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In an extensive numerical investigation of nonintegrable translational motion of discrete breathers
in nonlinear Schrddinger lattices, we have used a regularized Newton algorithm to continue these
solutions from the limit of the integrable Ablowitz—Ladik lattice. These solutions are shown to be

a superposition of a localized moving core and an excited extendedséategroungito which the
localized moving pulse is spatially asymptotic. The background is a linear combination of small
amplitude nonlinear resonant plane waves and it plays an essential role in the energy balance
governing the translational motion of the localized core. Perturbative collective variable theory
predictions are critically analyzed in the light of the numerical result20@4 American Institute

of Physics[DOI: 10.1063/1.1811991

Discrete breathers are spatially localized, time periodic nonlinear continuum field equations, but as a target of inter-
solutions of homogeneous nonlinear lattices, which have est in their own right, due to the distinctive features associ-
been recently observed in experiments on a variety of ated withdiscretenessyhose relevance to experimental fea-
physical systems (magnetic solids, arrays of Josephson tures have been largely established.
junctions, coupled optical waveguides and photonic crys- More specifically, among the variety of observable non-
tals). Though many of the properties of discrete breathers jinear behaviors of lattice dynamics, the phenomenagulist
are today well characterized, the question on their mobil-  ¢rete preathejsnonlinear localization in latticés has re-
ity remains under controversy, due to the radiative l0sses  qived attention in both experimental and theoretical
unav_oidably as_sociated_to the_translational motion of the  ocaarch during the last several yedMontopologica) dis-
localized pulsg In generic (nonlntegrable) systems. We_ ad- crete breathers are exact spatially localized, time-periodic so-
g;ersslggirfetshls tﬁr:blzgclrneﬁznaigﬁg rtac?ft Clt?mses oggrﬂinr:g; lutions. Due to discreteness the plane wave spectra are
e : : ; bounded, thus making possible the absence of multi-
Schrodinger equationOur results show that exact mobile harmonic resonances of the exact discrete breather solution
breather solutions ride over an extended excited state of o . .
the lattice, which we fully characterize. Moreover, this W_'th extende(_j mod_efs. The combma_tlon Of. nonlmeanty and
background plays an essential role in the energy balance discreteness is sufficient for the_ phy3|_cal eX|sten_ce of discrete
required for exact nonintegrable mobility. _breathers, DBs for short, rt_asulfung in its generality and _b_roa_d
interest. The reader may find in Ref. 14 a recent multidisci-
plinary survey of current research on the subject.
Our primary concern here is the issue of the DBs’ mo-
I. INTRODUCTION bility. The translational motion of discrete breathers intro-
duces a new time scal¢he inverse velocity so generically
a moving breather excites resonances with plane wave band
spectra. This fact poses no problem to the persistence of
localization when the lattice dynamics is governed by power
balanceforced and damped Iatticjé_’gx the emitted power is

Nonlinear lattices have become the subject of a consid
erable multidisciplinary interest, with applications in physics
subdisciplines as diverse as biophysicsyelinated nerve
fibers! DNA,? biopolymer Chain§, nonlinear optical de-

vices (photonic crystal‘éand waveguidé’s%, and Josephson exactly compensated by the input from the homogeneous

effec  (superconducting  devicéS, Bose-Einstein external force field, during stationary breather motion. How-

—1 .
condensateS™), among others. From a theoretical perSpec'ever, for generi¢nonintegrablg Hamiltonian lattices, the ra-

gye tht(_ey thave been.dprglgr?sswely rgcolgnlzed ?Ott ?;mer iative losses would tend to delocalize energy, and some
Iscretizationgunavoidable for numerical computatig energy compensating mechanism is needed in order to sus-

tain exact stationary states of breather translational motion.
?Electronic mail: gardenes@unizar.es From the(particle) perspective of collective variables theory,
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the localized breather experiences a periodic Peierls—Nabarro 10’ 2
potential function of its position, so that the motion of the 100
localized field oscillation over this landscape should be ex- 1071
pected to induce the emission of radiation at the expense of 102

translational(and/or interngl breather kinetic energy, which
thus would unavoidably decay on time.

To address the problem, a reasonable strategy is to use
precise numerical techniques on adequately general models,  time 160
with the hope that they may pave the way to further physical
(and mathematicainsights. Our chosen model belongs to an 200 80
important class of nonlinear lattice models: the discretiza- 60 site
tions of the Contmu,um nonIme_z_ar SChrOdmge,r equajtlon’ her|e—IG. 1. Time evolution of/®,[?> profile of a mobile discrete Schrodinger
referred to as nonlinear Schroding®tLS) lattices. First of  preather. The frequency of the solutiondg=5.050 and the velocity is,,
all, they are ubiquitous in models for polaronic effects in=0.804. Note that the background is composed by a single plane wave with
condensed matter, nonlinear optical technologies, and thmPlitudeA. The nonintegrable parameter of K@) is »=0.2.
physics of Bose condensate lattices and superconducting de-
vices, where nonlinear localization is currently studied. Sec-

ond (a very convenient technical advantagiis class con- In Sec. IV we analyze the numerical results in the light
tains an integrable limithe Ablowitz—Ladik lattice, see f collective variable theories, correlating them with the
below) having exact moving discrete breathers, wherefromyain theoretical predictions of this successfubwever in-
perturbation(collective variablg theories have been devel- complete physical perspective. In particular, the existence of
oped in support of exagbr very approximate, in the least pgjeris—Nabarro barriers to translational core motion is con-
nonintegrable mobile DBs. This allows a detailed theoreticafirmed, and its subtle relation to the background amplitude is
analysis of the numerical results, as well as eventual feedyiscussed. We present also numerical confirmation of the ex-
backs for usefuland currently usedheoretical concepts and jstence of exact oscillating anchored breathers, whose ex-
perspectives. In Sec. | A of this introduction we present th@ended background is much smaller than those of traveling
(three-parametgrNLS lattice that we have studied, origi- discrete breathers of the same internal frequengyAlong
nally introduced by Salernt. with the discussion in this section, a physical interpretation
The numerical techniques employed are summarily inof the role of the interaction background-core in the energy

troduced in Sec. Il. We stress here the unbiased character gfﬂance emerges, paving the way to a Satisfactory integration
this numerical procedure which, unlike other techniques, isf the results into a collective variable theory.

not based on ansatze on the expected functional form of the  Finally, in Sec. V, after summarizing the main conclu-
exact solution sought. In essence, the procedure uses a regdjons drawn on discrete Schrédinger breather mobility, we
larized Newton continuation method for operator fixedbriefly trace some interesting open questions for further re-
points, and it only requires a good starting set of parametegearch, notably the approach to irrational breather time scales
values where the exact solution is known. In our case this igatios, the study of multibreather solutiofteo-breather col-
provided by the integrable Ablowitz—Ladik limit of the NLS lision processes, trains of moving breatheend the cou-
lattice, from which adiabatic continuation of the two- pling to both thermal and nontherm@.g., elastiz degrees
parameter(core frequencyw, and velocityvy) family of  of freedom, where the numerical tools and results presented
moving Schrddinger breathers is performed. here can find further applications.

The main numerical facts are shown in Sec. lll. The
numerical solutions are found to ljep to numerical preci-
sior}) thg superposition of a travelling exponentially Ioca}lizgd A NLS lattices
oscillation(the core), and an extended background, which is
a linear superposition of finite amplitude nonlinear plane  The standard discrete nonlinear SchrodingBNLS)
wavesA exi(kn- wt)] (see Fig. 1. The amplitudes of these equation™® is the simplest discretization of the one-
resonant nonlinear plane waves are observed to differ typidimensional continuous Schrédinger equation with cubic
cally by orders of magnitude, so that only a small number ofionlinearity in the interaction term, i.e.,
them are relevant for most practical purposes. They fit well
simple theoreticalthermodynamic limit predictions based
on discrete symmetries requirements. Contrary to the exact
immobile breather solutionspace-homoclinic and time- In this expressionb,(t) is a complex probability ampli-
periodic orbij, which asymptotically connects the rest statetude, the paramete€ amounts the nearest neighbor cou-
(vacuum or ground statef the lattice with itself, each exact pling, and vy is the strength of the nonlinearity. The self-
mobile localized solution is instead homoclinic to a specificfocusing effect of local nonlinearity balanced by the opposite
lattice state of extended radiation. In other words, exact staeffect of the dispersive coupling makes possible the exis-
tionary mobility of discrete breathers requires an extendedence of localized periodic solutioribreathery of the dis-
excited state of the lattice. Preliminary accounts of some otrete field, where the profile dfb,| decays exponentially
the numerical results of this section were reported in Ref. 17away from the localization center:

