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Abstract

We study the structure and stability of discrete breathers (both pinned and mobile) in two-dimensional nonlinear anisotropic Schrödinger
lattices. Starting from a set of identical one-dimensional systems we develop the continuation of the localized pulses from the weakly coupled
regime (strongly anisotropic) to the homogeneous one (isotropic). Mobile discrete breathers are seen to be a superposition of a localized mobile
core and an extended background of two-dimensional nonlinear plane waves. This structure is in agreement with previous results on one-
dimensional breather mobility. The study of the stability of both pinned and mobile solutions is performed using standard Floquet analysis.
Regimes of quasi-collapse are found for both types of solutions, while another kind of instability (responsible for the discrete breather fission) is
found for mobile solutions. The development of such instabilities is studied, examining typical trajectories on the unstable nonlinear manifold.
Published by Elsevier B.V.
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1. Introduction

We present a numerical study of exact breather dynamics
in two-dimensional nonlinear Schrödinger lattices. This issue
fits well with the enduring scientific interests of Serge Aubry
in the many faceted subject of localization and transport
in nonlinear macroscopic discrete systems, where Serge’s
outstanding contributions are widely recognized. Many ideas
and lines of study followed in the investigation reported here
have found a source of inspiration in the early works of
Aubry and collaborators, among which the doctoral works of
Th. Cretegny and J.L. Marı́n deserve special mention.

The existence and properties of localized solutions in
extended discrete systems have attracted interest in a broad
range of physical fields [1]. Discrete breathers, sometimes
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referred to as intrinsic localized modes, are spatially localized
and time periodic solutions. These solutions arise in the context
of nonlinear discrete systems and are of fundamental interest
for varied physical applications such as pulse propagation in
nonlinear optics, energy storing and transport in biomolecules,
plasma physics, etc. The existence of discrete breathers in
these systems has been proven rigorously [2] for a number of
equations with physical relevance and, contrary to continuous
nonlinear equations, their existence can be regarded as a generic
feature of these systems. One of the most important classes
of equations are the so-called discrete nonlinear Schrödinger
lattices [3,4]. The existence of discrete breathers has been
proven for a wide range of systems belonging to this class
of nonlinear difference-differential equations. In particular, the
most important example of wide applicability is the standard
nonlinear Schrödinger equation. For instance, this equation was
employed in [5–7] for describing the propagation of localized
beams in an array of nonlinear (Kerr type) waveguides, having
experimental validation subsequently reported in [8,9].
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The study of two-dimensional nonlinear Schrödinger lattices
has attracted much attention [10,11] in recent years due to
the new phenomena emerging when the dimensionality of the
lattice is increased. Some examples of these new features
are the existence of vortex-breathers [12] which support
energy flux, the appearance of an energy threshold for the
creation of discrete breathers [13–17] and the ubiquity of
an instability (the quasi-collapse) of some discrete breather
solutions leading to a highly localized pulson state [18–
23]. These theoretical efforts have their counterpart in recent
advances in the field of nonlinear optics. The studies of
two-dimensional arrays of coupled nonlinear waveguides
allow the experimental observation of those effects to be
studied theoretically. Specially relevant is the experimental
breakthrough (theoretically designed in [24]) by Fleisher
et al. [25,26], where a two-dimensional array of nonlinear
waveguides is induced in a photosensitive material. This
technique provides a clear experimental verification of the
two-dimensional discrete breather existence in this system.
In particular, besides the observation of standard discrete
breathers, these works reported the first observations of
staggered discrete breathers.

Our study here will focus on the computation of numerically
exact discrete breathers in two-dimensional anisotropic
nonlinear Schrödinger lattices, i.e. where the couplings in the
two spatial directions are different. The use of shooting methods
allows us to find these solutions and analyze their structural and
stability properties. Both pinned and mobile discrete breathers
are studied. In the latter case we will study only the ones whose
motion is along one axis of the lattice. The analysis of the
numerically exact solutions sheds light on some features of
the properties and stability of localized solutions reported in
previous works.

The plan of the paper is as follows. In Section 2 we provide
the technical background and details needed for self-contained
purposes. First we summarize in 2.1 the main conclusions on
the dynamics of 1D Schrödinger discrete breathers reported in
[27,28]. A detailed account of the numerical methods (SVD-
regularized Newton continuation of operator fixed points) that
we have used can be found in that reference. Also in 2.1, we
discuss briefly the most relevant formal differences with respect
to alternative approaches to (one-dimensional) exact mobility
of discrete breathers, e.g. those in Refs. [29] and [30,31].
In Section 2.2 we introduce the two-dimensional anisotropic
Salerno lattice and provide explanations on the implementation
of the numerical procedures used to study the dynamics of 2D
discrete breathers.

