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In an extensive numerical investigation of nonintegrable translational motion of discrete breathers
in nonlinear Schrödinger lattices, we have used a regularized Newton algorithm to continue these
solutions from the limit of the integrable Ablowitz–Ladik lattice. These solutions are shown to be
a superposition of a localized moving core and an excited extended state(background) to which the
localized moving pulse is spatially asymptotic. The background is a linear combination of small
amplitude nonlinear resonant plane waves and it plays an essential role in the energy balance
governing the translational motion of the localized core. Perturbative collective variable theory
predictions are critically analyzed in the light of the numerical results. ©2004 American Institute
of Physics. [DOI: 10.1063/1.1811991]

Discrete breathers are spatially localized, time periodic
solutions of homogeneous nonlinear lattices, which have
been recently observed in experiments on a variety of
physical systems (magnetic solids, arrays of Josephson
junctions, coupled optical waveguides and photonic crys-
tals). Though many of the properties of discrete breathers
are today well characterized, the question on their mobil-
ity remains under controversy, due to the radiative losses
unavoidably associated to the translational motion of the
localized pulse in generic (nonintegrable) systems. We ad-
dress here this problem in an important class of nonlin-
ear lattices: the discretizations of the nonlinear
Schrödinger equation.Our results show that exact mobile
breather solutions ride over an extended excited state of
the lattice, which we fully characterize. Moreover, this
background plays an essential role in the energy balance
required for exact nonintegrable mobility.

I. INTRODUCTION

Nonlinear lattices have become the subject of a consid-
erable multidisciplinary interest, with applications in physics
subdisciplines as diverse as biophysics(myelinated nerve
fibers,1 DNA,2 biopolymer chains3), nonlinear optical de-
vices (photonic crystals4 and waveguides5,6), and Josephson
effect7 (superconducting devices,8,9 Bose–Einstein
condensates10–12), among others. From a theoretical perspec-
tive they have been progressively recognized not as mere
discretizations(unavoidable for numerical computations) of

nonlinear continuum field equations, but as a target of inter-
est in their own right, due to the distinctive features associ-
ated withdiscreteness,whose relevance to experimental fea-
tures have been largely established.

More specifically, among the variety of observable non-
linear behaviors of lattice dynamics, the phenomenon of(dis-
crete breathers) nonlinear localization in lattices13 has re-
ceived attention in both experimental and theoretical
research during the last several years.(Nontopological) dis-
crete breathers are exact spatially localized, time-periodic so-
lutions. Due to discreteness the plane wave spectra are
bounded, thus making possible the absence of multi-
harmonic resonances of the exact discrete breather solution
with extended modes. The combination of nonlinearity and
discreteness is sufficient for the physical existence of discrete
breathers, DBs for short, resulting in its generality and broad
interest. The reader may find in Ref. 14 a recent multidisci-
plinary survey of current research on the subject.

Our primary concern here is the issue of the DBs’ mo-
bility. The translational motion of discrete breathers intro-
duces a new time scale(the inverse velocity), so generically
a moving breather excites resonances with plane wave band
spectra. This fact poses no problem to the persistence of
localization when the lattice dynamics is governed by power
balance(forced and damped lattices15): the emitted power is
exactly compensated by the input from the homogeneous
external force field, during stationary breather motion. How-
ever, for generic(nonintegrable) Hamiltonian lattices, the ra-
diative losses would tend to delocalize energy, and some
energy compensating mechanism is needed in order to sus-
tain exact stationary states of breather translational motion.
From the(particle) perspective of collective variables theory,a)Electronic mail: gardenes@unizar.es
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the localized breather experiences a periodic Peierls–Nabarro
potential function of its position, so that the motion of the
localized field oscillation over this landscape should be ex-
pected to induce the emission of radiation at the expense of
translational(and/or internal) breather kinetic energy, which
thus would unavoidably decay on time.

To address the problem, a reasonable strategy is to use
precise numerical techniques on adequately general models,
with the hope that they may pave the way to further physical
(and mathematical) insights. Our chosen model belongs to an
important class of nonlinear lattice models: the discretiza-
tions of the continuum nonlinear Schrödinger equation, here
referred to as nonlinear Schrödinger(NLS) lattices. First of
all, they are ubiquitous in models for polaronic effects in
condensed matter, nonlinear optical technologies, and the
physics of Bose condensate lattices and superconducting de-
vices, where nonlinear localization is currently studied. Sec-
ond (a very convenient technical advantage), this class con-
tains an integrable limit(the Ablowitz–Ladik lattice, see
below) having exact moving discrete breathers, wherefrom
perturbation(collective variable) theories have been devel-
oped in support of exact(or very approximate, in the least)
nonintegrable mobile DBs. This allows a detailed theoretical
analysis of the numerical results, as well as eventual feed-
backs for useful(and currently used) theoretical concepts and
perspectives. In Sec. I A of this introduction we present the
(three-parameter) NLS lattice that we have studied, origi-
nally introduced by Salerno.16

The numerical techniques employed are summarily in-
troduced in Sec. II. We stress here the unbiased character of
this numerical procedure which, unlike other techniques, is
not based on ansatze on the expected functional form of the
exact solution sought. In essence, the procedure uses a regu-
larized Newton continuation method for operator fixed
points, and it only requires a good starting set of parameter
values where the exact solution is known. In our case this is
provided by the integrable Ablowitz–Ladik limit of the NLS
lattice, from which adiabatic continuation of the two-
parameter(core frequencyvb and velocity vb) family of
moving Schrödinger breathers is performed.

The main numerical facts are shown in Sec. III. The
numerical solutions are found to be(up to numerical preci-
sion) the superposition of a travelling exponentially localized
oscillation(the core), and an extended background, which is
a linear superposition of finite amplitude nonlinear plane
wavesA expfiskn−vtdg (see Fig. 1). The amplitudes of these
resonant nonlinear plane waves are observed to differ typi-
cally by orders of magnitude, so that only a small number of
them are relevant for most practical purposes. They fit well
simple theoretical(thermodynamic limit) predictions based
on discrete symmetries requirements. Contrary to the exact
immobile breather solution(space-homoclinic and time-
periodic orbit), which asymptotically connects the rest state
(vacuum or ground state) of the lattice with itself, each exact
mobile localized solution is instead homoclinic to a specific
lattice state of extended radiation. In other words, exact sta-
tionary mobility of discrete breathers requires an extended
excited state of the lattice. Preliminary accounts of some of
the numerical results of this section were reported in Ref. 17.

In Sec. IV we analyze the numerical results in the light
of collective variable theories, correlating them with the
main theoretical predictions of this successful(however in-
complete) physical perspective. In particular, the existence of
Peierls–Nabarro barriers to translational core motion is con-
firmed, and its subtle relation to the background amplitude is
discussed. We present also numerical confirmation of the ex-
istence of exact oscillating anchored breathers, whose ex-
tended background is much smaller than those of traveling
discrete breathers of the same internal frequencyvb. Along
with the discussion in this section, a physical interpretation
of the role of the interaction background-core in the energy
balance emerges, paving the way to a satisfactory integration
of the results into a collective variable theory.

Finally, in Sec. V, after summarizing the main conclu-
sions drawn on discrete Schrödinger breather mobility, we
briefly trace some interesting open questions for further re-
search, notably the approach to irrational breather time scales
ratios, the study of multibreather solutions(two-breather col-
lision processes, trains of moving breathers), and the cou-
pling to both thermal and nonthermal(e.g., elastic) degrees
of freedom, where the numerical tools and results presented
here can find further applications.

A. NLS lattices

The standard discrete nonlinear Schrödinger(DNLS)
equation1,18 is the simplest discretization of the one-
dimensional continuous Schrödinger equation with cubic
nonlinearity in the interaction term, i.e.,

iḞn = − CsFn+1 + Fn−1d − guFnu2Fn. s1d

In this expressionFnstd is a complex probability ampli-
tude, the parameterC amounts the nearest neighbor cou-
pling, and g is the strength of the nonlinearity. The self-
focusing effect of local nonlinearity balanced by the opposite
effect of the dispersive coupling makes possible the exis-
tence of localized periodic solutions(breathers) of the dis-
crete field, where the profile ofuFnu decays exponentially
away from the localization center:

FIG. 1. Time evolution ofuFnu2 profile of a mobile discrete Schrödinger
breather. The frequency of the solution isvb=5.050 and the velocity isvb

=0.804. Note that the background is composed by a single plane wave with
amplitudeA. The nonintegrable parameter of Eq.(7) is n=0.2.
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Fnstd = uFnu expfivbstdg. s2d

In the uncoupled limitC→0 of the DNLS equation, also
known as the anti-integrable or anti-continuous limit, dis-
crete breathers can be easily constructed by selecting a peri-
odic oscillationFn0

std of frequencyvb at siten0 andFn=0
for nÞn0. These solutions can be uniquely continued to non-
zero values of the couplingC, and constitute the one-
parameter family of immobile on-site breathers of the DNLS
equation.

