong coupling condition

The eigenvalues of (15) form the so called JC-ladder. At resonance ωr = ωe, the states
split in doublets |ψ±〉 = 1/

√
2(|N,g〉 ± |N − 1,e〉) with energies En,± = h̄Nω0 ± h̄

√
Ng.

The degeneracy between TLS and resonator is lifted because of the coupling yielding an
anticrossing split by 2g

√
N. Considering the smallest level repulsion with one photon, N = 1,

the SC condition is usually settled as the parameter range where such anticrossing can be
resolved in an emission spectrum. Furthermore, the spectral lines are broadened because of
the losses and therefore the strong coupling regimes imposes that g overcomes dissipation and
decoherence. This is the case if [65, 66]

|g|> 1
4
|γr− γe| . (17)

Here we neglected emitter dephasing. In the opposite case, the losses dominate over the
coupling and the lines can not be resolved. This is the the WC regime.

Reaching the SC is the objective in many cavity QED experiments. From the
fundamental point of view resolving the |ψ±〉 states confirms the quantum nature of the light-
matter coupling. Being in the SC regime has multiple practical applications as well, that we
will discuss to some extent in the next section for the case of plasmons. Nevertheless, the
WC regime has its own interest, e.g. for effective single photon generation. In both cases the
ratio of coupling over losses should be as large as possible. In the following we compute the
coupling and losses in the case of different plasmonic resonators. The number of parameters
to play is huge so a brute force exploration seems a waste of time. Therefore we first look at
the dependencies of both the coupling and losses and work in optimal configurations.

From Eq. (14) we see that g ∼
√

Γ0/(AeffL). The coupling strength depends on the
emitter, via its free space spontaneous emission and therefore its dipole moment Γ0 ∼
|d|2. Larger dipole moments directly translate to higher couplings. The two remaining
dependencies come from the resonator itself. The first one is the transverse field confinement
∼ 1/Aeff. The very small mode area of plasmons was the motivation to investigate plasmon
resonators in the first place. Finally, the coupling depends on the field strength at the emitter
position and consequently g∼ 1/

√
L .

Now we turn to the right side of the SC condition, Eq. (17), quantifying decoherence
of emitter and resonator. To minimize resonator losses in Eq. (12) we must search for long
propagation lengths and highly reflective mirrors. Besides, we see an interesting dependence
with 1/L in γleak [Cf. Eq. (12) and discussion below]. This must be compared to the 1/

√
L

dependence of the coupling strength. Therefore, in a realistic scenario where the reflectivity is
always less than one, these two dependencies compete and depending on the other parameters
an optimal length appears. This discussion is also true for the ring configuration by replacing
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leakage through the mirrors by bending losses. The latter also decreases when increasing the
resonator length (but this time exponentially [55]) since the curvature is reduced. Therefore,
pretty much like in the linear case, for circular resonators an optimal length also appears.

4.2. Temperature and propagation losses

In the next section we will see that the losses from the plasmon resonators are often dominated
by the small propagation length of the plasmons. In particular, it may not be sufficient to
use sophisticated waveguide geometries to increase this length. An often overlooked factor
affecting plasmon propagation length is temperature, since usual plasmonic experiments are
operated at room temperature. However, lowering the temperature, the propagation length
of plasmons can be systematically extended by orders of magnitude [26]. This increase is
possible if the conduction losses inside the metal are dominated by scattering at phonons
instead of defects like grain boundaries or impurities. Furthermore, the metal nanostructure
must have a smooth surface or otherwise electron scattering at the surface will dominate
[16, 67](as well as radiative losses but they are much smaller [16]).

Using the Drude-Sommerfeld model for free electrons, the imaginary part of the
permittivity, ε ′′ is approximately proportional to the resistivity, ρ (details in Appendix D).
Since the |ε ′| � |ε ′′| the modal properties of the plasmons are not affected and an decrease in
resistivity directly translates into an increase in propagation length

` ∝
1
ε ′′

∝
1

ρ (T )
. (18)

Working at lower temperatures is of course an experimental hurdle. However, since many
quantum emitters are operated at lowered temperatures anyway, it may already be needed for
an envisioned setup. In sufficiently smooth, pure and single crystalline silver, the propagation
length can be easily enhanced by a factor of about 10 when using liquid nitrogen (77K) or
even almost 100 when using liquid helium (4K), see Appendix D.