120

iD= = C(puy + Ppy) — YD, [2D,. (1)
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D(t) = || expliwy(t)]. (2) above limits. In addition to the Hamiltonian, this equation

. , possesses, for any value of the parameters, the following
In the uncoupled limitC— 0 of the DNLS equation, also .gnserved norm:

known as the anti-integrable or anti-continuous limit, dis-
crete breathers can be easily constructed by selecting a peri-
odic oscillationCDnO(t) of frequencyw, at siten, and®,=0

for n# ny. These solutions can be uniquely continued to non-
zero values of the couplingC, and constitute the one- In the following we will set the value o§=2 (as usugland

parameter family of immobile on-site breathers of the DNLSCONSider the coupling streng®=1 in Eq.(7).
equation. The continuation of the family of mobile discrete breath-

Unfortunately the continuation from the uncoupled limit €S from the A-L integrable limit allows numerical observa-
does not provide solutions where the localization centefions of the interplay between the integrable term, weighted
moves along the lattice with velocity, i.e., mobile discrete DY the parameter, and the nonintegrability, weighted by
breathers. On the other hand, there is an integrable lattice as
a limit of the nonlinear Schrodinger class that possesses thls DISCRETE BREATHER NUMERICS
type of mobile solution. That is the one discovered by

N=Z3 In (1+uldy?). ©
M on

We introduce here the numerical techniques that we have

Ablowitz and Ladik in Ref. 19: used. As a whole, one could refer to them as (8¥D-)
. Y regularized Newton method. They do not constitute a novel
D, ==C(Ppyy +Ppg)| 1 +E|q)n| , (3 method in “discrete breather numerics,” as they have been

already used, e.g., in Ref. 20, to refine moving breathers of
where, againC and y account for the strength of the cou- Klein—-Gordon lattices obtained by other numerical means
pling and the nonlinearity, respectively. The integrable(see, by contrast, Ref. 21From the methodological side,
Ablowitz—Ladik equation, A-L for short, possesses a two-what is novel here is the systematic use of them in the in-
parameter family of exact moving breather solutions of thevestigation of the family of moving Schrddinger breathers

form reported in Sec. lll.
To some extent, the presentation here is self-contained.
Dy(t) = \/Esinhﬁ sech B(n = xo(1))] First, in Sec. Il A we introduce the notion ¢p,q) resonant
Y solution, providing some illustrative examples. T{&VD)
X expli(a(n - xy(1) + Q(0)]. (4) regularized Newton algorithm is presented in Sec. Il B, and

finally in Sec. Il C we briefly explain the basics of Floquet
The two parameters of this breather family can be chosen tgtability analysis.
be the breather frequenay, and velocityvy,

2 sinhBsina A. Discrete space—time symmetries:  (p,q) resonant

Up=Xo= —,3 : (5) states
If a frequencyw,=2m/T, is given, we will say that a
wb:Q - 2 coshg cosa + avy, ©) solution ®={®(t)} is (p,q) resonantwith respect to the

reference frequency,, if the following condition holds, for
where -r<a< and 0< 8< . The A-L moving breather all n andt:
(instantaneoys profile interpolates between the rest state _
®,,=0 of the lattice(atn— ) in an exponentially localized Pn(D) = Crip(t+QTy). (10
region aroundky(t), while traveling with velocityvy,. After g Ty-periods, these solutions repeat the same pro-
The connection between the integralitbough physi- file but displaced byp lattice sites. In more technical terms,

cally limited) A-L equation and the physically relevant these(p,q) resonant solutions are fixed poinksof the op-
(though nonintegrab)eDNLS equation is provided by the erator
model originally introduced by Salerno in Ref. 16,

g Yy y EP’Zq =M , (ll)

iD= = (Ppey + Py )[CH+ p D21 = 200, | D2 (7)

This lattice provides a Hamiltonian interpolation between the M-D®=0, (12
standard DNLS equatio(l), for u=0 andv=v/2, and the where £ and 7T are, respectively, the lattice translation and
integrable A-L lattice wherpw=7y/2 and v=0. The Hamil-  the T,-time evolution operator:

tonian of the Salerno equation is given by

L{D(0)} ={Ppsa(D}, (13
- - 14
H==CQ (P D1+ DPpyq) —2— 2, |D)?
2 (Birs - Oon) =2, 2| T () = (@t + Ty, (14
v We now consider some examples (@f,q) resonant so-
+ 2;% In (1 + p|0f?), (8)  |utions with respect to the frequenay, the first example is

simply provided by the family of plane wave solutions of Eq.
which contains the A-L and DNLS Hamiltonian for the (7):
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In the integrable limit, the plane waves and the A-L
breathers are both exact independent solutions. Integrability
makes possible that the initial localization of energy is main-
tained with time evolution, without decaying away by excit-
ing radiation. It is a well established result th@ven far
away from this integrable limjtimmobile discrete breathers
remain exact solutions of the lattice dynamics. Our concern
in the next sections is the question of moving discrete breath-
ers away from integrability in Eq7). In order to study them,
we will focus on(p,q) resonant solutions. The motivating of
this restriction comes from its accessibility to numerics. First
we will motivate the numericglNewton method that allows

FIG. 2. Plot of the nonlinear dispersion relation surface of nonlinear planeus to study these solutions with an adequately high precision.
waves, Eq(16), as a function of the amplitudé and the wave numbéds of
the plane wave. The values pfand v are fixed to 0.5.

®,(t) = Aexp[i(kn— wt)]. (15) B. Newton continuation

It is easily seen, by insertingl5) in Eq. (7), that the values A well-known numerical procedure to obtain exact peri-

of , k and |A| define a surface in the three-dimensional ©dic solytioggz_zgf nonlinear lattices is the Newton
space, the nonlineatispersion relation surfacex(k,A) (see continuatiort® The different practical implementations

Fig. 2): of this procedure work very successfully when, for example,
one obtains numerically exact immobile discrete breathers of
w=-2[1+ u|A]"] cosk - 21|Al. (16)  Eq.(7), from the uncoupled limix=0 andC=0, where ex-

Note that due to the nonlinear character of E8), the fre- act periodic discrete breathers are trivially constructed.

quencyw depends on both wave numbeand amplitudeA| The iteration of the Newton operat@rconverges rapidly
of the plane wave to its fixed point(i.e., the solution to be computeprovided

One can easily determine those plane waves that aré€ starting pointd?, is close enough, and the solution of the
(p,q) resonant with respect te,: Eq. (10) imposes the fol-  following system of linear equations is a well-posed prob-

lowing condition onw andk: lem:
o _1(p _
wp - q<277k m) ' 7 (D7T-1)(®"- d™Y =[T-T]D", (18)

where m is any arbitrary integer. These planes in the 3DwhereD7 is the Jacobian matrix of the Newton operator, and
spacgw,|A|,k) intersect the dispersion relation surfacg¢iat ~ ®" [the nth iteration solution of(18)] converges quadrati-
genera) several one-parameter familigsranchegk;(|Al), in  cally to the fixed point solution. By adiabatic change of a
the first Brillouin zone(-m<k< ). model parameter, one constructs a uniquely continued exact

If we are not interested in unreasonably la@ad not fixed point solution for each parameter value, using each
interesting amplitude valuegA| of the plane waves, the time, as starting point of the Newton iteration, the solution
number of branches is finite: one can see that for fixed valuegreviously computed.
of all the parameterép,q, wy,, v, 1), there is a finite number The matrix (D7-1) must be invertible, in order to
of branches in the limitA| — 0; there is also a well defined uniquely computeb"*!. Degeneracies associated with the +1
(parameter dependegnthreshold value of the amplitude at eigenvalues oD7, if any, have to be removed in order to
which a pair of new brancheasangent bifurcationappears obtain a unique fixed point solution. When continuing immo-
(i.e., these plane waves can only resonate wijlior ampli-  bile (periodig discrete breathers of Edq7), a convenient
tudes above some threshold value prescription is commonly used, namely to restrict the opera-

Thus, by a suitable bounding of the amplitude, for eachtor action to the subspace of time-reversible solutférfs.
couple (p,q) one finds a finite numbess, of branches of This provides a practical way of removing degeneracies, al-
(p,q) resonant plane wave@\ote also that this number di- lowing unique continuation of immobile discrete breathers.
verges wherp/q tends to an irrationgl. For the continuation of(p,q) resonant solutiongof

A different, and highly nontrivial, example ofp,q)  which periodic solutions are only the particular cgse0
resonant solutions is provided by the solitary wawésof  andqg=1), one has to usé1=LP79 as the Newton operator.
the A-L lattice. From Eq.(6) it is clear that the choice One has also to deal with the degeneracies\of and im-
2@,/ wy=p/q selects a(p,q) resonant solitary wave with posing time-reversibility could, in this case, be too restric-
respect to the frequency,. The set of velocity values of tive.
resonant A-L breathers is dense and any A-L moving A well-known solution to the problem of removing de-
breather is a limit of some sequence of resonant ones. Notgeneracies when no clear restrictions are available is pro-
also that immobile breathers af@,1) resonant with respect vided by the so-calledsingular value decomposition
to the frequencywy,. (SVD)?°2225280f the matrix(DLPT9-1):
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(DLPTI-1)=J=PVQ, (19) C. Floquet stability analysis

A very useful outcome of the numerical Newton method
whereP, V andQ are 2N X 2N square matriced? andQ are  of computing solutions of Eq.7) is the Jacobian matrix of
orthogonal matrices and is diagonal(v;&;) with possibly  the Newton operator, usually called the Floquet makix
null (zerg elements, called singular values, associated withThis matrix is the linear operator associated with the linear
the null space ofl (the subspace that is mapped to zéro  stability probleni’ of the fixed point solution.