Unfortunately the continuation from the uncoupled limit
does not provide solutions where the localization center
moves along the lattice with velocityvb, i.e., mobile discrete
breathers. On the other hand, there is an integrable lattice as
a limit of the nonlinear Schrödinger class that possesses this
type of mobile solution. That is the one discovered by
Ablowitz and Ladik in Ref. 19:

iḞn = − CsFn+1 + Fn−1dF1 +
g

2
uFnu2G , s3d

where, again,C and g account for the strength of the cou-
pling and the nonlinearity, respectively. The integrable
Ablowitz–Ladik equation, A-L for short, possesses a two-
parameter family of exact moving breather solutions of the
form

Fnstd =Î2

g
sinhb sechfbsn − x0stddg

3 expfisasn − x0stdd + Vstddg. s4d

The two parameters of this breather family can be chosen to
be the breather frequencyvb and velocityvb,

vb = ẋ0 =
2 sinhb sina

b
, s5d

vb = V̇ = 2 coshb cosa + avb, s6d

where −pøaøp and 0,b,`. The A-L moving breather
(instantaneous) profile interpolates between the rest state
Fn=0 of the lattice(at n→ ±`) in an exponentially localized
region aroundx0std, while traveling with velocityvb.

The connection between the integrable(though physi-
cally limited) A-L equation and the physically relevant
(though nonintegrable) DNLS equation is provided by the
model originally introduced by Salerno in Ref. 16,

iḞn = − sFn+1 + Fn−1dfC + muFnu2g − 2nFnuFnu2. s7d

This lattice provides a Hamiltonian interpolation between the
standard DNLS equation(1), for m=0 andn=g /2, and the
integrable A-L lattice whenm=g /2 and n=0. The Hamil-
tonian of the Salerno equation is given by

H = − Co
n

sFnF̄n+1 + F̄nFn+1d − 2
n

m
o
n

uFnu2

+ 2
n

m2o
n

ln s1 + muFnu2d, s8d

which contains the A-L and DNLS Hamiltonian for the

above limits. In addition to the Hamiltonian, this equation
possesses, for any value of the parameters, the following
conserved norm:

N =
1

m
o
n

ln s1 + muFnu2d. s9d

In the following we will set the value ofg=2 (as usual) and
consider the coupling strengthC=1 in Eq. (7).

The continuation of the family of mobile discrete breath-
ers from the A-L integrable limit allows numerical observa-
tions of the interplay between the integrable term, weighted
by the parameterm, and the nonintegrability, weighted byn.

II. DISCRETE BREATHER NUMERICS

We introduce here the numerical techniques that we have
used. As a whole, one could refer to them as the(SVD-)
regularized Newton method. They do not constitute a novel
method in “discrete breather numerics,” as they have been
already used, e.g., in Ref. 20, to refine moving breathers of
Klein–Gordon lattices obtained by other numerical means
(see, by contrast, Ref. 21). From the methodological side,
what is novel here is the systematic use of them in the in-
vestigation of the family of moving Schrödinger breathers
reported in Sec. III.

To some extent, the presentation here is self-contained.
First, in Sec. II A we introduce the notion ofsp,qd resonant
solution, providing some illustrative examples. The(SVD)
regularized Newton algorithm is presented in Sec. II B, and
finally in Sec. II C we briefly explain the basics of Floquet
stability analysis.

A. Discrete space–time symmetries: „p ,q… resonant
states

If a frequencyvb=2p /Tb is given, we will say that a
solution F=hFnstdj is sp,qd resonantwith respect to the
reference frequencyvb, if the following condition holds, for
all n and t:

Fnstd = Fn+pst + qTbd. s10d

After q Tb-periods, these solutions repeat the same pro-
file but displaced byp lattice sites. In more technical terms,
thesesp,qd resonant solutions are fixed pointsF of the op-
erator

LpTq = M, s11d

sM − IdF = 0, s12d

whereL and T are, respectively, the lattice translation and
the Tb-time evolution operator:

LhFnstdj = hFn+1stdj, s13d

ThFnstdj = hFnst + Tbdj. s14d

We now consider some examples ofsp,qd resonant so-
lutions with respect to the frequencyvb; the first example is
simply provided by the family of plane wave solutions of Eq.
(7):
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Fnstd = A expfiskn− vtdg. s15d

It is easily seen, by inserting(15) in Eq. (7), that the values
of v , k and uAu define a surface in the three-dimensional
space, the nonlineardispersion relation surfacevsk,Ad (see
Fig. 2):

v = − 2f1 + muAu2g cosk − 2nuAu2. s16d

Note that due to the nonlinear character of Eq.(7), the fre-
quencyv depends on both wave numberk and amplitudeuAu
of the plane wave.

One can easily determine those plane waves that are
sp,qd resonant with respect tovb: Eq. (10) imposes the fol-
lowing condition onv andk:

v

vb
=

1

q
S p

2p
k − mD , s17d

where m is any arbitrary integer. These planes in the 3D
spacesv , uAu ,kd intersect the dispersion relation surface at(in
general) several one-parameter families(branches) kjsuAud, in
the first Brillouin zones−pøkøpd.

If we are not interested in unreasonably large(and not
interesting) amplitude valuesuAu of the plane waves, the
number of branches is finite: one can see that for fixed values
of all the parameterssp,q,vb,n ,md, there is a finite number
of branches in the limituAu→0; there is also a well defined
(parameter dependent) threshold value of the amplitude at
which a pair of new branches(tangent bifurcation) appears
(i.e., these plane waves can only resonate withvb for ampli-
tudes above some threshold value).

Thus, by a suitable bounding of the amplitude, for each
couple sp,qd one finds a finite number,s, of branches of
sp,qd resonant plane waves.(Note also that this number di-
verges whenp/q tends to an irrational.)

A different, and highly nontrivial, example ofsp,qd
resonant solutions is provided by the solitary waves(4) of
the A-L lattice. From Eq.(6) it is clear that the choice
2pvb/vb=p/q selects asp,qd resonant solitary wave with
respect to the frequencyvb. The set of velocity values of
resonant A-L breathers is dense and any A-L moving
breather is a limit of some sequence of resonant ones. Note
also that immobile breathers are(0,1) resonant with respect
to the frequencyvb.

In the integrable limit, the plane waves and the A-L
breathers are both exact independent solutions. Integrability
makes possible that the initial localization of energy is main-
tained with time evolution, without decaying away by excit-
ing radiation. It is a well established result that(even far
away from this integrable limit) immobile discrete breathers
remain exact solutions of the lattice dynamics. Our concern
in the next sections is the question of moving discrete breath-
ers away from integrability in Eq.(7). In order to study them,
we will focus onsp,qd resonant solutions. The motivating of
this restriction comes from its accessibility to numerics. First
we will motivate the numerical(Newton) method that allows
us to study these solutions with an adequately high precision.

B. Newton continuation

A well-known numerical procedure to obtain exact peri-
odic solutions of nonlinear lattices is the Newton
continuation.20,22–24The different practical implementations
of this procedure work very successfully when, for example,
one obtains numerically exact immobile discrete breathers of
Eq. (7), from the uncoupled limitm=0 andC=0, where ex-
act periodic discrete breathers are trivially constructed.

The iteration of the Newton operatorT converges rapidly
to its fixed point(i.e., the solution to be computed) provided

the starting point,F̂0, is close enough, and the solution of the
following system of linear equations is a well-posed prob-
lem:

sDT − 1dsFn − Fn+1d = fT − IgFn, s18d

whereDT is the Jacobian matrix of the Newton operator, and
Fn [the nth iteration solution of(18)] converges quadrati-
cally to the fixed point solution. By adiabatic change of a
model parameter, one constructs a uniquely continued exact
fixed point solution for each parameter value, using each
time, as starting point of the Newton iteration, the solution
previously computed.

The matrix sDT−1d must be invertible, in order to
uniquely computeFn+1. Degeneracies associated with the +1
eigenvalues ofDT, if any, have to be removed in order to
obtain a unique fixed point solution. When continuing immo-
bile (periodic) discrete breathers of Eq.(7), a convenient
prescription is commonly used, namely to restrict the opera-
tor action to the subspace of time-reversible solutions.22,23

This provides a practical way of removing degeneracies, al-
lowing unique continuation of immobile discrete breathers.