4.3. Strong and weak coupling in plasmon resonators

Now we want to get an systematical overview if the SC condition (17) can be fullfilled with
combinations of realistic plasmon waveguides, resonator geometries and emitters. Since
this depends on so many adjustable parameters (different waveguides each with different
geometries, resonator reflectivity and length, temperature, emitters) we try to get insight in
a plot that gives an broad overview for as much as possible of these parameters. To this end
we rearrange the SC condition [Eq. (17)] as√

3
m

Γ0

ω

vpc
v2

g

A0

Aeff
>

1
8

(
`

λ

)−1

− 1
2m

ln |R| . (19)

We neglected the emitter losses and furthermore we used the relation ω = vpk. Notice that
, the properties of the waveguide are encoded in only two parameters: one proportional to
the field confinement vpc

v2
g

A0
Am

and the other one being the propagation length normalized to the

plasmon wavelength `/λ . Hence, we choose this to be the axis of a 2D-plot [17] in Fig. 4
and then can overlay borders separating strong and weak coupling independent of the actual
waveguide used. The waveguides differ in their fundamental type (nanowire, hybrid, wedge)
and we vary the geometrical parameters to see a broad range of achievable field confinements
and propagation lengths. Furthermore, we mark the border between strong and weak coupling
for various resonator lengths (L = mλ/2, see Eq. 11) and mirror reflectivities (|R|) overlaid
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Figure 4. Overview of different wedge(N) , hybrid(�) and nanowire(•) waveguides for reaching SC.
The emitter has λ0 = 1550nm and Γ0 = 1GHz. We draw lines separating the region of strong and weak
coupling for multiple resonator realizations with different lengths (L = {λ/2,25λ}) and end reflectivities
(R = {1,0.99,0.97}). The parameters of each waveguide are varied to yield different confinements and
propagation lengths. We chose the following parameters for the waveguides, marked by symbols, starting
from the bottom left point of the individual waveguide lines: The nanowire waveguide has radii of rrad =
{25,50,100,250,500,750,1000}nm. The wedge waveguide angles of θ = {5,10,20,40,60,80,100,120}°
and its tip has a radius of 10nm. The hybrid waveguide has separations between the metal and the dielectric
nanowire of h= {5,25,50,100,200,300,500,750,1000,1250,1500}nm and a the dielectric nanowire width
of 200nm. Furthermore we plotted the waveguides operated at room temperature (lower three lines) and 4K
(upper three lines).

on our plot for the waveguides. If a certain waveguide point lies at the top (meaning higher
propagation length than the minimum required) and left (meaning higher confinement than
needed) of a respective line then the emitter and the resonator made of this waveguide are in
the SC regime.

The calculations of propagation length and field confinement was carried out numerically
via a finite element method and the the emitter was considered to be located at the optimal
point of maximum field strength.

In Fig. 4 a strong emitter operating at telecom frequencies (free space wavelength
λ0 = 1550nm ) was assumed, e.g. a self assembled InAs/GaAs quantum dot. As we can
see, SC is hard to achieve. With non perfectly reflecting mirrors (R = 0.99) only the hybrid
waveguide with the is in the area of SC. The wire and the wedge waveguide are always in
the WC . Lines operated at lowered temperatures, 4K are shifted upwards to two orders of
magnitude longer propagation lengths. Of course, imperfections in the waveguides may limit
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Figure 5. Same plot as in Fig. 4 but with an emitter operating at λ0 = 650nm and a free space spontaneous
emission rate of Γ0 = 0.05GHz. This roughly corresponds to CdSe QDs or NV-Centers. The waveguide
properties are all the same as in Fig. 4 except the dielectric nanowire that has been adapted to better perform
at this wavelength with a width of 100nm.

such enhancements in propagation length. However, we see that even at lower propagation
length increases we are comfortably in the SC regime, either with good reflective ends or
longer resonators.

We can conclude here that for high-dipole moment quantum dots (e.g. InAs/GaAs ) that
are operated at lowered temperatures anyway, strong coupling should be reachable. This is
possible by using (chemically synthesized) smooth single-crystalline waveguides, realistic
DBR mirror reflectivities above 95% and resonator lengths of several wavelengths. The
straight borders in Fig. 4 with {L = 25λ , |R| = 1} may correspond to a circular resonator
long enough to neglect bending losses.