The analysis of the results of our numerics on pinned
discrete breathers for anisotropic nonlinear Schrödinger lattices
is reported in Section 3. We present the numerical computations
of the fixed point norm, as a function of three parameters:
breather frequency, transversal coupling, and nonlinearity
(see below). They show, as anticipated, the so-called quasi-
collapse transition, associated with the (well-known) existence
of thresholds for the breather norm in two-dimensional lattices.
We present numerically computed sectors of the bifurcation
surface. We conclude this section with a brief look at the
nonlinear dynamics on the unstable manifold, whose typical
trajectories have been called pulson states. Early numerical
work on the 2D quasi-collapse phenomena in isotropic lattices
was reported in [22,23] and [20]. A two-year-old account of the
“state of knowledge” on 2D Schrödinger lattices can be found
in Section six of [3].

In Section 4 we show results on a type of mobile breather,
namely those moving along the direction of stronger lattice
coupling constant. The structure of each of these mobile
exact discrete breathers is that of a localized moving core
superimposed on a specific extended state of resonant small
amplitude radiation, the background. We present here the
results of an extensive Floquet stability analysis of this type
of solution in two sectors of the three-dimensional parameter
space, which clearly show the existence of two different
transitions. The tangent space eigenvectors associated to each
of the transitions are presented, and the relation of the unstable
manifold trajectories to pulson states is analyzed afterwards.

We conclude with Section 5, where we briefly review the
results obtained and illustrate their possible implications for
mobility of 2D discrete breathers.

2. Numerical continuation and preliminary results

The use of numerical tools for the continuation of discrete
breather solutions has been widely employed since their
existence proof was reported (see e.g. [32,33]). In particular,
the design of numerical techniques for finding exact mobile
breathers based on those employed for the pinned ones has
been explored in recent years [27,28,34–36] and paves the
way to resolving the still open question about discrete breather
mobility. Here, after reviewing the most important features
of 1D mobile breathers in nonlinear Schrödinger lattices, we
briefly explain how the continuation method is implemented in
our system.

2.1. Mobility of one-dimensional nonlinear Schrödinger
discrete breathers

As was introduced in Section 1, exact mobility of discrete
breathers in 1D Schrödinger nonlinear lattices was numerically
studied by the authors in previous works [27,28]. In particular,
a numerical continuation from the integrable Ablowitz–Ladik
lattice, A–L (where exact mobile breathers can be calculated
analytically [37]),

iΦ̇n = −(Φn+1 + Φn−1)
[
1 +

γ

2
|Φn|

2
]
, (1)

to the standard discrete nonlinear Schrödinger equation,
DNLS,

iΦ̇n = −(Φn+1 + Φn−1) − γ |Φn|
2Φn, (2)

was performed within the so-called Salerno model [38],

iΦ̇n = −(Φn+1 + Φn−1)[1 + µ|Φn|
2
] − 2νΦn|Φn|

2, (3)

where γ , µ and ν are the parameters accounting for the strength
of the nonlinear terms. The above equation includes the former
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two relevant equations (1) and (2), for (µ = γ /2, ν = 0)
and (µ = 0, ν = γ /2) respectively, providing the desired
interpolation needed to develop the continuation scheme. The
integrability of Eq. (1) provides for γ > 0 a two-parametric
family of discrete breathers

Φn(t) =

√
2
γ

sinh β sech[β(n − x(t))] exp[i(α(n − x(t))

−Ω(t))], (4)

where the two parameters α ∈ [−π : π ] and β > 0 describe
the velocity and internal frequency of the solution

vb = ẋ = 2 sinh β sin α/β, (5)

ωb = Ω̇ = 2 cosh β cos α + αvb. (6)

The Salerno lattice (3) possesses two dynamical invariants,
namely the Hamiltonian,

H = −

∑
n

(ΦnΦn+1 + ΦnΦn+1) − 2
ν

µ

∑
n

|Φn|
2

+ 2
ν

µ2

∑
n

ln(1 + µ|Φn|
2), (7)

where Φn denotes the complex conjugate of Φn , and the norm

N =
1
µ

∑
n

ln(1 + µ|Φn|
2). (8)

In order to find exact mobile discrete breathers in the Salerno
model we define a (p, q)-resonant solution Φn(t) referred to
some time scale τ such that

Φn(t0) = Φn+p(t0 + qτ). (9)

Within the above definition, a mobile breather that translates p
sites after q periods of the internal oscillation will satisfy Eq.
(9) when τ = Tb. In this sense, the continuation focuses on the
families of (p, q)-resonant discrete breathers, that is breather
solutions with the two characteristic time scales (corresponding
to the breather velocity, vb, and the internal frequency, ωb)
being commensurate. In all the computations we have used
finite lattices with periodic boundary conditions (PBC) so that
ΦN+1 = Φ1 and Φ0 = ΦN (with N being the lattice size).