=0). The columns ofP whose same-numbered elements Indeed, the Jacobiar of the Newton operatomM,
are nonzero are an orthonormal set of basis vectors that span
the range of) (the subspace reached by this matriXhe F=DM, (21)

rows of Q whose same-numbered elemenjtare zero are an
orthonormal basis for the null space &f One can numeri-
cally use this SVD decomposition, checking ttmeimerica)

vectors spanning the null space to identify degeneracies, an
using at iteration steps the pseudoinverse matrix é(T ) = FEO0). (22

maps vectors in the tangent space of the solufgmnall ini-
tial perturbationse(0) of the fixed point solutiohinto their
-evolved vectors, i.eg(T ), after a period of\, that is,

The Floquet matrix of a Hamiltonian system is real and
symplectic, so the Floquet eigenvaluescome in quadru-

Q* V7P*, (20) plets,\, 1/\, N, 1/\. The necessary condition for the sta-
) bility of the solution is that all the eigenvalues lie on the unit

whereV~!is diagonal with elements &/ for v; #0 and 0 for ~ circle of the complex plangx|=1.
v;=0. To illustrate the Floquet analysis ¢b,q) resonant solu-
As a judicious test of our numerical codes, we have usedions of the NLS lattic&7), we now obtain the Floquet spec-
both proceduregreduction to time-reversible subspace andtrum of modulational instabilities of §,q) resonant plane
SVD decompositionto obtain immobile discrete breathers wave,
of the Salerno model. Both agree, up to the highest possible )
accuracy, from the uncoupled limibne- and two-site breath- ®r(t) = Aexpi(kn- wt). (23

ers up to the A-L limit (and vice versp ~ (The modulational instabilities of plane wave solutions of
This test serves also to provide further confirmation ofngnlinear lattices have been analyzed in Refs. 28 and 29.
an important and well-known theoretical result. At the inte-  ope has to investigate the evolution of small perturba-

grable A-L lattice, one- and two-site immobile breathers argjgns, in both amplitude and phase, of the plane wave
but two particular choices of the continuous one-parameter

(Xo, the localization centgrfamily of immobile solitary d, () =(A+1,) expi(kn—wt + ¢,), (24

. 1 . .
= +3 i
waves, i.e., constamb(t) =n or n+3, respectively, in E(). where we assume that the perturbation parameters are small

The well-known result, confirmed by our numerics, is thatcompared with those of the plane wave solution. Introducing

away from the A-L limitonly these(one- and two-sitgim- . . o .
mobile discrete breathers persist under adiabatic continua%eﬁ(:f;?lljorgiﬁ)o%fnfr}]d considering the following form for
n» nJs

tion. No immobile breather centered in between exists. For
positive values of the parameterthe c_)ng-site.immobile one 1,(t) =1 expi(Qn-Qt),
has a lower value of energ¥t, and it is a linearly stable
solution, while the energy of the two-site breather is higher _ . B
and it is linearly unstable. The relative situation is reversed ¢n(t) = ¢ expi(Qn-Q1), (25)

for negative values of. This result can be interpreted as the we obtain the dispersion relation for the perturbation param-
emergence of @Peierls—Nabarnopotential function of the eter():

breather centex,, which destroys the continuous degeneracy o R

of immobile breathers, leaving only two of them per lattice [ — 2(1 + uA%) sink sin Q]

uni_t, namely t.hose !oqalized at maxima} ar)d minima of the = 16(1 + uA?sin? Q/2 cosk[(1 + uA?) sir? Q/2 cosk

Peierls potential. This interpretation, which is captured in the , 5

theoretical framework of collective variable approaches, ~ WA cosk — vAT]. (26)

turns out to play a central role in building up the physicalFrom the above expression one derives the values of

interpretation of the numerical results on mobile discreteQ(A'Q,k;,,'M) for the modulational perturbations. When

Schrodinger breathers, bela@ec. I1)). _ the parametef) has a nonzero imaginary part, i.e., the right-
The n_umerlcal integration of the equations was perand side 0f26) is negative, the plane wavé, k) becomes

formed using a fourth-order Runge—Kutta scheme with timeg,stable under the corresponding modulatig@! perturba-

step T,/500. The convergence criterion for the fixed pointtion, whose amplitude will grow exponentially fast in the

solution is that the value f;|([7-Z]®™Y) | is less tharN  jinear regime(tangent spade

X 107*° (whereN is the size of the lattioe The typical size Modulational perturbation€25) correspond to eigenvec-

of the lattices was taken between 100 and 200 sites depengjrsﬂn’ @} of the Floguet matrix:

ing on the characteristics of the solution considered, as we

will explain in Sec. IIl. In(t+Ty) =exp(=iQT I, (27)
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FIG. 3. Plot of the modulus of the unstable Floquet eigenvaegcorre-
sponding to the positive values 6f()) in Egs.(31) and (32)] versus the
Floguet anglefg,q. Both quantities are conveniently normalized to the pe-
riod of the mapT ,,. The amplitude of the excursion pf| and the range of
values 0f6g,, for which [\|>1 grow as the amplitudé of the plane wave

is increased. The parameters in Ef). are u=v=0.5 and the wave number
of the plane wave i&=0.5.

en(t+Tr) =exp(=iQT ) en(t), (28)

with associated Floquet eigenvalues éx{)T,,). The real
part of () gives the angle in the complex plane,

HFqu == %(Q)T/\A y

while the imaginary parfi(Q)) gives the modulus of the Flo-
quet eigenvalue,

I\ =exp(3( Q)T ),

(29)

(30)

thus providing the information about the linear stability of
the solution.
The distribution of angles and moduli in the Floquet

Nonintegrable Schrédinger discrete breathers 1135
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FIG. 4. Plot of the Floguet spectra of a plane wave with modulational
instability (circles and the theoretical predictigines) for the distribution

of the Floquet eigenvalues in the complex plane given by 813.and(32).

The amplitude and wave number of the plane wave Ard.1 andk
=0.1-27; the nonintegrable parameter valuevis0.1 and the lattice size is
of 400 sites.

numerics are computed using the tools explained in the pre-
vious section. The Newton fixed point continuation requires
a good initial guessmeaning that the starting initial condi-
tions have to be in a small neighborhood of the fixed point
Very close tov=0, the A-L solitary traveling wavegexact
solutions atv=0) provide good starting points. After conver-
gence to the fixed point, we increase adiabatically the value
of the parametefA»=10"%), and start iteration from the pre-
vious fixed point.

An important step in the numerical method used here is
obtaining a basis for the subspace(tangent spagevectors
with Floquet eigenvalue +1. These are associated to those

spectrum of the modulational instability can be obtaineddegeneraciegsymmetriegthat one has to eliminate in order

from Eqg. (26) by taking the real and imaginary parts Qf

R(Q) =2(1 + uA?) sink sinQ, (31)
J3(0)%= - 16(1 + uA?) sir? Q/2 cosk] (1 + uA?)
X Sir? Q/2 cosk — uA? cosk — vA?]. (32

In Fig. 3 we represent the modulus of the unstable ei
genvalues as a function of the Floquet angle for the spectru
of a (p,q) resonant plane wave, taken as an example to v

is no plane wave harmonic instabilityg,,=0) due to this
mechanism of modulational instabilities.