4.4. NV-Center or CdSe QDs

In Fig. 5 we plot the same as in Fig. 4 but for emitters with spontaneous emission of
Γ0 = 0.05GHz at λ0 = 650nm. This resembles optimistic values for CdSe QDs or NV-centers.
In this case the SC regime is harder to reach: the emission rate is smaller and the normalized
propagation length of most of the waveguides is shorter at optical than at telecom frequencies .
Even at lowered temperatures reaching SC with emitters with such low emission rates presents
an experimental challenge. Especially since at optical frequency interband transitions, which
are independent of temperature, limit the achievable propagation length increase.
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Figure 6. Purcell factors for plasmon resonators made of different waveguides. The emitters used are NV-
Centers and CdSe QDs at room temperature with a a free space wavelength of approximately 650nm. The
reflectivity of the resonator ends is |R| = 0.97 and its length L = λ/2. The red dashed line is the Purcell
factor due to transverse mode confinement of the guided modes (Fguide). The blue dashed-dotted line is
the Purcell factor originating from the resonator (Fres). The solid black line is the total Purcell factor. For
higher confined modes (left side of each plot), the resonator Purcell factor decreases since the higher losses
decrease the resonators Quality factor. For weakly confined long propagating modes (right side of the plots)
the resonator Purcell factor is limited by the emitter’s quality factor.

4.5. Tradeoff between Confinement and losses

In Fig. 4 we first notice the well-known tradeoff between mode confinement and propagation
length for plasmon waveguides [68]: The parametric lines for each waveguide run more or less
diagonal from bottom left to the right top of the 2D plot. However, the individual waveguide
types perform different with the hybrid waveguide offering highest field confinement and
propagation lengths as noted in Ref. [17]. The mode confinement in the plane perpendicular
to the waveguide therefore affects the maximum achievable quality factor of the resonator.

Interesting enough, we see the same trend as for plasmon waveguides also exists for
the whole resonators as well: the stronger the field confinement in the dimension along
the waveguide – e.g. shorter resonators – the higher are the losses through the ends of the
resonators. This is also true for circular resonators, where building shorter but stronger bent
resonators results in higher bending losses.

5. Applications

Let us discuss some practical applications of the theory presented so far.

5.1. Purcell enhancement for single plasmon sources

As derived in Appendix C the Purcell factor for plasmon resonators, i.e. emission into surface
plasmons compared to the emission if the emitter would be placed in a homogeneous dielectric
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with εd , is

F = Fguide×Fres =
3

πε
3/2
d

c
vg

A0

Aeff
× 4

mπ

vg

vp

1
1

Qd
+ 1

Qr

. (20)

The first part is a broadband enhancement due to strong transversal field confinement (∝ A−1
e f f )

and slow light (∝ vg) in plasmonic waveguides. The second part is a resonant wavelength
dependent enhancement arising from the longitudinal confinement in the resonator.

At room temperature, the solid state emitters presented in section 3.3 exhibit broad
bandwidths due to dephasing. This can be efficiently expressed in terms of the Quality factor
of the emitter, Q = λ0/∆λ , where ∆λ is the linewidth of the emitter almost entirely attributed
to dephasing. For popular emitters like NV-centers and CdSe quantum dots the Quality factors
are Qd,NV≈ 670nm/80nm≈ 8 and Qd,CdSe≈ 650nm/20nm≈ 33, respectively [60,61]. These
values are considerably smaller than those for typical plasmon resonators and therefore limit
the achievable Purcell factors. This can be understood if we visualize that the linewidth of
the resonator is much smaller than the one of the emitter, therefore being only resonant with
a small part of the emitter emission spectrum. The advantages of plasmon resonator are that
the sub-wavelength field confinement allows a very high broadband enhancement [9, 69, 70].
Indeed, as we can see in Fig. 6 the Purcell factor due to transversal mode confinement is
responsible for very high overall Purcell factors. This is even true for very broad emitters at
room temperature where Purcell factors above 1000 are possible. We especially see that the
decrease in propagation length of higher confined modes plays no role here: the enhancement
of the broadband Purcell factor due to mode confinement exceeds the decrease of the resonant
Purcell factor due to the reduction in propagation length.

In a recent experiment [9] Purcell factors of 75 have been reported for CdSe QDs when
coupled to a 50nm radius nanowire embedded in PMMA. Taking the experimental reported
parameters for L = λ terminated by DBR mirrors with reflectivities ≈ 0.95 we get a Purcell
factors between 107 and 64 when varying the QD distance to the wire surface between 0nm
and 10nm. This is a very good agreement with the reported value, especially when taking into
account that we have not fitted any parameter.