In the previous works [27,28] the authors start from those
A–L solutions which are (p, q)-resonant and discretize (fine
grid) the path µ+ν = 1 (with µ and ν being positive) along the
Salerno model, and go through it computing the corresponding
(p, q)-resonant solutions for the pairs (µ, ν). We can choose the
path without loss of generality because of the scaling property
of Eq. (3). Then, each solution is numerically computed as a
fixed point of the map

M = L pT q
(ωb,ν), (10)

where L is the lattice translation operator L({Φn(t0)}) =

{Φn+1(t0)}, and T(ωb,ν) is the Tb-evolution map (Tb =

2π/ωb) following the dynamics dictated by Eq. (3) for the
corresponding value of ν (µ = 1 − ν); i.e., T(ωb,ν)[{Φn(t0)}] =

{Φn(t0 + Tb)}.
The continuation was then performed for a fine grid of
frequencies belonging to the family of (p = 1, q = 1)-
resonant discrete breathers. The most important conclusion
about discrete breathers in these nonlinear Schrödinger lattices
is that mobility in the non-integrable regime (ν 6= 1) demands
the presence of an extended background to which the fixed
point solution is spatially asymptotic (n → ∞), i.e. the solution
is exactly written as

Φn(t) = Φcore
n (t) + Φbckg

n (t). (11)

This expression defines the purely localized component
Φcore

n (t) of the solution. The background is a finite

linear combination of nonlinear plane waves, Φbckg
n (t) =∑s

j=1 A j exp[i(k j n − ω(k j , A j )t)]. These plane waves are
exact solutions of the Salerno model (3) being the nonlinear
dispersion relation ω(k j , A j ) = −2[1 + µ|A j |

2
] cos k j −

2ν|A j |
2. The results concerning the characterization of the

background are discussed in detail in [27,28], here we briefly
summarize the most important features:

(i) The set of “s” plane waves which take part in the
background of a (p, q)-resonant discrete breather with
internal frequency ωb is derived by the simple selection
rule for the wavenumbers k j

ω(k j , A j )

ωb
=

1
q

( p

2π
k j − m

)
, (12)

i.e. only the plane waves which are (p, q)-resonant with
the internal period of the breather can be components of
{Φbckg

n (t)}. The number of solutions of (12) fixes “s”.
(ii) The amplitudes {A j } of the nonlinear plane waves differ

by orders of magnitude.
(iii) There exists a strong positive correlation between the

amplitude of the background and the strength of the
Peierls–Nabarro barrier arising from the periodic lattice.
This correlation is particularly clear when symmetry
breaking transitions occur for the also studied case of
ν < 0 and µ > 0 (see Ref. [28]), and reflects the
link between non-integrability and the existence of the
background dressing of the mobile core.

(iv) Finally, the interpretation of the correlation described in
(iii) is reinforced from a study of the energy evolution of
the mobile core: there is an energy balance brought by
the background when the core moves along the lattice. In
particular, it can be observed how the core energy oscillates
periodically so that it takes the maximum energy value
when the core visits the inter-site configuration. This extra
energy periodically obtained by the core is provided by the
background, with the energy maximum clearly related to
the background amplitude.

Before concluding this subsection, it is worth commenting
on some of the differences between the Newton continuation
of fixed points that we use in this paper, and other important
recent approaches to breather numerics. The work by Ablowitz
et al. [29] uses discrete Fourier analysis to obtain a nonlinear
nonlocal integral equation, from where the “... soliton is thus
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viewed as a fixed point of a nonlinear functional” (sic) in
the Fourier transformed space of functions. Following these
authors, their results seem to differ from those of the early
pioneering work [39] (nowadays textbook material [1]) “in
which a continuous travelling solitary waves were reported
using Fourier series expansions with finite period L while
assuming convergence as L → ∞” (sic). Ablowitz et al. term
continuous a solution that can be defined off the lattice points,
which they see as “necessary when discussing travelling waves
in lattices” (sic), and disagree with some conclusions reported
in the earlier works.