A numerical computation of the Floquet spectrum of a

plane wave(with arbitrary wave numberof a lattice of N

=400 sites, with periodic boundary conditions, is shown in
the complex plane representation of Fig. 4. The instability
globes, at angles symmetrically placed around zero in this

figure, nicely fit the theoreticgthermodynamic limit values
obtained from Eqgs(31) and(32).

Ill. MOBILE DISCRETE SCHRODINGER BREATHERS

to regularize the linear system at eag@ewton) iteration

step when numerically converging to the fixed point solution.
Away from the A-L limit, it is known(as reported, e.g.,

in Ref. 30 that only two conserved quantities remain generi-

cally as dynamical invariants, the Hamiltonig®) and the

norm(9). They are respectively associated to the continuous

time translation and gaudglobal phase rotatigrinvariance.

Using the notatioru;=9R(®;) andv;=J(®;), one easily ob-

i'?ains that(su;(t)=U;(t), dv;(t)=0;(t)) is the perturbation asso-

sualize the non-point-like character of the instability in the
Floquet spectrum in the thermodynamic limit. Note that there

ciated with time translational invariance, whilésu;(t)
v;(t), dv;(t)=—u;(t)) is the one with gauge invariance. These
are, consequently, Floquet eigenvectors with associated ei-
genvalue +1, and we can easily check that they coincide with
the (two) basis vectors provided genericallye., except at
special bifurcation values of the parameter, see Sec.)IbyC
the numerical singular value decompositi@d) explained in

the previous section.

In Sec. lll A we summarize our findings on the generic
Structure of mobile Schrodinger discrete breathers. For this,
as explained earlier, we have explored particular values for
the integergp,q) and performed continuation @p,q) reso-
nant A-L traveling waves. The variation of the main struc-
tural characteristics of the fixed points along the continuation

In this section, we show the numerical results on mobileparametew is examined in detail in Sec. 11l B, for both signs

discrete Schrodinger breathers in the NLS lat{i¢e These

of this parameter. Of particular interest are the observed dras-
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FIG. 5. Instantaneous profile of(&,1) resonant breather with,=2.678 and,=0.426; the nonintegrable parametewis1.0 (standard DNLS equation(a)
Real part,(b) imaginary part(c) modulus andd) phase. The resonant condition for the harmonic composition of the background gives the contribution of
three plane waves. The existence of these plane waves is revealed by the modulation of the extended tail in the module)s profile

tic changes in the structure for=-0.3 andv=-0.39. Then, One easily realizedor example, consider a site very far
in Sec. Ill C, we show the main conclusions on the stabilityfrom ng) that the background has to be itsgif,q) resonant.
analysis of the mobile Schrodinger discrete breathers, in &his can be quickly checked in our numerics: Indeed, the

sector of the breather parameter space. power spectrung(w)=| f‘fwm[ci)n(t)] exp(iwt)dt|? at a siten
far from n, reveals a finite number of peaks wj, |
=0,...,s—1; one can check that each numerically fits to a
branch of(p,q) resonant plane wavesee Eq.(15)]; this
In Fig. 5 we plot the spatial profile of &L,1) mobile  provides a set of amplitude;, and finally one confirms that

Schrodinger discrete breather for nonintegrability parametethe superposition of theA;, ;) plane waves fits the numeri-
valuer=1.0, andw,=2.678. cal solutionci)n(t).

A quick inspection of this figure provides a first glance  \yhjle immobile discrete breathers can be described as a
of the general structure of the computielq) resonant so- ot of homocliniciand time periodigconnection on the rest
lutions: The fixed pointD is the superposition of aexpo-  state, the mobile localized core insteashnectsa specific
nentially) localized oscillatior(the core) moving on top of an  jinear superposition of low amplitude nonlinear plane waves.
extendedbackground: One could say that the localized core needs for its motion to

“surf over” a specific extended state of radiation:

A. The structure of the solution

®= (Dcore+ q)backg- (33) -1

In other terms, far away from the core localization sitg (Cibbackgn(t) => A expi(kn—wjt). (35)

the solution does not tend to the rest stél;ezo, but to an 1=0

extended excited state of the lattice, i.e., [forny|>1, We note that among the members of tseparameter
R A continuous family of p, q) resonant plane wavésee Sec.)|
Dp(1t) = (Ppackgn(t) # 0. (34) the fixed point solution contains only a particular member
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Nonintegrable Schrédinger discrete breathers 1137
(i.e., the Peierls—Nabarro barrier of collective variable theo-
ries) will be established, further illuminating the physical
description of discrete breather mobility.

Whatever physical perspective one may prefer, the nu-
merical fact is that the generic structure of the fixed point
solution is given by the superpositig83). Not too far from
v=0, where the amplitudes; of the fixed point background
have small values, one can carefully check that if the bare
core is given as a starting guess for Newton iteration, this
converges well to the exact complete solutidoore
+backgroung, by developing the specific selection&fam-
plitudes. This confirms the robustness of the numerics.

Though previous observations of nondecaying tails of
numerically accurate mobile discrete breathers in Klein—
Gordon lattice® and/or(solitary) traveling wave¥ in self-
focusing equations had been reportede also the interest-
ing discussions on this issue in Refs. 21 and), 320
systematic study of those tails is known to us. However, we
clearly see that they are an essential part of the exact solu-
tion. As argued in the introductory section, the translational
motion of a discrete breather introduces a new time scale. In
a nonintegrable context, this fact unavoidably implies reso-

0051152253354
(b) 0}

nances with plane wave band spectra, and an exact self-
sustained moving DB solution could only exist on top of a
developed resonant background. This seems to have been
(with a few exemptionsnot fully appreciated in most of
current literature on mobile breathers, where the background

FIG. 6. (a) Plot of the graphical solving of the resonant conditiam the
A;—0 limit) for a (1,2 resonant breather witi,=2.384 andy,=0.189.(b)
Power spectrun®(w) of the background of this solution at1.0. From(a)

Eq. (17) gives the contribution of seven plane waxgso, ..., 6) butonly IS most often either ignored or deliberately suppressed.
five (j=0, ..., 4) of them are visible due to the difference of orders of

] : A notable feature of the plane wave content of the back-
magnitude between the amplltude‘ﬁ. The agreement between the resonant

condition equatiorifor the fitted value of4;) and the frequencies observed ground®y,,¢4is that the amplitude mOdU|q9‘j| in (39) dif-

in S(w) is up to machine accuracy. fer by orders of magnitude, i.64|>|Ay|>|Ag/>---, so that
only a few frequencies are dominant for most practical pur-
poses[see Fig. @)]. In other words, the extended back-

(A}, ;) from each branclisee Fig. €)]. This selection var- ground associated Fo a spatially Iogalized moving core is, in
ies smoothly with thetadiabatig continuation parameter. ~ tumn, strongly localized in the reciprocgk-space lattice.
In particular, the amplitude modulusy| selected increases The possible relevance of this observation is further dis-
smoothly from its zero value at the integrable linit=0),  cussed below in the concluding section.

for both signs ofv.

If the bare core of a fixed point solutigne., after sub-
straction of the backgrounds taken as initial condition for a
direct numerical integration of the equations of motion, one  In order to characterize the specific features of the non-
observes radiative losses, along with the correspondinintegrable motion of discrete Schrédinger breathers, we fo-
changes in shape, velocity, etc. of the localized moving corecus here on théperhaps most remarkable among those fea-
The motion of the bare localized co(eot anymore a solu- tures: the background amplitude of the uniquely continued
tion) excites extended states of the lattice. Thus, regardinfixed point. How does it evolve along the continuation path
the exact fixed point solution, one could say that radiativein parameter space?
losses of the running core aegactlycancelled out when the For positive values ofr we have followed the line in
localized core runs, with specific velocity, on top of the spe-parameter spacg+v=1 [see Eq.(7)], while for negative
cific linear combination of(A;,»;) resonant plane waves values, we took the patp—»=1. We do not expect other
(35). paths to make important differences. As stated earlier, near

A complementary numerical observation is the follow- »=0, the amplitude grows from its zero valgat the inte-
ing: Taking as initial condition for a direct integration of the grable limit for both signs of this parameter, for it is a non-
equations of motiori7), a superposition of an immobile dis- integrable effect. However, for larger values of nonintegra-
crete breather and the background @pa) resonant mobile  bility |v| the background amplitude evolution shows some
breather, it evolves into a moving discrete breather, with apimportant differences for the two signs of
proximate velocityv,=(pwy,)/(27q). One thus would say In Fig. 7 we plot the background amplitudmodulug of
that the background promotes breather translational motiothe (1,1) resonant fixed point versus the continuation param-
with adequate velocity. In the next section, a connection beeterv, for three different values of the breather frequengy
tween background characteristics and the particle perspectior »>0, one observes that the amplitude steadily increases