Furthermore a look at lowered temperatures is also interesting here. Magnitude higher
Purcell factors can be expected through higher Quality factors of cavities and emitters at lower
temperatures.

Although the cavity Purcell factor is lower than the broadband Purcell factor for highly
confined waveguides, it has several features that are important for single plasmon sources.
First of all, it still has a value above 5 for the broadband emitters in Fig. 6 and therefore is
a significant contribution to the high overall Purcell factor. Second, it selectively enhances
plasmons with large propagation lengths, since it is an effect attributed to cavity resonance.
Only the SPPs which match the cavity length are enhanced. This is particular important when
dealing with the “efficiency” to emit radiation into this SPPs.

5.2. Strong coupling

Once we know under which conditions the SC regime is reachable within plasmonic
resonators, we go through some applications. As anticipated in the introduction, cavity QED
systems in the strong coupling are a cornerstone in quantum optics and a huge number of
applications were proposed and implemented in different realizations. Let us discuss some
of them that may have relevance in the manipulation of light at the nanoscale. All those
applications are implicitly or explicitly related to the coherent coupling between the TLS
and the resonator mode, encapsulated in the ratio, g/ωr and g/max[γr,γe,γd ]. The larger the
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Figure 7. Coupling strength over losses for an Γ0 = 1GHz emitter at λ0 = 1550nm at 4K for different
waveguide-resonator combinations.

coupling and smaller the losses, the faster and more coherent light-matter oscillations are,
optimizing the performance of many of the applications. For later reference, we plot the
expected performance of g/γr for several plasmon resonators in Fig. 7, operated at 4K. The
waveguides plotted include a long and a short linear resonator with reflectivity of |R| = 0.99
and a sufficiently long circular resonator where we assumed that bending losses can be
neglected. The emitter properties are taken from section 4.3 (e.g. InAs/GaAs QDs).

Quantum nonlinear optics The JC-model (15) is nonlinear , the energy levels are not equally
spaced. Therefore, its response to an external stimulus, is not linear as well. In the dispersive
regime [71], by expanding the JC-model in powers of g/δ � 1 with δ = ωr−ωe, effective
Kerr Hamiltonians like H/h̄ = ωa†a+κ(a†a)2, have been proposed [72]. Kerr nonlinearities
generate squeezed states. In a circuit-QED implementation such physics have been recently
reported [11]. In that work the authors exploited these nonlinearities to demonstrate, among
other things, squeezing. In this experiment g/γe ∼ 10 and g/ω ∼ 10−3. As shown in Fig. 7,
these numbers can be reproduced with the plasmonic resonators considered in this paper.

Plasmon-plasmon interaction Rooted in the same nonlinearities, the JC-physics can be
used to induce effective photon-photon interactions, as in the so-called photon blockade
phenomenon [73]. Another evidence for photon-photon interactions in cavity-QED systems
have been demonstrated in Ref. [12], where two light beams interact through a QD (InAs)
coupled to a cavity in a photonic crystal. In that experiment, the reporting numbers are
g/γr ∼ 1 and g/ω ∼ 10−4. Again, these number are within reach of plasmonic resonators,
see Fig. 7.
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Other Photon-photon interaction allows exploring Bose-Hubbard-like models in JC-lattices,
i.e. arrays of coupled cavity-TLS systems. The non-equally spaced levels in the JC-model
can yield two phases – localization and delocalization – depending on the coupling g and the
hopping term between the cavities [74]. These phases survive even with dissipation [75].
Cavity QED is also a building block for quantum information tasks. On the other hand
demonstrations of quantum computation [76], state tomography [77] or quantum buses [78]
were done in systems exceeding the ratios g/max[γr,γe,γd ] presented here. This motivates
to further improve current numbers by e.g. improving the reflectivities in order to enable
these tasks in plasmonic resonators. Finally, we mention recent advances in doing quantum
physics driven by dissipation [79, 80]. There, dissipation is viewed as beneficial for reaching
interesting ground states or doing quantum computation. Because of strong dissipation
present in quantum plasmonics, further investigation in this direction seems rewarding.