The (“orthodoxy matters”) discussion above helps us to
clarify how differently our numerical approaches “see” the
discrete Schrödinger breather problem: The very concept of
a variable defined off the lattice points is intrinsically alien
to our discrete approach, which neither needs it nor excludes
its eventual consideration. In contrast to those views (but
not at all in logical opposition), we consistently view the
thermodynamical limit (N → ∞) in lattice space, much in
the sense used e.g. by Serge Aubry in his celebrated work on
the Frenkel–Kontorova ground state problem [40]: The infinite
size limit is built up from a subsequence of PBC (finite) lattices
for which the limit is well defined. This will make the Fourier-
transformed k-space continuum.

Closer to our approach in some respects, though technically
different in many others, is the formal approach purposed
recently by James and collaborators [30,31]. This approach,
which uses recent central manifold theorems, was brought to
our attention very recently and unfortunately, we have to defer
to a future publication a comparison of our 1D computations
with theirs; this is beyond the scope of this paper, namely, the
anisotropic 2D Schrödinger lattices, which we introduce in the
next subsection.

2.2. Two-dimensional anisotropic lattices

Motivated by the method described above, we can extend the
continuation scheme for calculating exact discrete breathers in
higher dimensional systems. In particular we focus on the two-
dimensional nonlinear Schrödinger lattice

iΦ̇nm = −C1(Φn+1,m + Φn−1,m)(1 + µ|Φn,m |
2)

− C2(Φn,m+1 + Φn,m−1)(1 + µ|Φn,m |
2)

− 2νΦn,m |Φn,m |
2. (13)

This lattice can be viewed as the two-dimensional Salerno
model. The two coupling parameters C1 and C2 provide a
technical advantage for numerics (see below), but they are
also introduced for theoretical and experimental interest. The
possibility of controlling the ratio between the two linear
couplings of the two transversal directions has been studied
in various works as a way of analyzing how the intrinsic 2D
phenomena (such as the quasi-collapse) emerge. In fact, for
C1 << C2, µ = 0 and ν = γ /2 Eq. (13) describes a
set of weakly coupled nonlinear waveguide arrays and can be
considered as a case of “intermediate dimensionality”. This
extreme has been studied experimentally in [41] and using
perturbative methods in [42]. On the other hand, this equation
incorporates, as two particular limits, the physically relevant
standard two-dimensional DNLS equation (µ = 0, ν = γ /2)
and the two-dimensional A–L lattice (µ = γ /2, ν = 0).
The continuation between these two limits provides a useful
tool for studying the interplay between the on-site and inter-
site nonlinearity in the 2D anisotropic lattice. Moreover, the
anisotropy (or freedom in the values of the coupling parameters
C1 and C2) allows us to include an integrable model among the
members of the family of nonlinear lattices described by (13).
That is, for ν = 0, Ci = 0 and C j 6= 0 one obtains a set of
integrable A–L chains. In this way, every 2D model included
in (13) is connected with an integrable model where analytic
discrete breathers are available. In what follows we set γ = 2
and ν = 1 − µ with ν > 0 and µ > 0.

The dynamics (13) can be derived from the Salerno Poisson
structure

{A,B} =

∑
n,m

(
∂A

∂Φn,m

∂B
∂Φn,m

−
∂A

∂Φn,m

∂B
∂Φn,m

)
·

(
1 + µ|Φn,m |

2
)

, (14)

with the Hamiltonian

H = −C1

∑
n,m

(
Φn,mΦn+1,m + Φn+1,mΦn,m

)
− C2

∑
n,m

(
Φn,mΦn,m+1 + Φn,m+1Φn,m

)
−

2ν

µ

∑
n,m

|Φn,m |
2
+

2ν

µ2

∑
n,m

ln
(

1 + µ|Φn,m |
2
)

. (15)

As in the 1D Salerno model there is also a second conserved
quantity, the norm, due to the phase invariance of the equations
of motion (13)

N =
1
µ

∑
n,m

ln
(

1 + µ|Φn,m |
2
)

. (16)

In the same manner as in the 1D case we will focus on
a special set of 2D discrete breathers. For this, we have to
generalize the definition (9) of a resonant solution in the two-
dimensional case. In this context discrete breathers solutions
are characterized by three time scales. Namely, one associated
with the internal oscillation ωb and the other two derived
from the translation of the localization center, i.e. its velocity
Evb = (vx , vy). The subset of 3-tuples (ωb, Evb) that fulfils the
(px , py, q)-resonance condition

vx
2π

ωb
=

px

q
(17)

vy
2π

ωb
=

py

q
, (18)

(where px , py and q are integers) denotes the breather solution
that can be obtained with our continuation method. These
solutions are those that after q periods of the internal frequency,
Φ̂(t0 + qTb), translates px and py lattice sites in the x and y
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Fig. 1. Wavenumbers, Ek = (kx , ky), of the (1, 0, 1) (a) and (1, 1, 1) (b) resonant plane waves for m = 0 (see Eq. (25)). Different values of C2, while C1 is fixed
(C1 = 1), are shown. The reference time scale for the resonance is set to τ = 2.4315 (ω = 2.584).
direction of the square lattice, respectively, i.e.