For the continuation ofsp,qd resonant solutions(of
which periodic solutions are only the particular casep=0
andq=1), one has to useM=LpTq as the Newton operator.
One has also to deal with the degeneracies ofM, and im-
posing time-reversibility could, in this case, be too restric-
tive.

A well-known solution to the problem of removing de-
generacies when no clear restrictions are available is pro-
vided by the so-calledsingular value decomposition
(SVD)20,22,25,26of the matrixsDLpTq−1d:

FIG. 2. Plot of the nonlinear dispersion relation surface of nonlinear plane
waves, Eq.(16), as a function of the amplitudeA and the wave numberk of
the plane wave. The values ofm andn are fixed to 0.5.
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sDLpTq − 1d = J = PVQ, s19d

whereP, V andQ are 2N32N square matrices.P andQ are
orthogonal matrices andV is diagonalsv jdi jd with possibly
null (zero) elements, called singular values, associated with
the null space ofJ (the subspace that is mapped to zeroJx
=0). The columns ofP whose same-numbered elementsv j

are nonzero are an orthonormal set of basis vectors that span
the range ofJ (the subspace reached by this matrix). The
rows ofQ whose same-numbered elementsv j are zero are an
orthonormal basis for the null space ofJ. One can numeri-
cally use this SVD decomposition, checking the(numerical)
vectors spanning the null space to identify degeneracies, and
using at iteration steps the pseudoinverse matrix

Q * V̂−1P * , s20d

whereV̂−1 is diagonal with elements 1/v j for v j Þ0 and 0 for
v j =0.

As a judicious test of our numerical codes, we have used
both procedures(reduction to time-reversible subspace and
SVD decomposition) to obtain immobile discrete breathers
of the Salerno model. Both agree, up to the highest possible
accuracy, from the uncoupled limit(one- and two-site breath-
ers) up to the A-L limit (and vice versa).

This test serves also to provide further confirmation of
an important and well-known theoretical result. At the inte-
grable A-L lattice, one- and two-site immobile breathers are
but two particular choices of the continuous one-parameter
(x0, the localization center) family of immobile solitary
waves, i.e., constantx0std=n or n+ 1

2, respectively, in Eq.(4).
The well-known result, confirmed by our numerics, is that
away from the A-L limitonly these(one- and two-site) im-
mobile discrete breathers persist under adiabatic continua-
tion. No immobile breather centered in between exists. For
positive values of the parametern, the one-site immobile one
has a lower value of energyH, and it is a linearly stable
solution, while the energy of the two-site breather is higher
and it is linearly unstable. The relative situation is reversed
for negative values ofn. This result can be interpreted as the
emergence of a(Peierls–Nabarro) potential function of the
breather centerx0, which destroys the continuous degeneracy
of immobile breathers, leaving only two of them per lattice
unit, namely those localized at maxima and minima of the
Peierls potential. This interpretation, which is captured in the
theoretical framework of collective variable approaches,
turns out to play a central role in building up the physical
interpretation of the numerical results on mobile discrete
Schrödinger breathers, below(Sec. III).

The numerical integration of the equations was per-
formed using a fourth-order Runge–Kutta scheme with time
step Tb/500. The convergence criterion for the fixed point
solution is that the value ofo jusfT−IgFn+1d ju is less thanN
310−16 (whereN is the size of the lattice). The typical size
of the lattices was taken between 100 and 200 sites depend-
ing on the characteristics of the solution considered, as we
will explain in Sec. III.

C. Floquet stability analysis

A very useful outcome of the numerical Newton method
of computing solutions of Eq.(7) is the Jacobian matrix of
the Newton operator, usually called the Floquet matrixF.
This matrix is the linear operator associated with the linear
stability problem27 of the fixed point solution.

Indeed, the JacobianF of the Newton operatorM,

F = DM, s21d

maps vectors in the tangent space of the solution[small ini-
tial perturbationseWs0d of the fixed point solution] into their
TM-evolved vectors, i.e.,eWsTMd, after a period ofM, that is,

eWsTMd = FeWs0d. s22d

The Floquet matrix of a Hamiltonian system is real and
symplectic, so the Floquet eigenvaluesl come in quadru-

plets, l , 1 /l , l̄ , 1 /l̄. The necessary condition for the sta-
bility of the solution is that all the eigenvalues lie on the unit
circle of the complex plane,ulu=1.

To illustrate the Floquet analysis ofsp,qd resonant solu-
tions of the NLS lattice(7), we now obtain the Floquet spec-
trum of modulational instabilities of asp,qd resonant plane
wave,

Fnstd = A expiskn− vtd. s23d

(The modulational instabilities of plane wave solutions of
nonlinear lattices have been analyzed in Refs. 28 and 29.)

One has to investigate the evolution of small perturba-
tions, in both amplitude and phase, of the plane wave

Fnstd = sA + Ind expiskn− vt + wnd, s24d

where we assume that the perturbation parameters are small
compared with those of the plane wave solution. Introducing
expression(24) in (7) and considering the following form for
the perturbationshIn,wnj,

Instd = I expisQn− Vtd,

wnstd = w expisQn− Vtd, s25d

we obtain the dispersion relation for the perturbation param-
eterV:

fV − 2s1 + mA2d sink sinQg2

= 16s1 + mA2dsin2 Q/2 coskfs1 + mA2d sin2 Q/2 cosk

− mA2 cosk − nA2g. s26d

From the above expression one derives the values of
VsA,Q,k;n ,md for the modulational perturbations. When
the parameterV has a nonzero imaginary part, i.e., the right-
hand side of(26) is negative, the plane wavesA,kd becomes
unstable under the corresponding modulationalsQd perturba-
tion, whose amplitude will grow exponentially fast in the
linear regime(tangent space).

Modulational perturbations(25) correspond to eigenvec-
tors hIn,wnj of the Floquet matrix:

Inst + TMd = exps− iVTMdInstd, s27d
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wnst + TMd = exps− iVTMdwnstd, s28d

with associated Floquet eigenvalues exps−iVTMd. The real
part of V gives the angle in the complex plane,

uFloq = − RsVdTM, s29d

while the imaginary partIsVd gives the modulus of the Flo-
quet eigenvalue,

ulu = expsIsVdTMd, s30d

thus providing the information about the linear stability of
the solution.

The distribution of angles and moduli in the Floquet
spectrum of the modulational instability can be obtained
from Eq. (26) by taking the real and imaginary parts ofV:

RsVd = 2s1 + mA2d sink sinQ, s31d

IsVd2 = − 16s1 + mA2d sin2 Q/2 coskfs1 + mA2d

3sin2 Q/2 cosk − mA2 cosk − nA2g. s32d

In Fig. 3 we represent the modulus of the unstable ei-
genvalues as a function of the Floquet angle for the spectrum
of a sp,qd resonant plane wave, taken as an example to vi-
sualize the non-point-like character of the instability in the
Floquet spectrum in the thermodynamic limit. Note that there
is no plane wave harmonic instabilitysuFloq=0d due to this
mechanism of modulational instabilities.

A numerical computation of the Floquet spectrum of a
plane wave(with arbitrary wave number) of a lattice ofN
=400 sites, with periodic boundary conditions, is shown in
the complex plane representation of Fig. 4. The instability
globes, at angles symmetrically placed around zero in this
figure, nicely fit the theoretical(thermodynamic limit) values
obtained from Eqs.(31) and (32).

III. MOBILE DISCRETE SCHRÖDINGER BREATHERS

In this section, we show the numerical results on mobile
discrete Schrödinger breathers in the NLS lattice(7). These

numerics are computed using the tools explained in the pre-
vious section. The Newton fixed point continuation requires
a good initial guess(meaning that the starting initial condi-
tions have to be in a small neighborhood of the fixed point).
Very close ton=0, the A-L solitary traveling waves(exact
solutions atn=0) provide good starting points. After conver-
gence to the fixed point, we increase adiabatically the value
of the parametersDn=10−3d, and start iteration from the pre-
vious fixed point.

An important step in the numerical method used here is
obtaining a basis for the subspace of(tangent space) vectors
with Floquet eigenvalue +1. These are associated to those
degeneracies(symmetries) that one has to eliminate in order
to regularize the linear system at each(Newton) iteration
step when numerically converging to the fixed point solution.