6. Conclusions

We have reported a quantum theory for plasmonic resonators coupled to quantum emitters.
Starting from a first principle theory, and taking into account the main losses, we were able
to end up in a master equation for the effective JC model, Cf. Eq. (16). All the coefficients
can be obtained via the classical Green’s function together with the emitter characteristics.
This permits to profit from the studies on plasmonic waveguides. We have studied different
architectures for optimizing the binomia of field enhancement and losses to reach the SC
regime. We have numerically demonstrated that SC in plasmonics QED is possible at
cryogenic temperatures. Albeit it is demanding at room temperature it is possible if further
improvements are reached, e.g. mirror reflectivities. Importantly enough our calculations
agree with recent experimental results in the WC regime with plasmonic resonators made of
nanowires, see our section 5.1. Further, we have shown that other architectures, as hybrid
or wedge can overcome the nanowire implementation and reaching higher Purcell factos. In
the paper we also compare the capabilities of plasmonic resonators with other technologies.
As demonstrated plasmonic QED can be used as an effective Kerr media or for generating
plasmon-plasmon interactions, demonstrating its feasibility for controlling the few plasmon
dynamics at the nanoscale.
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Appendix A. EM quantization in dispersive media: the system-environment approach

In this appendix we give a rough overview for the quantization program in dispersive (and
therefore also lossy) media. We follow an open system approach wherethe losses are modeled
by a reservoir (or “bath”) accounting for the irreversible leakage of energy from the system.
We find a Quantum Langevin Equation, that in the classical limit is the Maxwell equation of
the EM fields [29, 30].

It is convenient to work both in reciprocal space,

~E(~r, t) =
1

(2π)3/2

ˆ
d3k~E(~k, t)ei~k·~r , (A.1)
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and in the Coulomb Gauge,
∇~A = 0 . (A.2)

The quantization is based on a system-bath Lagrangian, where a continuum of bosons (~x j,~p j)
provides an irreversible loss channel,

Ltotal = ε0

ˆ
d3k

(
|~̇A|2− c~k2|~A|2

)
+∑

j

(
µ ẋ2

j −ω
2
j x2

j
)
+∑

j
α j

ˆ
d3k

(
~̇x j~A∗+~̇x j

∗~A
)
, (A.3)

where we omit the explicit dependence on~k and t in ~A(~k, t). The introduced constants will
later on be identified with the system’s material parameters.

With Lagrangian (A.3) at hand we start the quantization of ~A(~k, t) and their conjugate
momenta

Π =
∂L

∂ ~̇A
∗ , Π

∗ =
∂L

∂ ~̇A
(A.4)

The quantized fields satisfy the commutation relations [81]
[~A(~k),~Π(~k′)] = 0 , [~A(~k),~Π†(~k′)] = ih̄δ (~k−~k′) (A.5)

and the bath’s coordinates satisfy

[~x j,~p j′ ] = ih̄~δ j j′ (A.6)
We write the Heisenberg equations of motion for both A and the bath operators x j.

Because of the interaction part, [Cf. third term in (A.3)] these equations are coupled

ε0~̈A = − c2~k2~A−∑
j

α j~x j (A.7)

~̈x j = −ω
2
j~x j +

α j

µ
~̇A . (A.8)

The solution of ( A.8) is given by

~̇x j = i

√
h̄ω j

2µ

(
f †

j eiω jt − f je−iω jt
)
−

α j

µω j

ˆ t

−∞

sin(ω j(t− t ′))~̈A (A.9)

with the anhilation/creation operatos: ~x j = i
√

h̄ω j/2µ( f †
j + f j). Inserting the above (A.9) in

(A.7) together with some algebra we end up with an equation for the Fourier components of
the vector potential,

~A(~k, t) =
ˆ

dωe−iωt~Aω(~k) (A.10)

that can be cast to a Langevin-like form

− ε(ω)ω2~Aω =−c2~k2~Aω − i
h̄
π

ˆ
dν ν

√
ε ′′(ν)

(
a†

ν eiνt −aν e−iνt
)
. (A.11)

The introduced permittivity of the media

ε(ω) = ε
′(ω)+ iε ′′(ω) = 1+

1
ε0

(
P

[ˆ
dν

J(ν)
ν−ω

]
+ i

π

2
J(ω)

)
(A.12)

Notice that we have introduced the imaginary part ε ′′(ω) also appearing in the integrand of
(A.11) and the spectral density

J(ω) = ∑
j

α2
j

µω j
δ (ω−ω j) (A.13)