Φ̂n,m(t0) = Φ̂n+px ,m+py (t0 + qTb), (19)

where again PBC are applied ΦNx +1,m = Φ1,m , Φ0,m = ΦNx ,m ,
Φn,Ny+1 = Φn,1 and Φn,0 = Φn,Ny (with Nx and Ny being the
lattice size in the x and y direction respectively). Consequently,
a (px , py, q)-resonant state will be a solution of the following
set of equations

F(px ,py ,q,ωb,ν,C1,C2)[{Φ̂n,m(t0)}]

= L
py
y L px

x T q
(ωb,ν,C1,C2)

[{Φ̂n,m(t0)}] = {Φ̂n,m(t)}, (20)

where the operators L i are the lattice translation in the i-
direction,

Lx [{Φn,m(t0)}] = {Φn+1,m(t0)}, (21)

L y[{Φn,m(t0)}] = {Φn,m+1(t0)}. (22)

Besides, T(ωb,ν,C1,C2) is the time evolution operator given by
Eq. (13) over one period Tb = 2π/ωb,

T(ωb,ν,C1,C2)[{Φn,m(t0)}] = {Φn,m(t0 + Tb)}. (23)

In order to illustrate the 2D time scale resonance we consider
the plane wave solutions of Eq. (13): Φn,m(t) = A exp[i(kx n +

kym − ωt)]. These solutions possess the following nonlinear
dispersion relation

ω(Ek, A) = 2(C1 cos kx + C2 cos ky)(1 + µA2) − 2ν A2. (24)

Hence, we can obtain the subset of plane waves which are
(px , py, q)-resonant with some time scale τ (i.e. after a time
qτ they have translated px and py sites in the x and y direction,
respectively). Each member of these subsets will be labelled by
the pair Ek = (kx , ky) and from the condition (20) it follows that
the corresponding set of values of Ek for each family will satisfy
the relation

ω(Ek, A) =
1

qτ

(
Ep · Ek −

m

2π

)
, (25)

where m is an integer and Ep = (px , py). In Fig. 1 the corre-
sponding values of Ek are represented for two resonances of the
type (px = 1, py = 0, q = 1) and (px = 1, py = 1, q = 1).
The method used for solving Eq. (20) for each resonant
3-tuple (ωb, Evb) is the same as in the 1D case, which is
extensively described in [28]. The implicit function theorem
assures that a fixed point solution of a map (20) given by
Eξ = (px , py, q, ωb, ν, C1, C2) can be obtained provided that
(i) the Jacobian of the operator FEξ [{Φn,m(t0)}] − I is invertible
and (ii) we know a fixed point of a map corresponding
to an infinitesimally close set of parameters, Eξ − δEξ =

(px , py, q, ωb − δωb, ν − δν, C1 − δC1, C2 − δC2). The first
demand can be satisfied using a singular value decomposition
(SVD) [43–45] of the Jacobian in order to obtain the pseudo-
inverse operator. On the other hand, when the second condition
is fulfilled convergence of the Newton–Raphson iterative
scheme is guaranteed. For this, we start with a sufficiently good
trial solution, {Φ0

n,m(t0)} and solve the equation

{δΦ0
n,m(t0)} = −DFEξ [{Φ

0
n,m(t0)}]

−1
· FEξ [{Φ

0
n,m(t0)}], (26)

in order to obtain {Φ1
n,m(t0)} = {Φ0

n,m(t0)} + {δΦ0
n,m(t0)}. We

iterate this calculation to the desired convergence, and then the
solution {Φ̂n,m(t0)}, is obtained. In our numerics this is the case
when

FEξ [{Φ
i
n,m(t0)}] < N · 10−16, (27)

(where N is the total number of sites in the square lattice)
is fulfilled. Once the solution is found we use it as the
following trial solution, {Φ0

n,m(t0)}, for solving the map (20)
corresponding to the next set of parameters Eξ ′

= Eξ + δEξ .
As an additional benefit, this method provides the linear

stability of the computed solution. For this, we only have
to compute the eigenvalues of the Jacobian of the operator
around the solution DFEξ [{Φ̂n,m(t0)}]. In fact, this Jacobian is
the extended Floquet matrix of the solution. Then, a solution
is linearly stable if all the eigenvalues of the corresponding
Floquet matrix are inside the unit circle. Moreover, the
symplectic character of the dynamics (13) implies that all the
eigenvalues appear in quadruplets (λ, λ, 1/λ, 1/λ) and thus
for a linearly stable solution all the eigenvalues of its extended
Floquet matrix lie on the unit circle.