Away from the A-L limit, it is known(as reported, e.g.,
in Ref. 30) that only two conserved quantities remain generi-
cally as dynamical invariants, the Hamiltonian(8) and the
norm (9). They are respectively associated to the continuous
time translation and gauge(global phase rotation) invariance.
Using the notationui =RsFid and vi =IsFid, one easily ob-
tains thatsduistd= u̇istd ,dvistd= v̇istdd is the perturbation asso-
ciated with time translational invariance, whilesduistd
=vistd ,dvistd=−uistdd is the one with gauge invariance. These
are, consequently, Floquet eigenvectors with associated ei-
genvalue +1, and we can easily check that they coincide with
the (two) basis vectors provided generically(i.e., except at
special bifurcation values of the parameter, see Sec. III C) by
the numerical singular value decomposition(20) explained in
the previous section.

In Sec. III A we summarize our findings on the generic
structure of mobile Schrödinger discrete breathers. For this,
as explained earlier, we have explored particular values for
the integerssp,qd and performed continuation ofsp,qd reso-
nant A-L traveling waves. The variation of the main struc-
tural characteristics of the fixed points along the continuation
parametern is examined in detail in Sec. III B, for both signs
of this parameter. Of particular interest are the observed dras-

FIG. 3. Plot of the modulus of the unstable Floquet eigenvaluesulu [corre-
sponding to the positive values ofIsVd in Eqs. (31) and (32)] versus the
Floquet angle,uFloq. Both quantities are conveniently normalized to the pe-
riod of the mapTM. The amplitude of the excursion ofulu and the range of
values ofuFloq for which ulu.1 grow as the amplitudeA of the plane wave
is increased. The parameters in Eq.(7) arem=n=0.5 and the wave number
of the plane wave isk=0.5.

FIG. 4. Plot of the Floquet spectra of a plane wave with modulational
instability (circles) and the theoretical prediction(lines) for the distribution
of the Floquet eigenvalues in the complex plane given by Eqs.(31) and(32).
The amplitude and wave number of the plane wave areA=0.1 and k
=0.1·2p; the nonintegrable parameter value isn=0.1 and the lattice size is
of 400 sites.
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tic changes in the structure forn.−0.3 andn.−0.39. Then,
in Sec. III C, we show the main conclusions on the stability
analysis of the mobile Schrödinger discrete breathers, in a
sector of the breather parameter space.

A. The structure of the solution

In Fig. 5 we plot the spatial profile of a(1,1) mobile
Schrödinger discrete breather for nonintegrability parameter
valuen=1.0, andvb=2.678.

A quick inspection of this figure provides a first glance
of the general structure of the computedsp,qd resonant so-

lutions: The fixed pointF̂ is the superposition of an(expo-
nentially) localized oscillation(thecore) moving on top of an
extendedbackground:

F̂ = F̂core+ F̂backg. s33d

In other terms, far away from the core localization siten0,

the solution does not tend to the rest stateF̂n=0, but to an
extended excited state of the lattice, i.e., forun−n0u@1,

F̂nstd = sF̂backgdnstd Þ 0. s34d

One easily realizes(for example, consider a site very far
from n0) that the background has to be itselfsp,qd resonant.
This can be quickly checked in our numerics: Indeed, the

power spectrumSsvd= ue−`
` RfF̂nstdg expsivtddtu2 at a siten

far from n0 reveals a finite number ofs peaks v j , j
=0,… ,s−1; one can check that eachv j numerically fits to a
branch of sp,qd resonant plane waves[see Eq.(15)]; this
provides a set of amplitudesAj, and finally one confirms that
the superposition of thesAj ,v jd plane waves fits the numeri-

cal solutionF̂nstd.
While immobile discrete breathers can be described as a

sort of homoclinic(and time periodic) connection on the rest
state, the mobile localized core insteadconnectsa specific
linear superposition of low amplitude nonlinear plane waves.
One could say that the localized core needs for its motion to
“surf over” a specific extended state of radiation:

sF̂backgdnstd = o
j=0

s−1

Aj expiskn− v jtd. s35d

We note that among the members of the(s-parameter)
continuous family ofsp,qd resonant plane waves(see Sec. I),
the fixed point solution contains only a particular member

FIG. 5. Instantaneous profile of a(1,1) resonant breather withvb=2.678 andvb=0.426; the nonintegrable parameter isn=1.0 (standard DNLS equation). (a)
Real part,(b) imaginary part,(c) modulus and(d) phase. The resonant condition for the harmonic composition of the background gives the contribution of
three plane waves. The existence of these plane waves is revealed by the modulation of the extended tail in the modulus profile(c).
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sAj ,v jd from each branch[see Fig. 6(a)]. This selection var-
ies smoothly with the(adiabatic) continuation parametern.
In particular, the amplitude modulusuAju selected increases
smoothly from its zero value at the integrable limitsn=0d,
for both signs ofn.

If the bare core of a fixed point solution(i.e., after sub-
straction of the background) is taken as initial condition for a
direct numerical integration of the equations of motion, one
observes radiative losses, along with the corresponding
changes in shape, velocity, etc. of the localized moving core.
The motion of the bare localized core(not anymore a solu-
tion) excites extended states of the lattice. Thus, regarding
the exact fixed point solution, one could say that radiative
losses of the running core areexactlycancelled out when the
localized core runs, with specific velocity, on top of the spe-
cific linear combination ofsAj ,v jd resonant plane waves
(35).

A complementary numerical observation is the follow-
ing: Taking as initial condition for a direct integration of the
equations of motion(7), a superposition of an immobile dis-
crete breather and the background of asp,qd resonant mobile
breather, it evolves into a moving discrete breather, with ap-
proximate velocityvb=spvbd / s2pqd. One thus would say
that the background promotes breather translational motion
with adequate velocity. In the next section, a connection be-
tween background characteristics and the particle perspective

(i.e., the Peierls–Nabarro barrier of collective variable theo-
ries) will be established, further illuminating the physical
description of discrete breather mobility.

Whatever physical perspective one may prefer, the nu-
merical fact is that the generic structure of the fixed point
solution is given by the superposition(33). Not too far from
n.0, where the amplitudesAj of the fixed point background
have small values, one can carefully check that if the bare
core is given as a starting guess for Newton iteration, this
converges well to the exact complete solutionscore
+backgroundd, by developing the specific selection ofAj am-
plitudes. This confirms the robustness of the numerics.

Though previous observations of nondecaying tails of
numerically accurate mobile discrete breathers in Klein–
Gordon lattices20 and/or(solitary) traveling waves31 in self-
focusing equations had been reported(see also the interest-
ing discussions on this issue in Refs. 21 and 32), no
systematic study of those tails is known to us. However, we
clearly see that they are an essential part of the exact solu-
tion. As argued in the introductory section, the translational
motion of a discrete breather introduces a new time scale. In
a nonintegrable context, this fact unavoidably implies reso-
nances with plane wave band spectra, and an exact self-
sustained moving DB solution could only exist on top of a
developed resonant background. This seems to have been
(with a few exemptions) not fully appreciated in most of
current literature on mobile breathers, where the background
is most often either ignored or deliberately suppressed.

A notable feature of the plane wave content of the back-

groundF̂backg is that the amplitude modulusuAju in (35) dif-
fer by orders of magnitude, i.e.,uA1u@ uA2u@ uA3u@¯, so that
only a few frequencies are dominant for most practical pur-
poses[see Fig. 6(b)]. In other words, the extended back-
ground associated to a spatially localized moving core is, in
turn, strongly localized in the reciprocal(k-space) lattice.
The possible relevance of this observation is further dis-
cussed below in the concluding section.

B. The background amplitude

In order to characterize the specific features of the non-
integrable motion of discrete Schrödinger breathers, we fo-
cus here on the(perhaps) most remarkable among those fea-
tures: the background amplitude of the uniquely continued
fixed point. How does it evolve along the continuation path
in parameter space?

For positive values ofn we have followed the line in
parameter spacem+n=1 [see Eq.(7)], while for negative
values, we took the pathm−n=1. We do not expect other
paths to make important differences. As stated earlier, near
n.0, the amplitude grows from its zero value(at the inte-
grable limit) for both signs of this parameter, for it is a non-
integrable effect. However, for larger values of nonintegra-
bility unu the background amplitude evolution shows some
important differences for the two signs ofn.

In Fig. 7 we plot the background amplitude(modulus) of
the (1,1) resonant fixed point versus the continuation param-
etern, for three different values of the breather frequencyvb.
For n.0, one observes that the amplitude steadily increases

FIG. 6. (a) Plot of the graphical solving of the resonant condition(in the
Aj →0 limit) for a (1,2) resonant breather withvb=2.384 andvb=0.189.(b)
Power spectrumSsvd of the background of this solution atn=1.0. From(a)
Eq. (17) gives the contribution of seven plane waves(j =0, …, 6) but only
five (j =0, …, 4) of them are visible due to the difference of orders of
magnitude between the amplitudesuAju. The agreement between the resonant
condition equation(for the fitted value ofAj) and the frequencies observed
in Ssvd is up to machine accuracy.
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with n before continuation stops(i.e., Newton iteration
ceases to converge beyond a certain maximumn value).
Note that the amplitude grows faster for higher values of the
frequency, and that the continuation stops(correspondingly)
at a smaller value ofn. This may suggest that the failure of
fixed point continuation is related to a somewhat excessive
growth of the background amplitude, an issue that will be
discussed later.