Equations (A.12) and (A.13) link the macroscopic complex permittivity function with a
microscopic model accounting for linear dissipation. As a consequence, the fields can be
obtained via the Green’s function as expressed in Eq. (1) in the main text.
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Appendix B. Green’s function of resonators

Appendix B.1. Linear resonator

To get the Green’s function of a resonator, we first assume that the system is translational
along the z-direction with additional reflections at the resonator ends, effectively reducing the
problem to one dimension. We further notice that G1d(ω,z,z′) can be obtained by summing all
the waves scattered at the mirrors. A resonator of length L with complex reflection coefficient
R (0 ≤ |R| ≤ 1) on the resonator ends located at xl and xr therefore yields the 1D Green’s
function

G1d
(
ω,z,z′

)
=

∞

∑
n=0

(
eik2LR2

)n i
2k

(
eik|z−z′|+ (B.1)

Reik|2zr−(z+z′)|+Re−ik|2zl−(z+z′)|+R2eik|2L−(z−z′)|
)
.

Without loss of generality we set zr = L/2 =−zl .
The coupling of an emitter to the resonator, |g(ω) |2 ∝ ImG1d (ω,z,z), depends on the

position z. To maximize the coupling we will consider the emitter to be positioned at an
antinode of the electric field.

Appendix B.2. Circular resonator

In the circular resonator configuration the boundary condition is 2π-periodicity. In a similar
way as for the linear case summing all the different waves yields the Green’s function

G1d
(
ω,z,z′

)
=

∞

∑
n=0

(
eik2
)n i

2k

(
eik|z−z′|+ eik(L−|z−z′|)

)
. (B.2)

Notice that the resonator emitter coupling does not depend on the emitter position.

Appendix B.3. Approximating resonances

By introducing

θ = θ
′+ iθ ′′ = k′L+ϕ + i

(
k′′L− ln |R|

)
(B.3)

where the phase jump at the mirrors, ϕ = arg(R), is π for the linear resonator and zero in the
circular configuration, we can write the 1D-Green’s function evaluated at a field antinode and
z = z′ for both linear and circular resonator as

G1d (ω,z,z) =
1
2k

i sinhθ ′′+ sinθ ′

coshθ ′′− cosθ ′
(B.4)

We see that θ ′′ quantifies the losses, both for propagation via the imaginary part of the
propagation constant, k′′, and the losses through the mirrors via |R| < 1. For radiation losses
due to bending in the circular resonator we can phenomenologically add a term k′′bend to the
imaginary part of the propagation constant, k′′.

The condition for resonances is

L =
π

k′r
m =

λ

2
m (B.5)

where m is the number of antinodes in the resonator and has to be an even integer for circular
resonators and any integer for the linear configuration, In both configurations the coupling

|g(ω)|2 = Γguide
1
π

Im{k G1d (ω,z,z)} , (B.6)
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can be approximated by a Lorentzian near a resonance. We approximate the cosine around
the center of the resonance peaks

cos(θ ′)∼= 1− 1
2

L2(k′− k′0)
2 = 1− L2

2v2
g
(ω−ω0) (B.7)

Therefore we can write,

|g(ω)|2 ∼= g2 1
π

γr/2

(ω−ω0)2 +(γr/2)2 . (B.8)

with the width of the Lorentzian (FWHM) γr being the resonator decay rate

γr = 2
vg

L

√
2(coshθ ′′−1)≈ 2

vg

L
θ
′′ (B.9)

and the coupling defined as

g =

√
Γopen

vg

L

√
sinhθ ′′√

2(coshθ ′′−1)
≈
√

Γopen
vg

L
. (B.10)

The approximated results were obtained by assuming weak losses, θ ′′� 1, and consequently
Taylor expanding sinh(θ ′′) and cosh(θ ′′).

For small enough γr the Lorentzian (B.8) can be approximated by the peak (13) which is
used in the mapping to the Jaynes-Cummings model.

Appendix C. Purcell factors

Applying the Markov approximation, the emitter coupled to a plasmon resonator undergoes
exponential decay into surface plasmons with a rate given by the spectral density at the
frequency of the emitter, ωe [82](Fermi’s golden rule)

Γres = 2π |g(ωe)|2 . (C.1)

We define the Purcell factor as the ratio of this emission into surface plasmons compared to
Γ0, the emission if the emitter would be placed in a homogeneous medium characterized by
εd ,

F =
Γres

Γ0
, (C.2)

If emission into other channels is negligible small compared to the emission into surface
plasmons, this Purcell factor measures the decrease of the emitter lifetime.