B. The background amplitude
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0.4 FIG. 8. Continuation diagram @f,1) resonant breathers as a function of the
frequencyw,. The end of the numerical continuation,.(wy), is repre-
sented by the line with dots. The region where mobile breathers suffer from

FIG. 7. Background amplitude versusfor three different(1/1) resonant core instabilities is limited by the shaded area.

breathers with frequencie$a) w,=5.65, (b) w,=4.91, and(c) w,=4.34.
Note the two different behaviors: for positive valuesidfby,ed? is a mo-
notonous increasing function aof while for the negative part it shows

smooth rises and falls. eigenvectors and a continuous part associated with the linear

stability of the background plane waves. The continuous part
of the Floquet spectrum should reflect the same results of the

with v before continuation stopgi.e., Newton iteration ~Modulational instabilty analysis of Sec. II C. In particular,
ceases to converge beyond a certain maximurmalug.  this means that any modulational instability a plane wave
Note that the amplitude grows faster for higher values of thénay suffer will be also an instability of a fixed point solution
frequency, and that the continuation st@psrrespondingly ~ Whose background contains this plane wave. In the future we
at a smaller value of. This may suggest that the failure of Will refer to any instability of the continuous part of the
fixed point continuation is related to a somewhat excessiv&loquet spectrum abackground instabilityAny instability
growth of the background amplitude, an issue that will beffom the discrete part is eore instability.
discussed later. First we focus oncore instabilities.For this we turn
For v<0, after an initial growth the background ampli- attention to the continuation of mobil, q) resonant breath-
tude decreases down to almost negligible values araund €rs. Figure 8 shows in the-wy, plane(dotted ling the val-
~-0.3, then grows and again decreases close to zero atUesvmadw,) where the numerical continuations stop due to
=-0.39, and so on, in progressively narrower intervals withnonconvergence of Newton iteration fg=1,q=1 and
larger peak amplitude, until continuation stops. Most notice>0. As was remarked above, the continuation stop is asso-
able is the fact that the intervals neither depend on th&iated with the rapid increase of the background amplitude
breather frequency, nor on the breather velocity,. Why  shown in Fig. 6. Only low frequency breathers, for which the
do background amplitudes decay so dramatically at thosackground amplitude increases more slowly, can be numeri-
regions in parameter space? An important hint is presented gglly continued all the way to the standard DNLS equation.
the next section, where the Floquet stability analysis of im-The linear stability analysis ofp,q) resonant breathers
mobile discrete breathers will show a coincident situation ofyields a well defined region in the- w, diagram whereore
mirror-symmetry breakingand its absence for positive  instabilitiesappear. There is an island inside the continuation
values. region of Fig. 8, where the Floquet spectra contain a real
For other values op and g that we have numerically eigenvaluen>1. We observe the evolution of this Floguet
investigated, the same features of the background amplitudgigenvalugand its complex conjugates the parameter is

variation as shown in Fig. 7 are qualitatively reproduced. increased in Fig. @), for a (1,1) breather of frequency,
=2.678. Here the anglédr ) in the complex plane is plot-

ted versus. The interval of constant zero angle corresponds
to the sectior{constantwy,) of the instability island in Fig. 8.

On the basis of the general arguments given in Refs. 27 along the whole continuation path, the profile of the
and 33, the Floquet spectra of immobile DB in the thermo-corresponding unstable eigenvector is localized. An example
dynamic limit, N— o, consists of two components: theon-  of this profile inside the instability island is shown in Figs.
tinuous Floquet spectrum of the asymptotic state of the so-g(h) and 9c), where one observes that the localized instabil-
lution (reSt Statﬁ and a discrete part associated with Spatlal|y|ty shows a decaying background a|ong the direction oppo-
localized eigenvectors. The continuous part is composed afite to the motion. The decay rate increases as the modulus of
small amplitudelinearn plane waves, the so-called phonons. the eigenvalue grows and decreases again hesturns to
However, for mobile DB the asymptotic state of(n,d)  the unit circle. On the other hand, the stable Floquet eigen-
resonant fixed point solution is a superposition of planeyector associated with A/shows a wing decaying along the
waves, the backgroun®,., From this, one should expect mirror symmetric direction. The direct integration of the
the Floquet spectrum of ,q) resonant DB being com- equation of motion reveals that the unstable solution experi-
posed of two components: the discrégpatially localizedl  ences a pinning after a transient of regular motion with ve-

C. Floquet analysis
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4\ % FIG. 10. (Color online. Modulational instability existence diagram for a
T '.\ (Eunst plane wave with wave numbéy e [-/2,0]. This diagram fixes the region
0 .W-..a..-"..r«..-’\.-’\j"\._r"'\\,"'\ A I . where mobile discrete breathers with a background composed of only one
VY | . "
' plane wave do not suffer from background instability.
\
-0.25 | L.'
| a priori the plane wave content if we do not have the ampli-
0.5t ‘ ‘ ‘ ! ‘ 1 tudes of each on€l7). However, we can derive a necessary
(b) 0 20 40 80 80 condition for not having Ml if we consider that, frod?),
the background is always composed of at least one plane
05 | ‘ ‘ ] wave (m=0) with ky between[-7/2,0]. From this we can
ry simplify the analysis of the background stability to tke
/| plane wave stability as a necessary condition for the MB
005 | b 3Eunst) ] stability. For this we calculate, for eaghandk, the value of
K the right-hand side of26) for all the range ofQ([—-,w])
\ 1’ ! andA. If this value is always positive, the plane wave with
ol P i /.»'\.\ I this kg is free fr(_)m modulational mstabl_lmes at thls point of
Uy the model(7) with parameter. From this extensive explo-
@ 0 20 40 60 80 100 120 ration we _obtam, see Fig. 10, the region in tkev plane
site where Ml is present.

In the range ofv between[—1,-0.5 there is no modu-
FIG. 9. (a) Floquet angle evolution of the spectra of(a1) resonant |ational instability for single plane waves of any valuekof
breather withw,=2.678. The thick trajfzct(_)ry corresponds to the |0ca!|zed between[—w/Z,O], and in particular f0I1<0. However, this
eigenvector that becomes unstabli,,=0 interva). Instantaneous profile .
of the real(b) and imaginary(c) parts of the Floquet unstable eigenvector of d0€S Not guarantee that moving breathers are free from these
a (1,1) breather withw,=3.207 andv=0.26. The decaying tails along the instabilities in this region, unless the background has only
d?rection opposite to the motior_‘l reveals the energy loss that the unstablgpe plane waveas is sometimes the cgs©n the contrary,
eigenvector causes to the solution. in the regiony>0 any moving breather suffers such insta-
bilities. The transition area in the regione [-0.5,0] pre-
sents MI depending on whick, we have. For the range
locity v,=p/(gT,). After the solution pins at site, its core  where no plane wave witk betweer—7/2,0] is subject to
center oscillates around this site. The trapping of the unstablsll we can assure that if there is only one contributikg,to
MB could be interpreted as a result of the energy losses thahe background, the corresponding MB solution is stable. For
the growth of the linearly unstable perturbation induces orexample, this is the case fdd/1) resonant breathers if
the solution. wp>4 and for (1/2) resonant breathers ib,>8.46. The
Returning to the instability island shown in the diagram Floquet spectra of a moving breather satisfying these re-
of Fig. 8, some final observations are worth summariz{ig: quirements is plotted in Fig. 14).
there is a range of frequencies where mobile breathers of the After the analysis of both types of instabilities eventually
standard DNLS equatiofw=1) suffer from this instability; experienced by moving Schroédinger breathers, we finally re-
(i) very high frequency breathers do not experience this inport on a most relevant numerical fact revealed by the Flo-
stability (in the short range where they can be continued quet analysis of the family ammobile discrete breathefsr
and (iii ) very low frequency breathers are stable all the wayr<<0: Nearr=-0.3 an immobile two-site DB experiences a
up tov=1. mirror symmetry-breakingpitchfork) bifurcation becoming
We turn now tobackground instabilitiesOnce we know linearly unstable. When approaching the bifurcation point,
the plane wave contertkg, ky,...) of a (p/q)-resonant fixed two conjugate Floquet eigenvalues quickly approach +1,
point, we can know whether the solution is subject to MI orwhere they meet, and then separate along the real axis. The
not and, if it is unstable, what are the harmful perturbationsigenvector associated to the unstable 1 Floquet eigen-
(Q). This problem is not so simple because we cannot knowalue is localized and odd-symmetric, and is termed the
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FIG. 11. Floguet spectra dfl,1) resonant breatherga) for w,=4.348,vy,
=0.692 andv=0.08 the spectra shows the cdlecalized instability; (b) for
wp=6.610,v,=1.052 andv=0.07 the spectra shows the backgrogmddu-
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=4.348,v,=0.692 andv=-0.39 the solution is linearly stable.

symmetry-breaking or depinning mod®®. We recall here

Gomez-Gardefies et al.

favoring a translation of the core center. For a smaller value
of v=-0.39 there is another symmetry-breaking bifurcation

where the two-site breather becomes stable, again inter-
changing the stable character with the one-site. The corre-
sponding bifurcation diagram for these two symmetry break-

ing transitions is plotted in Fig. 12.