For n,0, after an initial growth the background ampli-
tude decreases down to almost negligible values aroundn
.−0.3, then grows and again decreases close to zero atn
.−0.39, and so on, in progressively narrower intervals with
larger peak amplitude, until continuation stops. Most notice-
able is the fact that the intervals neither depend on the
breather frequencyvb nor on the breather velocityvb. Why
do background amplitudes decay so dramatically at those
regions in parameter space? An important hint is presented in
the next section, where the Floquet stability analysis of im-
mobile discrete breathers will show a coincident situation of
mirror-symmetry breaking(and its absence for positiven
values).

For other values ofp and q that we have numerically
investigated, the same features of the background amplitude
variation as shown in Fig. 7 are qualitatively reproduced.

C. Floquet analysis

On the basis of the general arguments given in Refs. 27
and 33, the Floquet spectra of immobile DB in the thermo-
dynamic limit,N→`, consists of two components: the(con-
tinuous) Floquet spectrum of the asymptotic state of the so-
lution (rest state), and a discrete part associated with spatially
localized eigenvectors. The continuous part is composed of
small amplitude(linear) plane waves, the so-called phonons.
However, for mobile DB the asymptotic state of asp,qd
resonant fixed point solution is a superposition of plane

waves, the backgroundF̂backg. From this, one should expect
the Floquet spectrum of asp,qd resonant DB being com-
posed of two components: the discrete(spatially localized)

eigenvectors and a continuous part associated with the linear
stability of the background plane waves. The continuous part
of the Floquet spectrum should reflect the same results of the
modulational instabilty analysis of Sec. II C. In particular,
this means that any modulational instability a plane wave
may suffer will be also an instability of a fixed point solution
whose background contains this plane wave. In the future we
will refer to any instability of the continuous part of the
Floquet spectrum asbackground instability.Any instability
from the discrete part is acore instability.

First we focus oncore instabilities.For this we turn
attention to the continuation of mobilesp,qd resonant breath-
ers. Figure 8 shows in then−vb plane(dotted line) the val-
uesnmaxsvbd where the numerical continuations stop due to
nonconvergence of Newton iteration forp=1, q=1 and
n.0. As was remarked above, the continuation stop is asso-
ciated with the rapid increase of the background amplitude
shown in Fig. 6. Only low frequency breathers, for which the
background amplitude increases more slowly, can be numeri-
cally continued all the way to the standard DNLS equation.
The linear stability analysis ofsp,qd resonant breathers
yields a well defined region in then−vb diagram wherecore
instabilitiesappear. There is an island inside the continuation
region of Fig. 8, where the Floquet spectra contain a real
eigenvaluel.1. We observe the evolution of this Floquet
eigenvalue(and its complex conjugate) as the parametern is
increased in Fig. 9(a), for a (1,1) breather of frequencyvb

=2.678. Here the anglesuFloqd in the complex plane is plot-
ted versusn. The interval of constant zero angle corresponds
to the section(constantvb) of the instability island in Fig. 8.

Along the whole continuation path, the profile of the
corresponding unstable eigenvector is localized. An example
of this profile inside the instability island is shown in Figs.
9(b) and 9(c), where one observes that the localized instabil-
ity shows a decaying background along the direction oppo-
site to the motion. The decay rate increases as the modulus of
the eigenvalue grows and decreases again whenl returns to
the unit circle. On the other hand, the stable Floquet eigen-
vector associated with 1/l shows a wing decaying along the
mirror symmetric direction. The direct integration of the
equation of motion reveals that the unstable solution experi-
ences a pinning after a transient of regular motion with ve-

FIG. 7. Background amplitude versusn for three differents1/1d resonant
breathers with frequencies:(a) vb=5.65, (b) vb=4.91, and(c) vb=4.34.
Note the two different behaviors: for positive values ofn uFbackgu2 is a mo-
notonous increasing function ofn while for the negative part it shows
smooth rises and falls.

FIG. 8. Continuation diagram of(1,1) resonant breathers as a function of the
frequencyvb. The end of the numerical continuation,nmaxsvbd, is repre-
sented by the line with dots. The region where mobile breathers suffer from
core instabilities is limited by the shaded area.
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locity vb=p/ sqTbd. After the solution pins at siten, its core
center oscillates around this site. The trapping of the unstable
MB could be interpreted as a result of the energy losses that
the growth of the linearly unstable perturbation induces on
the solution.

Returning to the instability island shown in the diagram
of Fig. 8, some final observations are worth summarizing:(i)
there is a range of frequencies where mobile breathers of the
standard DNLS equationsn=1d suffer from this instability;
(ii ) very high frequency breathers do not experience this in-
stability (in the short range where they can be continued);
and (iii ) very low frequency breathers are stable all the way
up to n=1.

We turn now tobackground instabilities.Once we know
the plane wave content(k0,k1,…) of a sp/qd-resonant fixed
point, we can know whether the solution is subject to MI or
not and, if it is unstable, what are the harmful perturbations
sQd. This problem is not so simple because we cannot know

a priori the plane wave content if we do not have the ampli-
tudes of each one(17). However, we can derive a necessary
condition for not having MI if we consider that, from(17),
the background is always composed of at least one plane
wave sm=0d with k0 betweenf−p /2 ,0g. From this we can
simplify the analysis of the background stability to thek0

plane wave stability as a necessary condition for the MB
stability. For this we calculate, for eachn andk, the value of
the right-hand side of(26) for all the range ofQsf−p ,pgd
andA. If this value is always positive, the plane wave with
this k0 is free from modulational instabilities at this point of
the model(7) with parametern. From this extensive explo-
ration we obtain, see Fig. 10, the region in thek−n plane
where MI is present.

In the range ofn betweenf−1,−0.5g there is no modu-
lational instability for single plane waves of any value ofk
betweenf−p /2 ,0g, and in particular fork0. However, this
does not guarantee that moving breathers are free from these
instabilities in this region, unless the background has only
one plane wave(as is sometimes the case). On the contrary,
in the regionn.0 any moving breather suffers such insta-
bilities. The transition area in the regionnP f−0.5,0g pre-
sents MI depending on whichk0 we have. For the range
where no plane wave withk betweenf−p /2 ,0g is subject to
MI we can assure that if there is only one contribution,k0, to
the background, the corresponding MB solution is stable. For
example, this is the case fors1/1d resonant breathers if
vb.4 and for s1/2d resonant breathers ifvb.8.46. The
Floquet spectra of a moving breather satisfying these re-
quirements is plotted in Fig. 11(c).

After the analysis of both types of instabilities eventually
experienced by moving Schrödinger breathers, we finally re-
port on a most relevant numerical fact revealed by the Flo-
quet analysis of the family ofimmobile discrete breathersfor
n,0: Nearn.−0.3 an immobile two-site DB experiences a
mirror symmetry-breaking(pitchfork) bifurcation becoming
linearly unstable. When approaching the bifurcation point,
two conjugate Floquet eigenvalues quickly approach +1,
where they meet, and then separate along the real axis. The
eigenvector associated to the unstablel.1 Floquet eigen-
value is localized and odd-symmetric, and is termed the

FIG. 9. (a) Floquet angle evolution of the spectra of a(1,1) resonant
breather withvb=2.678. The thick trajectory corresponds to the localized
eigenvector that becomes unstable(uFloq=0 interval). Instantaneous profile
of the real(b) and imaginary(c) parts of the Floquet unstable eigenvector of
a (1,1) breather withvb=3.207 andn=0.26. The decaying tails along the
direction opposite to the motion reveals the energy loss that the unstable
eigenvector causes to the solution.

FIG. 10. (Color online). Modulational instability existence diagram for a
plane wave with wave numberk0P f−p /2 ,0g. This diagram fixes the region
where mobile discrete breathers with a background composed of only one
plane wave do not suffer from background instability.
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symmetry-breaking or depinning modefdep. We recall here
that the background of an immobile breather is the rest state

F̂=0, whose continuous spectrum consists of small ampli-
tude(linear) plane waves. The depinning mode, on the other
hand, is a localized core instability of the immobile breather,

favoring a translation of the core center. For a smaller value
of n.−0.39 there is another symmetry-breaking bifurcation
where the two-site breather becomes stable, again inter-
changing the stable character with the one-site. The corre-
sponding bifurcation diagram for these two symmetry break-
ing transitions is plotted in Fig. 12.