There are two possible paths for developing the continuation
method depending on the choice of the starting point of the



36 J. Gómez-Gardeñes et al. / Physica D 216 (2006) 31–43
continuation. One possibility is to start from the full anti-
continuum limit, C1 = C2 = 0, where a pinned breather
solution of frequency ωb is written as

Φ̂n,m(t) = δn,n0δm,m0

√
ωb

2ν
exp(iωbt). (28)

Starting from the above solution, we can perform the
continuation increasing the parameters C1 and C2 as usual, and
so obtain the whole family of (px = 0, py = 0, q = 1)-
resonant discrete breathers. An alternative path starts from the
one-dimensional limit, C2 = 0. The choice of this second
limit (which implies taking as the very initial trial solution
of the continuation the whole set of 1D solutions described
in Section 2.1) is justified when seeking mobile solutions.
As stated above, this limit offers the possibility of studying
strongly anisotropic lattices as a controlled interpolating
situation between one and two dimensions. On the other hand,
employing this strategy we can only obtain those solutions
which are (px = p, py = 0, q)-resonant, i.e. the two-
dimensional continuation of those one-dimensional (p = px ,

q)-resonant discrete breathers. Hence, the solution from which
we start is

Φ̂n,m(t) = δm,m0Φ̂
1D
n (t), (29)

where Φ̂1D
n (t) is the corresponding (p = px , q)-resonant one-

dimensional solution.
In what follows we will employ both continuation paths

when we study the case of pinned breathers (Section 3), and
we will show that the results obtained are the same when
approaching the same limit (the standard two-dimensional
DNLS).

3. Two-dimensional pinned discrete breathers

As we have discussed, we can choose two different starting
points for the continuation of (0, 0, 1)-resonant fixed points
(pinned breathers) of Eq. (20): (i) the full anti-continuum (AC)
limit (C1 = C2 = 0), or (ii) the (one-dimensional, 1D) limit
of uncoupled chains (C1 6= 0, C2 = 0), where they can
be obtained from continuation along increasing values of the
parameter ν from the 1D A–L lattice (1). As a test for our codes,
we have checked that both paths arrive at the same solution. In
fact, unique continuations can proceed along any path on the
plane of parameters (C2, ν) that we have explored.

Early works [18–20] on the isotropic two-dimensional
standard DNLS equation analyzed the so-called quasi-collapse
instability of pinned discrete breathers, i.e. the condensation
of all the energy into a few modes in discrete nonlinear
systems, which corresponds to the onset of a singularity
(wave collapse) [21] in multidimensional continuum models.
Subsequent numerical works [22] extended these studies to the
isotropic 2D Salerno lattice and addressed the question of how
the instability is affected by the presence of impurity lattice
sites.

As expected, our results further corroborate the existence of
quasi-collapse instabilities in the anisotropic case. The phase
diagram in parameter space (ωb, C2, ν) consists of two regions
Fig. 2. Evolution of the threshold value of the coupling parameter, C th
2 , as a

function of the frequency, ωb , for two different continuation starts. The values
of C th

2 limit the region where pinned discrete breathers are linearly stable

(unstable for C2 > C th
2 ). The instability yields a hyper-localized state (quasi-

collapse). The continuation from the fully uncoupled limit (C1 = C2 = 0)
(filled circles) is performed using the path C1 = C2. For the continuation (bold
circles) from the 1-dimensional limit (C1 = 1, C2 = 0) the coupling in the new
direction C2 is progressively increased.

(stable and unstable) separated by the surface of transition. As
we perform the continuation of breather solutions across the
parameter space we scan the Floquet stability of the computed
solution. In Fig. 2 we present the two stability transition curves
in the plane (ωb, C2, ν = 1), i.e. the function C th

2 (ωb),
corresponding to the two different continuation starts. The
continuation from the AC limit is made through the path C1 =

C2 and the one from the 1D limit is made at C1 = 1. The
convergence of the two paths at C2 = 1 is clearly seen.

The criterion for stability of the pinned discrete breather
solution derived in [19,20],(

∂N
∂ωb

)
C2,ν

> 0, (30)

is of a very general character and our numerics illustrate
it clearly. On the other hand, the Floquet stability analysis
detects the dimensionality (and a basis in tangent space) of
the unstable linear manifold associated with the quasi-collapse
instability that these exact discrete breathers experience for
some parameter values. We have computed numerically, for
a fine grid of ωb values and a coarser grid of C2 and ν, the
function N (ωb, C2, ν), from which we show some sectors in
Figs. 3 and 4.