In the first symmetry breaking bifurcation, two unstable
mirror-asymmetric immobile breathers emerge from the bi-
furcation point, progressively evolve toward tfstablg two-
site breather, and finally collide in a new pitchfork bifurca-
tion from where an unstable two-site breather emerges. The
net result is an inversion of stability between one- and two-
site immobile breathers. Around the narrow intervabofal-
ues where these two bifurcations occur, the energies of the
three types of breathers involve@ne-site, two-site, and
asymmetri¢ have very small differences. From a particle
perspective, this should make the breather motion easier. It is
precisely in this same narrow interval whesee Sec. Il B
we observe that the background amplitude of moving breath-
ers becomes negligible. This is not a coincidence as we will
argue in Sec. IV.

IV. PARTICLE PERSPECTIVE ON DISCRETE
BREATHERS

The appealing framework and success of collective vari-
able approachegsee, e.g., Refs. 34—880 the problem of
nonintegrable motion of discrete breathers rely on the fidelity
of a particlelike description of these field excitations that
they provide. In these approaches, the effective dynamics of
only a few degrees of freedofe.g., the localization center,
and the spatial width of the state, etc., in some instéﬁ):es
replaces the whole description of the moving localized state.

Though unable to account for all the nonintegrable fea-
tures, perturbative collective variable theories of NLS lat-
tices provide a sensible physical characterization of impor-
tant features of the nonintegrable mobility of localized
solutions, like the emergen%?eof a Peierls—Nabarro barrier
to motion. Here we summarize the main results of this par-
ticlelike description and compare them with the behavior of
numerically exactp,q) resonant moving breathers. Our goal
is twofold: to acquire a correct physical understanding of the
numerical facts, and then to make an assessment of validity
and intrinsic limitations of collective variable approaches.

A. Collective variables theory

A presentation of the particle perspective on moving
Schrddinger breathers near the A-L integrable limit can be
found in Ref. 36(see also Refs. 34, 35, 37, and)3®&here
the interested reader will find the relevant formal aspects of
the theory.

Using the integrable solitary wav@) as an ansatz for
the moving breather solution in the perturbed A-L lattiee,

tpat the background of an immobile breather is the rest state: 0 and small in(7), one considers the parameters3, X,
®=0, whose continuous spectrum consists of small ampliand ) as dynamical variablegsariation of constanjs The
tude(linearn plane waves. The depinning mode, on the othettime evolution of these parameters in the perturbed lattice is
hand, is a localized core instability of the immobile breathergoverned by
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FIG. 12. Graphical representation of the two fisginmetry breaking bifurcactiorfer »<<0. The quantity¢ in the vertical axes of both figures is defined,
referred to the one-site breather, as the difference between the mé@jihfsthe two sites adjacent to the maximu(®,,,.,0), i.€., E~ |Praxe1 = | Prmaxe1l- FOr

the one-site DB:=0 and for the two-site DB =1, for this¢ is conveniently normalized with the difference betwekp,, and® ... The continuous lines
represent the regions where the static solutions are linearly stable while the discontinuous ones represent the unstable regions. The nesdofluberofil
three immobile coexisting solutions are plotted in the central insetefe16.215 andv=-0.3012.

XO:ZSinaSirlg]'G, (36)
Q=2 cosa coshB+ axy,+ g(B), (37)
B=0, (38)
. <« 8sinitp
a=- vg) Feinh(255) sin (2msXy), (39)
where
2 sinhBcoshB  sint? B ]
=2 - -1
a(B) v{ s 3
- sink? B cosh(7?s/B) s
+ vgl 4P cos(27-rs>@)[ F s (29
_ 2_sin|~? B2 sir_1h,8 coshﬁ] ' (40)
Besinh(7?s/B) B2 sinh (7S B)

Hett = Teft + Vet
sinhB
B

477 sink? B
B sinh(7%s/B)

=— 2 COSa

o]
S

s=1

COS(27SXy). (41)

This effective Hamiltonian dictates the dynamics of the
position of the solitary wave. Note that teollective) vari-
able B is an invariant of motion, so it enters as a parameter
into the effective Hamiltonian, and that the time-average

value of() (the parametewy, of the integrable solitary wave,
now a function of timg is an increasing function of this
parameterB. The effective potential. acts as a barrier to
the displacement motio(x, variationg and is naturally re-
lated to the Peierls—Nabarro potential. The amplitude of this
barrier is an increasing function of both the nonintegrability
parameter|y| and 8. The equilibrium points(representing
immobile breathensof this potential are;=n and ni% with
n an integer. Forw=0, the former are stabl@enter$ one-
site breathers, while the latter are unstafgaddle two-site
breathers; for the case= (staggered breathgrthe stabil-
ity is reversed.

A remarkable further consequence is the followifig:
there are no perturbative traveling wave solutions, for values

These relations can be viewed as the Euler—Lagrangef v larger than certain critical valuev, (). In particular,
equations of the collective variable Lagrangian obtained irffor 5> .= 3.6862, one cannot continue A-L mobile breath-
Ref. 36. The variation of the breather parameters gives thers[i.e., v, =0 (see also important remarks in Ref.)B8lhis
evolution of solution4) for the perturbed A-L equation. Fur- consequence could also lgualitatively) expected for a
thermore, one can regard E@36) and(39) as the Hamilton
equations for the canonical conjugate variablgsnd « of

the following effective Hamiltonian:

class of nonintegrable Schrédinger lattigésr some quali-
fied perturbations of the integrable limiwvith on-site nonlin-
earity. One expects also that lattices with purely intersite
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FIG. 14. Density plot of the absolute value of the Peierls—Nabarro barrier,
FIG. 13. Collective variabléa,x;) phase portrait transition for a value of |E,|, as a function ofs, and v. For positive values of, |Ep,| is a monoto-
B=3.0. (a) Shows the phase portrait for=0.2(<v); there are  nous increasing function of andw. For negative values the plot reveals the
Xo-unbounded trajectoriegnobile breathenscoexisting with bounded ones  oscillating behavior ofEpy| as a function ofv (for a given value ofwy).
(oscillating breathejs When v=1.0 (>v,,) (b) we only havex,-bounded
trajectories: there are no mobile solutions.

are not tied to any specific ansatz. In particular, the connec-
tion of these two parameters with the collective variables is
given by Eq.(6) in the integrable limit. For the perturbed
(near-integrablelattice, w, anduvy, are identified as the time

(FPU-like) nonlinearity do not show this kind of transition.
In Fig. 13 we plot typical phase portraits at both sides of

v Figure 13a) shows the dynamics for smaller than the . .

threshold valu€given by B): there are open trajectories g averages OQ andxo, respectively. I

corresponding to mobile breathers and closed orbits betwee T_h_e Pelerls—NabarroEN for shor) barrier is na_lturqlly

the separatrix manifolds corresponding to breathers whiclb entified as the energy d|ﬁer§n@§|ven by the Hamiltonian

oscillate around the equilibrium position . Figure 13b) 8)] between the two |mmob|!e breathers of the same fre-

is the phase portrait after the transition: there are no |0ngeguencywb,lone centered at a siteand the othe(two-site) at

mobile solutions andbesides the oscillating breathgtiere a bondnz3:

are instead open trajectories dn The transition point, for a Epn(v, wp) = H(w, @p,1) = H(V, W N+ %) (42)

given B, occurs when trajectories with rotatimgappear, and

moving breathers disappear as the effect of separatrix lin# the integrable A-L limit this barrier is zero due to the

rearrangement on the cylindéry, «(modulo2r)) phase por- degeneracy (continuous translation invarianceof the

trait. breather family solution, but for# 0 this invariance is bro-
Note that the existence of oscillating breathers is a conken and only these two isolated solutions persist. The energy

sequence of the existence of a Peierls—Nabarro potentidﬂjﬁerence of the two pinned solutions is thus viewed as the