In the first symmetry breaking bifurcation, two unstable
mirror-asymmetric immobile breathers emerge from the bi-
furcation point, progressively evolve toward the(stable) two-
site breather, and finally collide in a new pitchfork bifurca-
tion from where an unstable two-site breather emerges. The
net result is an inversion of stability between one- and two-
site immobile breathers. Around the narrow interval ofn val-
ues where these two bifurcations occur, the energies of the
three types of breathers involved(one-site, two-site, and
asymmetric) have very small differences. From a particle
perspective, this should make the breather motion easier. It is
precisely in this same narrow interval where(see Sec. III B)
we observe that the background amplitude of moving breath-
ers becomes negligible. This is not a coincidence as we will
argue in Sec. IV.

IV. PARTICLE PERSPECTIVE ON DISCRETE
BREATHERS

The appealing framework and success of collective vari-
able approaches(see, e.g., Refs. 34–38) to the problem of
nonintegrable motion of discrete breathers rely on the fidelity
of a particlelike description of these field excitations that
they provide. In these approaches, the effective dynamics of
only a few degrees of freedom(e.g., the localization center,
and the spatial width of the state, etc., in some instances12)
replaces the whole description of the moving localized state.

Though unable to account for all the nonintegrable fea-
tures, perturbative collective variable theories of NLS lat-
tices provide a sensible physical characterization of impor-
tant features of the nonintegrable mobility of localized
solutions, like the emergence39 of a Peierls–Nabarro barrier
to motion. Here we summarize the main results of this par-
ticlelike description and compare them with the behavior of
numerically exactsp,qd resonant moving breathers. Our goal
is twofold: to acquire a correct physical understanding of the
numerical facts, and then to make an assessment of validity
and intrinsic limitations of collective variable approaches.

A. Collective variables theory

A presentation of the particle perspective on moving
Schrödinger breathers near the A-L integrable limit can be
found in Ref. 36(see also Refs. 34, 35, 37, and 38), where
the interested reader will find the relevant formal aspects of
the theory.

Using the integrable solitary wave(4) as an ansatz for
the moving breather solution in the perturbed A-L lattice,n
Þ0 and small in(7), one considers the parametersa , b , x0

and V as dynamical variables(variation of constants). The
time evolution of these parameters in the perturbed lattice is
governed by

FIG. 11. Floquet spectra of(1,1) resonant breathers:(a) for vb=4.348,vb

=0.692 andn=0.08 the spectra shows the core(localized) instability; (b) for
vb=6.610,vb=1.052 andn=0.07 the spectra shows the background(modu-
lational) instability [also present but not visible in(a)]; and (c) for vb

=4.348,vb=0.692 andn=−0.39 the solution is linearly stable.
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ẋ0 = 2 sina
sinhb

b
, s36d

V̇ = 2 cosa coshb + aẋ0 + gsbd, s37d

ḃ = 0, s38d

ȧ = − no
s=0

`
8p3 sinh2 b

b3 sinhsp2s/bd
sin s2psx0d, s39d

where

gsbd = 2nF2 sinhb coshb

b
−

sinh2 b

b
− 1G

+ no
s=1

`

4p2 coss2psx0dFsinh2 b coshsp2s/bdp2s

b4 sinh2 sp2s/bd

−
2 sinh2 b

b3 sinhsp2s/bd
+

2 sinhb coshb

b2 sinhsp2s/bdG . s40d

These relations can be viewed as the Euler–Lagrange
equations of the collective variable Lagrangian obtained in
Ref. 36. The variation of the breather parameters gives the
evolution of solution(4) for the perturbed A-L equation. Fur-
thermore, one can regard Eqs.(36) and(39) as the Hamilton
equations for the canonical conjugate variablesx0 and a of
the following effective Hamiltonian:

Heff = Teff + Veff

= − 2 cosa
sinhb

b

− no
s=1

`
4p2 sinh2 b

b3 sinhsp2s/bd
coss2psx0d. s41d

This effective Hamiltonian dictates the dynamics of the
position of the solitary wave. Note that the(collective) vari-
ableb is an invariant of motion, so it enters as a parameter
into the effective Hamiltonian, and that the time-average

value ofV̇ (the parametervb of the integrable solitary wave,
now a function of time) is an increasing function of this
parameterb. The effective potentialVeff acts as a barrier to
the displacement motion(x0 variations) and is naturally re-
lated to the Peierls–Nabarro potential. The amplitude of this
barrier is an increasing function of both the nonintegrability
parameterunu and b. The equilibrium points(representing
immobile breathers) of this potential arex0=n andn± 1

2 with
n an integer. Fora=0, the former are stable(centers) one-
site breathers, while the latter are unstable(saddle) two-site
breathers; for the casea=p (staggered breathers) the stabil-
ity is reversed.

A remarkable further consequence is the following:35

there are no perturbative traveling wave solutions, for values
of n larger than certain critical valuencrsbd. In particular,
for b.bc.3.6862, one cannot continue A-L mobile breath-
ers[i.e., ncr=0 (see also important remarks in Ref. 38)]. This
consequence could also be(qualitatively) expected for a
class of nonintegrable Schrödinger lattices(for some quali-
fied perturbations of the integrable limit) with on-site nonlin-
earity. One expects also that lattices with purely intersite

FIG. 12. Graphical representation of the two firstsymmetry breaking bifurcactionsfor n,0. The quantityj in the vertical axes of both figures is defined,
referred to the one-site breather, as the difference between the modulusuFu of the two sites adjacent to the maximumsuFmaxud, i.e.,j,uFmax−1u− uFmax+1u. For
the one-site DBj=0 and for the two-site DBj=1, for thisj is conveniently normalized with the difference betweenFmax andFmax±1. The continuous lines
represent the regions where the static solutions are linearly stable while the discontinuous ones represent the unstable regions. The modulus profiles of the
three immobile coexisting solutions are plotted in the central insets forvb=6.215 andn=−0.3012.
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(FPU-like) nonlinearity do not show this kind of transition.
In Fig. 13 we plot typical phase portraits at both sides of

ncr. Figure 13(a) shows the dynamics forn smaller than the
threshold value(given byb): there are open trajectories inx0

corresponding to mobile breathers and closed orbits between
the separatrix manifolds corresponding to breathers which
oscillate around the equilibrium position ofVeff. Figure 13(b)
is the phase portrait after the transition: there are no longer
mobile solutions and(besides the oscillating breathers) there
are instead open trajectories ina. The transition point, for a
givenb, occurs when trajectories with rotatinga appear, and
moving breathers disappear as the effect of separatrix line
rearrangement on the cylindersx0,asmodulo2pdd phase por-
trait.

Note that the existence of oscillating breathers is a con-
sequence of the existence of a Peierls–Nabarro potential.
These breather solutions do not perturbatively continue from
the integrable limit. In Sec. IV C we will investigate them
and provide further numerical confirmation of the existence
of these genuinely nonperturbative solutions, predicted by
the collective variables theory.

B. Energy balance governs mobility

In order to correlate collective variable predictions with
the numerical results presented in Sec. III one should first
realize that our direct numerical approach computes breath-
ers with fixed values ofvb andvb and that these parameters

are not tied to any specific ansatz. In particular, the connec-
tion of these two parameters with the collective variables is
given by Eq.(6) in the integrable limit. For the perturbed
(near-integrable) lattice, vb andvb are identified as the time

averages ofV̇ and ẋ0, respectively.
The Peierls–Nabarro(PN for short) barrier is naturally

identified as the energy difference[given by the Hamiltonian
(8)] between the two immobile breathers of the same fre-
quencyvb, one centered at a siten and the other(two-site) at
a bondn± 1

2:

EPNsn,vbd = Hsn,vb,nd − Hsn,vb,n ± 1
2d . s42d

In the integrable A-L limit this barrier is zero due to the
degeneracy (continuous translation invariance) of the
breather family solution, but fornÞ0 this invariance is bro-
ken and only these two isolated solutions persist. The energy
difference of the two pinned solutions is thus viewed as the
minimal extra“kinetic energy” of center of mass translation
that a mobile breather must incorporate for overcoming the
barriers to its motion.