In Fig. 3 we show the numerically computed norm (16)
as a function of the breather frequency N (ωb), for three
different values of the transversal coupling C2, and a fixed
value of ν = 1 (anisotropic DNLS limit). We observe the
existence of a minimum value, minN (ωb) = N th

6= 0,
which is thus seen as an excitation threshold for the creation
of these solutions. The position of the minimum ωth

b (C2),
which naturally increases with C2, separates the stable and
unstable branches of pinned breathers. Breathers corresponding
to values of ωb whereN (ωb) has a negative slope are unstable.
This is shown in the insets, where the Floquet spectra of
two representative examples of pinned discrete Schrödinger
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Fig. 3. (a) Plot of the norm, N , of the computed solutions as a function of their frequency ωb for different values of the coupling parameters. The continuations
have been made starting from the 1-dimensional limit (C1 = 1). For the regions where ∂N /∂ωb is positive (negative) the continued solutions are stable (unstable).
We can monitor the change of the linear stability of a solution of a given frequency during its continuation in C2 looking at the Floquet spectra. Figures (b) and (c)
show the Floquet spectra of a discrete breather of frequency ωb = 3.93 at C1 = 1, C2 = 0.7 (where ∂N /∂ωb < 0) and at C1 = 1, C2 = 0.2 (where ∂N /∂ωb > 0),
respectively.
Fig. 4. Surface N (ωb, ν) for the case C2 = 0.5. The inset shows the curve
ν(ωb) corresponding to ∂N /∂ωb = 0. This curve gives the transition points
where the discrete breather changes its stability character.

breathers are plotted in the complex plane. Note that the high
accuracy of the numerical solution allows an unprecedented
detailed Floquet analysis of the instability, paving the way
to rigorous analytical characterizations of the quasi-collapse
unstable manifold. This is a 1-dimensional manifold, as our
numerical results unambiguously confirm. Then, in the regime
of small time scales, the unstable manifold is fully characterized
by a single Floquet eigenvector.

Fig. 4 shows the (surface) functionN (ωb, ν) for the volume
sector of constant C2(=0.5). Most noticeably, the critical
(threshold) line of bifurcation points ( ∂N

∂ωb
= 0), as seen

in the inset, does not define a monotone function ωth
b (ν). In

fact, in the whole interval of 0 ≤ ν ≤ 1 values, the range
of values of ωth

b is quite short, indicating the insensitivity
of the gross features of the quasi-collapse transition to the
value of ν. However, considering finer details, one sees that
the threshold curve ωth

b (ν) smoothly reaches its slightly larger
values around midway between the DNLS and the A–L
limits. In other words, intermediate values of the interpolating
(Salerno) parameter ν somewhat favour the enhancement of
the quasi-collapse unstable region. These conclusions are in
contrast with the stated conclusion (for isotropic lattices) in [22]
that the Ablowitz–Ladik term increases the stability regime.

When instability is allowed to develop beyond the fixed
point tangent space into the nonlinear realm of perturbations,
the trajectory obtained by direct integration of the equations of
motion invariably ends after a transient (of time scale given
by the real Floquet exponent larger than 1) in a localized
solution with complex dynamics, the pulson states. These states
were characterized in [3] in the following terms “. . . where
the peak intensity |Φm,n|

2 oscillates between the central site
and its four nearest neighbours. . . it is not known whether
these pulson states represent true quasiperiodic solutions to the
DNLS equation”. What makes these trajectories on the unstable
nonlinear quasi-collapse manifold of much practical relevance
and interest is their ubiquity. They appear as persistent localized
states in the Hamiltonian dynamical evolution from a wide
variety of initial conditions. Their description requires at least
two frequencies, namely the internal (genuine breather-like
frequency) and the frequency of the oscillations of the breather
width around a mean width value, which turns out to be
less than the width of the unstable exact discrete breather.
Second and outer shells of neighbours (in both lattice axes) also
participate in the width oscillations.