These breather solutions do not perturbatively continue fronininimal extra“kinetic energy” of center of mass translation

the integrable limit. In Sec. IV C we will investigate them that a mobile breather must incorporate for overcoming the

and provide further numerical confirmation of the existencebarriers to its motion.

of these genuinely nonperturbative solutions, predicted by =~ We have studied the behavior of the PN barrier in the
the collective variables theory. Salerno model by continuing immobile breathers, both cen-

tered at a site and at a bond, while computing their energy
difference. The computations of the barrier are made for a
grid of values ofwy,. Figure 14 shows théequipotential”

In order to correlate collective variable predictions with lines of the PN barrier in thév, wp,) plane. The results show
the numerical results presented in Sec. Ill one should firstlifferent behaviors depending on the signiof
realize that our direct numerical approach computes breath- v<<0: Here one observes the effects of the symmetry
ers with fixed values oby, andv, and that these parameters breaking bifurcations cascade described in Sec. Ill C. The

B. Energy balance governs mobility
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10! growths and decays. The strong correlation holds also for
positive values ofy, where numerical PN barrier data are
100 o, o P,:T’ 1 available for a larger interval of values(due to the absence
ot m P ey, o of the symmetry breaking cascade of bifurcatioriadeed,
i 4 P the correlation is so strong that one is tempted to view the
1021 ° % ‘,..r""' 1 PN barrier and the background amplitude as complementary
02l 3 — © _.»' |<1>backg|2_ aspects of a single phenomenon: the breaking of the continu-
:,,\ ./’- e ous translational invariance, and the associated lack of core
104} ¢ ¢ .'._ P 1 momentum conservatiol. Indeed, the background ampli-
5 " ('} tude of moving breathers is a monotone increasing function
107 prosees [ ' ' L of the PN barrier of pinned breathers of the same frequency,
10°® L as shown in Fig. 1®), where|®y,qd?(|Epyl) is plotted.
-04 -03 -02 -01 0 01 0z 03 04 However, we also observe clearly in Fig. (b that,
(@ v when the continuation end is approached, the rate of growth
0.025 of |Ppacd?(v) increases dramaticallgthe concavity of the
curve in log scale turns upwargsvhile the PN barrier does
S not increase much faster than before. This is reflected in Fig.
0.02 J | 15(b), where the slope approaches verticality, indicating that,
in this range ofEpy values, the background grows rapidly.
a_ 0015 ¢ 1 This numerical observation suggests taking a closer look
E a at the precise influence of the background amplitude on the
& 0.01 ” i core energy variations associated with the existence of PN
- barriers. To this end, we use the conservation of the Hamil-
tonian(8) and insert this equation into the for(83) of the
0.005 @o.e”e | (p,q) resonant fixed point. The energy of the solution can be
e__g,@ve" decomposed in the following terms:
° 0 0.5 1 1.5 R R ~
(b) PN HIP] = H[DPcore] + H[q)backg;l +H™, (43

FIG. 15. Peierls—Nabarro barri¢Ep,| from immobile breather withw, o ) ) )
=4.34 and background square amplitufle,.. > for a (1,1) resonant whereH is the interaction energy, i.e., the crossed terms of

breather of the same frequen@y,=0.69J. In (a) we show both quantities (I)core and (Dbackg Let us now consider the simplest case in

in semi-log scale as functions of illustrating the strong correlation be- - .
tween them for both signs of. (b) shows, for positive values of, the which the background has a single resonant plane wave.

nonlinear relation betweedy,q > and|Epy. Note the sudden increase of Along_With the tOta_I energy, also the energy of the plane
the slope close to the end of numerical continuation. wave is a constant in time so that

&H[&)core]_ IH™
at gt

successive stability inversions between site and bond cen- (44)
tered breathers involve a substantial decrease of the Peierls
barrier. The appearance of asymmetric solutions in these bi-
furcations introduces a new energy and, correspondingly, th# other words, the variations of the core energy during the
Peierls barrier is Computed as the maximum energy differmotion are exactly compensated by those of the interaction
ence between the three pinned solutions: the two symmetri€rm.

(site and bond centergdnd the asymmetric breather. If one takes, as an ansatz @Eo,e, the A-L solution, one

v>0: Here the behavior of the Peierls barrier follows formally obtains forr¢re= H[‘i)core] the collective variables
qualitatively the collective variable predictions on the effec-Hamiltonian(41). But note that here it would no longer be a
tive potential experienced by the particle. The increasingonstant of motion, due to the interaction with the back-
CharaCter, withv and Wy, of the numerical barrier is qualita- ground_ |nsteac{as P. Kevrekidis Suggested to)ug\/e di-
tively the same as that predicted frofigs (as a function o rectly compute numerically the evolution of the core energy

and p) by the theory. He0'® which in turn determine${™ up to an additive con-
The PN barrier of w,) immobile breathers and the back- stant.
ground amplitude ofwy,,vp=pw,/27q) mobile breathers are For this we take a fixed point solution with a single

in fact strongly correlated. This co[relation is obtained con-plane wave in its background, and then substract off the
sidering the functiongEpy|(¥) and |Ppaqd?(v). Both func-  plane wave to obtaifb .y from whereH<rs(t) is computed.
tions are plotted for a fixed value ef,=4.34 in Fig. 1%8).  |n Fig. 16 we have plotted the evolution of the core energy as
The behavior ofEpy|(v) for negativer (revealing the cas- g function of the localization positiotentey of the breather
cade of bifurcations explained before in Sec. I)li€closely  core. The localization center of a lattice functidr is de-
followed bY|‘I’bacngz(V) with the corresponding sequence of fined using the conserved nor8):
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4F ' ' ' ' ' ' ' ] (n+%) for the unstaggered ones or betweeand (n+1) for
the staggered ones.

From our perspective, the oscillating breathers are solu-
tions with two frequencies: the internal one of the breather
(wp) and the one corresponding to the oscillatory motion
(wosd- ONce again, we have a problem dealing with two time
scales and consequently we have to impose that the two fre-
guencies are commensurafes,=(uys: The fixed point
problem is now associated with the map:

core
H

T, ®n(t) = Dy(1). (46)

We cannot, however, develop the Newton iteration scheme in
a similar way as for mobile breathers. There is no longer any
family of oscillating breathers providing a good start point
FIG. 16. Plot of " of a (1,1) resonant breather as a function of the fOr the continuatiorthey are intrinsic solutions of the non-
localization centex, for different values ofv. The parameters of the solu- integrable regime because they appear as the Peierls barrier
tion arew,=5.056 and,=0.805. The values af are 0.04, 0.08, 0.12, 0.16, emerge}s The way to obtain a goodnsantz(as Cretegny

0.20, 0.24, 0.25 and 0.25%2nd of the continuation the amplitude of the - : : i
oscillation of ™ grows with . (The minimum value of{™ has been set to and Aubry already used to find mobile breathers in Klein

zero in order to compare the different functions. Gordon lattice®) is to perform a small perturbation of the
static solutionpinned at a sit@) with the depinning internal
mode:
>nin (1 +u|d)?) _
. n (45) q)ﬁnsante q)rs]tatm(wb) + 65¢gep_ (47)
Xo= .
N The dynamics of the perturbed solution for small enough

As expected, the core has extracted the maximum avaiIabI;ézlargfzr?;ﬁ;’ﬁovvgfu;hsecgstﬁ'(lalag'rggtﬁzri\{giseépﬁésg aongvfi‘_)r

from the interaction energgwith the backgroungwhen the . N .
o g d ously in both cases the motion finishes after a transient due

1 . .

core passes at+3 (maxima of the PN barrigrand has re- L : .

turned it to the interaction term whenmatminima of the PN to radiation(they are not exact_ solut|o)15Tur_1|ng the param-
etere we search for those oscillatory transients whaegg. is

barriep. . X .
Another interesting feature of these numerically obtainec{es’Onant with the breather frequgnaag. The transuent_ IS
much more stable when the nonintegrable parametés

functions is seen from the variations in the form of the os- -~ ;
cillation of " as the nonintegrable parameteris in- very small, close to the A-L limit. We first search here for a

creased. At the same time, as the energy difference bet\NeL%)Od. initial guess for the method and then .Obt"?“n the.exact
1. .~ .~ solution of the magg46). Once the exact solution is obtained
n and nt; increases the modulus of the derivative

JH"% %) in the neighborhood of,=n also increases. for a small v, we can perform the continuation to higher

L ._values in the same way as we did for mobile solutions. In
These variations become faster when the end of the continy-. : . :
L i . ) ig. 17a) we show the evolution of the amplitude of oscil-
ation is approached, reaching a cuspidal point for the #ast

eached. The background ampifuce i nludedd, and 24090 5 e aoed Tom 05 10,018 The ampiee of
of course indH'™/ gt; the dramatic variation of it at the end P y P P

of the continuation could be interpreted in terms of this de_locahzatpn center of the breathgr defined as( IE.)' The
L SR continuation reflects that the amplitude of the oscillation, for
rivative variation inxg=n.

a fixed value ofw,s, grows withw. In Fig. 11b) the density

plot of |®,|? is shown as a function of time, revealing the
oscillating pattern of the solution.