We have studied the behavior of the PN barrier in the
Salerno model by continuing immobile breathers, both cen-
tered at a site and at a bond, while computing their energy
difference. The computations of the barrier are made for a
grid of values ofvb. Figure 14 shows the“equipotential”
lines of the PN barrier in thesn ,vbd plane. The results show
different behaviors depending on the sign ofn:

n,0: Here one observes the effects of the symmetry
breaking bifurcations cascade described in Sec. III C. The

FIG. 13. Collective variablesa ,x0d phase portrait transition for a value of
b=3.0. (a) Shows the phase portrait forn=0.2 s,ncrd; there are
x0-unbounded trajectories(mobile breathers) coexisting with bounded ones
(oscillating breathers). When n=1.0 s.ncrd (b) we only havex0-bounded
trajectories: there are no mobile solutions.

FIG. 14. Density plot of the absolute value of the Peierls–Nabarro barrier,
uEPNu, as a function ofvb andn. For positive values ofn , uEPNu is a monoto-
nous increasing function ofn andv. For negative values the plot reveals the
oscillating behavior ofuEPNu as a function ofn (for a given value ofvb).
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successive stability inversions between site and bond cen-
tered breathers involve a substantial decrease of the Peierls
barrier. The appearance of asymmetric solutions in these bi-
furcations introduces a new energy and, correspondingly, the
Peierls barrier is computed as the maximum energy differ-
ence between the three pinned solutions: the two symmetric
(site and bond centered) and the asymmetric breather.

n.0: Here the behavior of the Peierls barrier follows
qualitatively the collective variable predictions on the effec-
tive potential experienced by the particle. The increasing
character, withn andvb, of the numerical barrier is qualita-
tively the same as that predicted fromVef f (as a function ofn
andb) by the theory.

The PN barrier ofsvbd immobile breathers and the back-
ground amplitude ofsvb,vb=pvb/2pqd mobile breathers are
in fact strongly correlated. This correlation is obtained con-

sidering the functionsuEPNusnd and uF̂backgu2snd. Both func-
tions are plotted for a fixed value ofvb=4.34 in Fig. 15(a).
The behavior ofuEPNusnd for negativen (revealing the cas-
cade of bifurcations explained before in Sec. III C) is closely

followed by uF̂backgu2snd with the corresponding sequence of

growths and decays. The strong correlation holds also for
positive values ofn, where numerical PN barrier data are
available for a larger interval ofn values(due to the absence
of the symmetry breaking cascade of bifurcations). Indeed,
the correlation is so strong that one is tempted to view the
PN barrier and the background amplitude as complementary
aspects of a single phenomenon: the breaking of the continu-
ous translational invariance, and the associated lack of core
momentum conservation.40 Indeed, the background ampli-
tude of moving breathers is a monotone increasing function
of the PN barrier of pinned breathers of the same frequency,

as shown in Fig. 15(b), whereuF̂backgu2suEPNud is plotted.
However, we also observe clearly in Fig. 15(a) that,

when the continuation end is approached, the rate of growth

of uF̂backgu2snd increases dramatically(the concavity of the
curve in log scale turns upwards), while the PN barrier does
not increase much faster than before. This is reflected in Fig.
15(b), where the slope approaches verticality, indicating that,
in this range ofEPN values, the background grows rapidly.

This numerical observation suggests taking a closer look
at the precise influence of the background amplitude on the
core energy variations associated with the existence of PN
barriers. To this end, we use the conservation of the Hamil-
tonian (8) and insert this equation into the form(33) of the
sp,qd resonant fixed point. The energy of the solution can be
decomposed in the following terms:

HfF̂g = HfF̂coreg + HfF̂backgg + Hint, s43d

whereHint is the interaction energy, i.e., the crossed terms of

F̂core and F̂backg. Let us now consider the simplest case in
which the background has a single resonant plane wave.
Along with the total energy, also the energy of the plane
wave is a constant in time so that

] HfF̂coreg
] t

= −
] Hint

] t
. s44d

In other words, the variations of the core energy during the
motion are exactly compensated by those of the interaction
term.

If one takes, as an ansatz forF̂core, the A-L solution, one

formally obtains forHcore;HfF̂coreg the collective variables
Hamiltonian(41). But note that here it would no longer be a
constant of motion, due to the interaction with the back-
ground. Instead(as P. Kevrekidis suggested to us), we di-
rectly compute numerically the evolution of the core energy
Hcore, which in turn determinesHint up to an additive con-
stant.

For this we take a fixed point solution with a single
plane wave in its background, and then substract off the

plane wave to obtainF̂core, from whereHcorestd is computed.
In Fig. 16 we have plotted the evolution of the core energy as
a function of the localization position(center) of the breather
core. The localization center of a lattice functionFn is de-
fined using the conserved norm(9):

FIG. 15. Peierls–Nabarro barrieruEPNu from immobile breather withvb

=4.34 and background square amplitudeuFbackgu2 for a (1,1) resonant
breather of the same frequencysvb=0.691d. In (a) we show both quantities
in semi-log scale as functions ofn, illustrating the strong correlation be-
tween them for both signs ofn. (b) shows, for positive values ofn, the

nonlinear relation betweenuF̂backgu2 and uEPNu. Note the sudden increase of
the slope close to the end of numerical continuation.
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x0 =

o
n

n ln s1 + muFnu2d

mN . s45d

As expected, the core has extracted the maximum available
from the interaction energy(with the background) when the
core passes atn± 1

2 (maxima of the PN barrier) and has re-
turned it to the interaction term when atn (minima of the PN
barrier).

Another interesting feature of these numerically obtained
functions is seen from the variations in the form of the os-
cillation of Hcore as the nonintegrable parametern is in-
creased. At the same time, as the energy difference between
n and n± 1

2 increases the modulus of the derivative
]Hcore/]x0 in the neighborhood ofx0=n also increases.
These variations become faster when the end of the continu-
ation is approached, reaching a cuspidal point for the lastn
reached. The background amplitude is included inHint, and
of course in]Hint /]t; the dramatic variation of it at the end
of the continuation could be interpreted in terms of this de-
rivative variation inx0=n.

C. Oscillating breathers

The emergence of the Peierls barrier and the behavior of
the background amplitude illustrate the physical interpreta-
tion of this background as asp/qd-resonant energy support to
overcome the barrier to motion. We now confirm this state-
ment searching for another kind of solution:oscillating
breathers.These solutions are predicted by collective coor-
dinates approaches and are a consequence of the loss of
translational invariance out of the integrable limit. Following
the above interpretation of the background role one can
imagine certain solutions with a background amplitude not
high enough for surpassing the Peierls barrier and allowing
travel along the lattice. In terms of a well defined potential,
considering the particle perspective, the center of these lo-
calized solutions would be oscillating betweensn− 1

2
d and

sn+ 1
2

d for the unstaggered ones or betweenn and sn±1d for
the staggered ones.

From our perspective, the oscillating breathers are solu-
tions with two frequencies: the internal one of the breather
svbd and the one corresponding to the oscillatory motion
svoscd. Once again, we have a problem dealing with two time
scales and consequently we have to impose that the two fre-
quencies are commensuratepvb=qvosc. The fixed point
problem is now associated with the map:

TqTb
Fnstd = Fnstd. s46d

We cannot, however, develop the Newton iteration scheme in
a similar way as for mobile breathers. There is no longer any
family of oscillating breathers providing a good start point
for the continuation(they are intrinsic solutions of the non-
integrable regime because they appear as the Peierls barrier
emerges). The way to obtain a goodansantz(as Cretegny
and Aubry already used to find mobile breathers in Klein–
Gordon lattices20) is to perform a small perturbation of the
static solution(pinned at a siten) with the depinning internal
mode:

Fn
ansantz= Fn

staticsvbd + edfn
dep. s47d

The dynamics of the perturbed solution for small enough
values ofe shows the oscillating behavior expected and for
large enough values ofe the breather starts to move. Obvi-
ously in both cases the motion finishes after a transient due
to radiation(they are not exact solutions). Tuning the param-
etere we search for those oscillatory transients whosevosc is
resonant with the breather frequencyvb. The transient is
much more stable when the nonintegrable parametern is
very small, close to the A-L limit. We first search here for a
good initial guess for the method and then obtain the exact
solution of the map(46). Once the exact solution is obtained
for a small n, we can perform the continuation to higher
values in the same way as we did for mobile solutions. In
Fig. 17(a) we show the evolution of the amplitude of oscil-
lation asn is increased from 0.05 to 0.18. The amplitude of
the oscillation is represented by the phase portrait of the
localization center of the breather defined as in(45). The
continuation reflects that the amplitude of the oscillation, for
a fixed value ofvosc, grows withn. In Fig. 17(b) the density

plot of uF̂nu2 is shown as a function of time, revealing the
oscillating pattern of the solution.