In the case of plasmonic resonators the Purcell factor can be written as the product of
two different contributions

F =
Γres

Γ0
= Fguide×Fres . (C.3)

The waveguide Purcell Factor Fguide exists even without a cavity. It is a result of the small
mode area and higher density of states (∂k/∂ω = v−1

g ) of guided surface plasmons

Fguide =
Γguide

Γ0
=

3
πεdnd

c
vg

Afree

Aeff
. (C.4)

Since it has no resonance origin, it is broadband. The additional Purcell factor when building
a resonator out of the waveguide, Fres, is for g�max

{
γr,γp,γe

}
Fres =

Γres

Γguide
=

4g2

γr + γd
/Γguide , (C.5)



Weak and Strong coupling regimes in plasmonic-QED 21

where γd is the linewidth due to emitter dephasing (spectral diffusion). Using g2 =
vg
L Γguide,

ω = vp2π/λ and the quality factors Qd = ωe/γd(emitter dephasing) and Qr = ωr/γr
(resonator) we can rewrite the resonator Purcell factor in terms of

Fres =
4

mπ

vg

vp

1
1

Qp
+ 1

Qr

. (C.6)

The fraction of emission guided into surface plasmons is given by

β =
Γres

Γres + γe
(C.7)

In normal cavity QED the emitter decay rates not into the cavity (γe) stay approximately the
same with and without the cavity since the cavity only affects the modes in a small spatial
angle. In plasmonics the presence of the metal surface drastically alters the emission into free
modes and additionally adds decay rates into non-radiative modes that dissipate in the metal.
Here the plasmonic cavity is quite useful as it increases the decay into surface plasmons and
not the decay into non-radiative modes. This is an advantage of the “resonator Purcell factor”
over the “broadband Purcell factor”.

Appendix D. Temperature and propagation losses

Since the phonon population is strongly temperature dependent, we can significantly reduce
scattering of electrons and increase the plasmon propagation lengths.

To get the permittivity as a function of temperature, we recourse to the Drude-
Sommerfeld model for free electrons which is well-applicable and sufficient for near infrared
to telecom(λ0 ≈ 1550nm) wavelengths, where interband transitions can be safely neglected
in silver. Here, the permittivity is given by the plasma frequency of the free electrons ωp and
the damping rate of the electrons Γel

εDrude(ω) = 1−
ω2

p

ω2 + iΓelω
. (D.1)

The damping is a function of Fermi velocity vF and the mean free path of the electrons lel,
Γel =

vF
lel

. The mean free path is in turn proportional to the resistivity ρ , lel ∝ 1/ρ . Using
ω � Γel the imaginary part of the permittivity is thus approximately proportional to the
resistivity

ε
′′
Drude(ω) ∝ Γel ∝ ρ . (D.2)

By using tabulated data for the resistivity of silver [83] at different temperatures and scaling
Γel accordingly, we get the imaginary part of the permittivity at different temperatures. The
real part stays approximately constant.

With |ε ′| � |ε ′′| the modal shape of the propagating plasmons is not affected and
the reduced imaginary part of the permittivity directly translates into increased propagation
length. The imaginary part of the permittivity is plotted in Fig. D1. It translates to a
propagation length increase that is universal for all waveguides analyzed in this paper.

At low temperatures ε ′′ saturates since the dominant electron scattering happens at
lattice impurities. Furthermore, when the scattering due to the Drude-Sommerfield model
vanishes, the small but maybe finite interband transitions may play a role. Note that at optical
frequencies they may even dominate. That is why the change of ε ′′ is less pronounced for
λ0 = 650nm in Fig. D1. However, the data used for interband transitions may be very vague
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Figure D1. Permittivity of silver as a function of temperature for λ0 = 1550nm (blue line) and λ0 = 650nm
(red line). We see that an increase of about 100 is possible in the first case, while an increase of about 10 is
possible for optical frequencies.

at lower temperatures since it is obtained from a fit at room temperature. A more close
experimental analysis is needed here.

Of special interest are the properties at 77K and 4K reachable with liquid nitrogen and
liquid helium, respectively. At 77K an increase of about 5 and at 4K an increase of about 80
compared to the room temperature propagation lengths can be expected at 1550nm. For purer
silver even more may be possible.
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