The emergence of the Peierls barrier and the behavior of The existence of exact oscillating breathers is a conse-
the background amplitude illustrate the physical interpretaguence of the existence of a Peierls barrier. The structure of
tion of this background as(@/q)-resonant energy support to these solutions reveals the existence of a backgroresb-
overcome the barrier to motion. We now confirm this state-nant with the mapwhose amplitude grows as(and conse-
ment searching for another kind of solutiooscillating  quently the amplitude of oscillatigris increased. This is the
breathers.These solutions are predicted by collective coor-picture we expected from the role played by the interaction
dinates approaches and are a consequence of the loss ckground—core in the energy balance during motion. The
translational invariance out of the integrable limit. Following monotonous growing behavior of the background versus the
the above interpretation of the background role one camscillation amplitude strongly suggests that if the amplitude
imagine certain solutions with a background amplitude nobf the former is increased, the solution will be able to trans-
high enough for surpassing the Peierls barrier and allowindate steadily. This has been checked by direct numerical in-
travel along the lattice. In terms of a well defined potential,tegration, because no exact solutions connecting the oscillat-
considering the particle perspective, the center of these lang with the mobile ones can be obtained due to the different
calized solutions would be oscillating betweém—%) and  maps employed to obtain both types of solutions. However,

C. Oscillating breathers
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ken. From this also naturally comes the existence of oscillat-

0.12 ¢ ing breathers. We have seen how our numerics fully confirm
0.08 | the qualitative validity of these predictions.
004 A further prediction concerns the phase portrait's transi-
' tion studied in Ref. 35. Despite the fact that our end of con-
= 0 tinuation is correlated with the equipotential lines’ profile of
T4 the numerical PN barriers, and the phase portrait transition is
' also related to their sudden growth, no clear connedtien
-0.08 tween transition and end of continuatjaran be established.
042 The end of continuation is itself sensibly interpreted as a
: : : numerical consequence of the sudden increases of the ampli-
@ 03 4079 ;‘(l H:£2 1.3 tude background, and does not imply neccesarily the exis-

tence of any global phase portrait transition.

However, in some respects the perturbative collective
variable theory is clearly incomplete: For example, it is un-
able to predict the observed localizezmbre) instability bifur-
cation and the observed symmetry breaking transitions for
v<<0. These bifurcations could easily appear in a theory with
(at least two variables(a dimej experiencing the Peierls—
Nabarro potential, which would demand an improved pertur-
bative ansatz. This improved ansatz must coincide in the
integrable limit with the A-L solution. One can use the nu-
merical results to guide the construction of such an improved
ansatz. In this respect, the following observation may be rel-
evant. The paramete®# of the A-L solution determines both
the amplitude and the width of the localized pulse. However,
our numerical estimates of these breather characteristics for
... immobile breathers show clearly that, for fixed valueagf
0 500 1000 1500 the breather width is independent af while the amplitude

varies with it. In other words, away from integrability, width
time and amplitude of thgimmobile) breather are no longer a
single collective variable.
Beyond any other limitation of the perturbative collec-
tive variable theory, the backgrouian indispensable part of
m the exact solutionis absent in the perturbative ansatz, and it
cannot appear later in that context. A complete theory of
(b) 0.25  0.50 0.75  1.00 1.25 (nonlinear Schrodinggbreather motion should somehow in-
corporate the background in the ansatz itself. If correct, it
exact(s)-oscillating breather for different values of 0.05, 0.06,.., 0.18. should then.prEdICt the.lt the bgpkground amp“tUd.e grows
The internal frequency is,=3.086. The amplitude of the oscillation &f from zero with the nonintegrability parametey and (ide-
increases withw, revealing the nonlinear character of the motion for the ally) so on with all the numerically observed behaviors. One
highest values of. (b) Density plot of the time evolution ofb,|? for the ~ possible way to develop the analytical approach could be to
above oscillating breather. use the method presented in Ref. 41. In this schemeZ8y.
may play an important role, for it provides the energy bal-
ance governing the translational motion of the breather core.
In other words, our results show that the core energy is not

the existence of a background in the exact OSCIIIatmgan invariant of motion and this requires the existence of a

breather solutions and its behavior with the amplitude of the%. . : ) .
o . : . inely tuned background whose nonlinear interaction with the
breather oscillations are fully consistent with the interpreta-

tion of the results obtained for the mobile solutions. core compensates the core energy va_lrlatlon_s. we h_opg that
the numerical work presented here will provide motivation

for further analytical research.

44 .00

42.00

site

40.00

38.00

36.00

FIG. 17. (Color onling. (a) Evolution of the localization centex, of an

D. Validity and limitations of particle perspective V. CONCLUSIONS AND PROSPECTIVE REMARKS

The most basic result of the perturbative collective vari- ~ We have studied numerically the problem of mobility of
able theories away from the integrable regime is the exisnonlinear localized solutions of the one-dimensional nonlin-
tence of a Peierls—Nabarro potential function of the coresar Schrddinger latticg7) using a regularized Newton
(collective variablg center. It expressegin particlelike  method. This method allows us to continue the family of
termg that the breather position is no longer indifferent be-mobile Ablowitz—Ladik discrete breathers into the noninte-
cause the continuous translational invariance has been brgrable domain of model parameters. We find that these solu-
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tions decay asymptotically, in space, to an excited latticencomplete, because core energy is not an invariant of mo-
extended statéthe backgroung whose amplitude vanishes tion. Any sensible improved approach must adopt(#§) as

at the integrable Ablowitz—Ladik limit. This component of a starting point for improved perturbative ansatze, and we
the solution is unambiguously found to be a linear combinahope that our work will stimulate further studies along these
tion of nonlinear resonant plane waves whose amplitudebnes.

decay typically, ink-space, exponentially. The exponentially There are, at very different levels, several open questions
localized oscillation(the coreg of the amplitude probability to further research. From a technical point of view, it is im-

rides over this extended radiation state: portant to analyze carefully the irrational limi/g— o of
o . the solutions. In particular, in this limit the number of reso-
D = Dpyret Ppackg (48)  nant plane wave branches tends to a continuum and one

Numerically exact moving discrete breathers with an in-CPUId (or nop expect' tha.t expon.enFiaI Iopalization in the re-
finitely extended tail of small amplitude were already c)b_C|procaI lattice persists in that limit. This can be addressed

served in some cases for Klein—Gordon lattices with Mors@umerically, though systematic investigations may require

potential by Cretegny and Aubf;however no investigation some efforts in optimizing the time efficiency of current nu-

of the background of these exact solutions is reported, sB“e“Cﬁ' schemes.

they were able only to.".suggest that generally a strictly An important ISsue regarding apphcau_ons IS the_ phe-
localized breather cannot propagate without radiating en[1omenology of multibreather states. In particular, studies on

ergy.” Our systematic study of the NLS lattice allows us tocoII|S|0ns of a pair of breathers may find in this study of

go further by showing that the extended backgrodnere exact mobility a useful reference in order to deal with the
fully characterize@iplays an important and subtle role in the complexities that emerge from the many time-length scales

translational motion of the localized core. Indeed, it is an'nVOIVed in these physically relevant phenomena. Much sim-

indispensable part of the exact solution in the nonintegrabl@!{e: multlbre?tr:jer sta_tes,be.g.t,htralnllke I((:jhallns(rln)fod_er- i
regime. Exact mobile localization only exists over finelyaey) separated moving breathers, could aiso be Investi-

tuned extended states of the nonlinear lattice. Mobile “pure’gated' At least, Fhe perspecnve_ and results presented _here
(i.e., rest state backgrouptbcalization must be regarded as may be of some interest to studies of the effects of coupling
very, exceptiona?z to (nonthermal and/or thermyadadiation baths in the breather
The high nu.merical accuracy of the method allows aand multibreather states of nonlinear lattieand the prac-
precise Floquet stability analysis of the moving discretetical mani.pulagon and patterning of localized *hot spots” by
breather solutions. The Floquet analysis reveals the type ngternal fields:
instabilities(both localized and extendgdventually experi-
enced by the two-parameter family of moving breathersACKNOWLEDGMENTS
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