The existence of exact oscillating breathers is a conse-
quence of the existence of a Peierls barrier. The structure of
these solutions reveals the existence of a background(reso-
nant with the map) whose amplitude grows asn (and conse-
quently the amplitude of oscillation) is increased. This is the
picture we expected from the role played by the interaction
background–core in the energy balance during motion. The
monotonous growing behavior of the background versus the
oscillation amplitude strongly suggests that if the amplitude
of the former is increased, the solution will be able to trans-
late steadily. This has been checked by direct numerical in-
tegration, because no exact solutions connecting the oscillat-
ing with the mobile ones can be obtained due to the different
maps employed to obtain both types of solutions. However,

FIG. 16. Plot ofHcore of a (1,1) resonant breather as a function of the
localization centerx0 for different values ofn. The parameters of the solu-
tion arevb=5.056 andvb=0.805. The values ofn are 0.04, 0.08, 0.12, 0.16,
0.20, 0.24, 0.25 and 0.2512(end of the continuation), the amplitude of the
oscillation ofHint grows withn. (The minimum value ofHint has been set to
zero in order to compare the different functions.)
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the existence of a background in the exact oscillating
breather solutions and its behavior with the amplitude of the
breather oscillations are fully consistent with the interpreta-
tion of the results obtained for the mobile solutions.

D. Validity and limitations of particle perspective

The most basic result of the perturbative collective vari-
able theories away from the integrable regime is the exis-
tence of a Peierls–Nabarro potential function of the core
(collective variable) center. It expresses(in particlelike
terms) that the breather position is no longer indifferent be-
cause the continuous translational invariance has been bro-

ken. From this also naturally comes the existence of oscillat-
ing breathers. We have seen how our numerics fully confirm
the qualitative validity of these predictions.

A further prediction concerns the phase portrait’s transi-
tion studied in Ref. 35. Despite the fact that our end of con-
tinuation is correlated with the equipotential lines’ profile of
the numerical PN barriers, and the phase portrait transition is
also related to their sudden growth, no clear connection(be-
tween transition and end of continuation) can be established.
The end of continuation is itself sensibly interpreted as a
numerical consequence of the sudden increases of the ampli-
tude background, and does not imply neccesarily the exis-
tence of any global phase portrait transition.

However, in some respects the perturbative collective
variable theory is clearly incomplete: For example, it is un-
able to predict the observed localized(core) instability bifur-
cation and the observed symmetry breaking transitions for
n,0. These bifurcations could easily appear in a theory with
(at least) two variables(a dimer) experiencing the Peierls–
Nabarro potential, which would demand an improved pertur-
bative ansatz. This improved ansatz must coincide in the
integrable limit with the A-L solution. One can use the nu-
merical results to guide the construction of such an improved
ansatz. In this respect, the following observation may be rel-
evant. The parameterb of the A-L solution determines both
the amplitude and the width of the localized pulse. However,
our numerical estimates of these breather characteristics for
immobile breathers show clearly that, for fixed value ofvb,
the breather width is independent ofn, while the amplitude
varies with it. In other words, away from integrability, width
and amplitude of the(immobile) breather are no longer a
single collective variable.

Beyond any other limitation of the perturbative collec-
tive variable theory, the background(an indispensable part of
the exact solution) is absent in the perturbative ansatz, and it
cannot appear later in that context. A complete theory of
(nonlinear Schrödinger) breather motion should somehow in-
corporate the background in the ansatz itself. If correct, it
should then predict that the background amplitude grows
from zero with the nonintegrability parametern, and (ide-
ally) so on with all the numerically observed behaviors. One
possible way to develop the analytical approach could be to
use the method presented in Ref. 41. In this scheme, Eq.(44)
may play an important role, for it provides the energy bal-
ance governing the translational motion of the breather core.
In other words, our results show that the core energy is not
an invariant of motion and this requires the existence of a
finely tuned background whose nonlinear interaction with the
core compensates the core energy variations. We hope that
the numerical work presented here will provide motivation
for further analytical research.

V. CONCLUSIONS AND PROSPECTIVE REMARKS

We have studied numerically the problem of mobility of
nonlinear localized solutions of the one-dimensional nonlin-
ear Schrödinger lattice(7) using a regularized Newton
method. This method allows us to continue the family of
mobile Ablowitz–Ladik discrete breathers into the noninte-
grable domain of model parameters. We find that these solu-

FIG. 17. (Color online). (a) Evolution of the localization centerx0 of an
exacts 1

18
d-oscillating breather for different values ofn: 0.05, 0.06,…, 0.18.

The internal frequency isvb=3.086. The amplitude of the oscillation ofx0

increases withn, revealing the nonlinear character of the motion for the

highest values ofn. (b) Density plot of the time evolution ofuF̂nu2 for the
above oscillating breather.
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tions decay asymptotically, in space, to an excited lattice
extended state(the background), whose amplitude vanishes
at the integrable Ablowitz–Ladik limit. This component of
the solution is unambiguously found to be a linear combina-
tion of nonlinear resonant plane waves whose amplitudes
decay typically, ink-space, exponentially. The exponentially
localized oscillation(the core) of the amplitude probability
rides over this extended radiation state:

F̂ = F̂core+ F̂backg. s48d

Numerically exact moving discrete breathers with an in-
finitely extended tail of small amplitude were already ob-
served in some cases for Klein–Gordon lattices with Morse
potential by Cretegny and Aubry,20 however no investigation
of the background of these exact solutions is reported, so
they were able only to “…suggest that generally a strictly
localized breather cannot propagate without radiating en-
ergy.” Our systematic study of the NLS lattice allows us to
go further by showing that the extended background(here
fully characterized) plays an important and subtle role in the
translational motion of the localized core. Indeed, it is an
indispensable part of the exact solution in the nonintegrable
regime. Exact mobile localization only exists over finely
tuned extended states of the nonlinear lattice. Mobile “pure”
(i.e., rest state background) localization must be regarded as
very exceptional.32

The high numerical accuracy of the method allows a
precise Floquet stability analysis of the moving discrete
breather solutions. The Floquet analysis reveals the type of
instabilities(both localized and extended) eventually experi-
enced by the two-parameter family of moving breathers.
Some generic bifurcations in the space of model parameters
are thus identified. For negative values of the nonintegrabil-
ity parametern, we find narrow regions where the immobile
breathers experience mirror symmetry-breaking bifurcations
and, simultaneously, the amplitude of the background com-
ponent of the mobile breather solutions decreases down to
almost negligible values.

The most relevant predictions of perturbative collective
variable theory are confirmed by our numerical results,
which show the existence of Peierls–Nabarro barriers to
breather translational motion. Furthermore, the existence of
exact oscillating breather solutions is numerically confirmed.
They are found to contain an extended background whose
amplitude is typically much smaller than for mobile breath-
ers.

The Peierls–Nabarro barrierEPN, computed from immo-
bile breathers, and the amplitude background of moving
breathers are found to be strongly correlated, which correctly
suggests that the background has a role in the energy balance
required to overcome the barriers to translational motion.
This is also fully consistent with the observations on the
background amplitude behavior of spatially oscillating an-
chored breathers. Indeed, assuming the simplest case of a
monochromatic background, the variation of the core energy
during its translational motion is exactly compensated by the
variation of the energy of interaction between the localized
core and the background. Currently used effective particle
(collective variable) theories are thus seen as intrinsically

incomplete, because core energy is not an invariant of mo-
tion. Any sensible improved approach must adopt Eq.(48) as
a starting point for improved perturbative ansatze, and we
hope that our work will stimulate further studies along these
lines.

There are, at very different levels, several open questions
to further research. From a technical point of view, it is im-
portant to analyze carefully the irrational limitp/q→s of
the solutions. In particular, in this limit the number of reso-
nant plane wave branches tends to a continuum and one
could (or not) expect that exponential localization in the re-
ciprocal lattice persists in that limit. This can be addressed
numerically, though systematic investigations may require
some efforts in optimizing the time efficiency of current nu-
merical schemes.

An important issue regarding applications is the phe-
nomenology of multibreather states. In particular, studies on
collisions of a pair of breathers may find in this study of
exact mobility a useful reference in order to deal with the
complexities that emerge from the many time-length scales
involved in these physically relevant phenomena. Much sim-
pler multibreather states, e.g., trainlike chains of(moder-
ately) separated moving breathers, could also be investi-
gated. At least, the perspective and results presented here
may be of some interest to studies of the effects of coupling
to (nonthermal and/or thermal) radiation baths in the breather
and multibreather states of nonlinear lattices42 and the prac-
tical manipulation and patterning of localized “hot spots” by
external fields.43
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