Though a more detailed characterization of the pulson
states will be presented elsewhere, it is illustrative to consider
(Fig. 5) the power spectrum of the field at the central site of
a typical trajectory on the unstable nonlinear manifold of a
quasi-collapsing pinned discrete breather. This shows peaks at
the combinations ω∗

b + jωqc ( j = 0, ±1, ±2...), where ωqc
is the frequency of the width oscillations characterizing the
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Fig. 5. (a) Time evolution of the amplitude |Φn,m | for the localization center (n = 11, m = 0) and two adjacent sites (n = 10, m = 0) and (n = 11, m = 1).
Each amplitude is normalized to its initial value, so that it can be seen how the quasi-collapse instability is developed. The parameters of equation (13) are C1 = 1,
C2 = 0.5, ν = 1.0 (µ = 0) and the frequency of the pinned breather is ωb = 3.50. When the instability is fully developed, we analyze the final state by means
of the power spectrum S(ω) of the time evolution of R

[
Φ10,0(t)

]
(the real part of the localization center). As can be observed in (b) the internal frequency of the

breather (highest peak in the spectrum) shifts to a higher value (ω∗
b = 4.03) and the other peaks are located at the frequencies of the harmonics resulting from the

combination of the internal frequency with the frequency (ωqc = 0.78) associated with the amplitude |Φn,m | oscillations shown in (a).
pulson state, while ω∗

b > ωb is a frequency higher than the
(initial condition) fixed point frequency ωb. The new frequency
ω∗

b turns out to be very close to the breather frequency of
the same (initial) norm on the stable branch. In other words,
the instability drives a shift of breathing frequency towards
the stable branch, while the excess energy is transferred to
the oscillatory motion of the observable width. This behavior
seems to be the essence of the physical characterization of the
nonlinear quasi-collapse manifold dynamics.

The numerical observation of a two-frequency power
spectrum for a typical pulson state points towards an eventual
positive answer to the question (on true quasiperiodicity) raised
in [3], though, for more details we have to refer to the Ph.D.
Dissertation [46]. This point serves to illustrate how the high
accuracy of the fixed point numerical solution provides detailed
clues on many still unsolved (from a mathematical and physical
point of view) questions on two-dimensional Schrödinger
localization, which are of prospective experimental interest in
nonlinear (photonic, Josephson,. . . ) physics technologies.

4. Breathers moving along the strong coupling direction

Early and current attempts to explore straightaway discrete
breather mobility in isotropic 2D Schrödinger lattices seem to
agree [47] that “kicking” procedures meet huge difficulties in
delivering good mobile solutions, contrary to the numerical
experiences in 1D lattices. We note here that the formal
basis for those methods [48] takes advantage of the Floquet
spectra analysis of exact pinned breathers, where the so-
called depinning (symmetry-breaking) mode is identified.
This allows us, provided Peierls–Nabarro barriers are small
enough, to obtain nice numerical 1D mobile discrete breathers,
by computing trajectories from perturbations of the exact
pinned breather along the tangent space direction specified
by the depinning eigenvector. The presence of symmetry-
breaking instabilities leading to exchange of stability between
one-site and two-site centered pinned breathers [45,49] and
the associated lowering of the Peierls–Nabarro barriers to
breather displacements, hugely facilitates the success of these
procedures when applied to (both Hamiltonian and dissipative)
one-dimensional lattices [50–52].

In contrast, our “anisotropic lattice” continuation approach
takes advantage of the availability of exact 1D mobile solutions
by monitoring the parameter C2 of transversal coupling, and
then does not rely on how easily one promotes clean mobility
from pinned localization. In this way we obtain accurate
numerical (px , py = 0, q) fixed points, that is Schrödinger
discrete breathers moving along the strong coupling direction.
In a forthcoming paper we will address the (much more
difficult) question for arbitrary direction of motion.

4.1. Structure and stability of (1, 0, 1) fixed points

In Fig. 6 we visualize the instantaneous real and imaginary
components of the 2D discrete field profile of a typical
(1, 0, 1) Schrödinger breather. Its structure can be seen as the
natural extension to two-dimensional lattices of the structure
of mobile Schrödinger breathers analyzed in [27,28]. The
numerical solution is spatially asymptotic to a finely tuned
small-amplitude extended (delocalized) radiation state Φbckg

m,n (t)
when m, n → ∞. The fixed point solution can be thus
decomposed as

Φm,n(t) = Φcore
m,n (t) + Φbckg

m,n (t), (31)

which defines Φcore
m,n (t), the spatially localized component

of the solution. It turns out that the spatially delocalized
component is a highly localized state in the (continuum, in the
thermodynamic limit) k-space of wavevectors. More precisely,
Φbckg

m,n (t) is a finite linear combination of (1, 0, 1)-resonant
nonlinear (i.e. amplitude-dependent frequency ω) 2D plane
waves. It can be said that, as might be expected, 1D Schrödinger
breather mobility smoothly persists when (strong C1-coupling)
1D chains are coupled transversally. Importantly, the numerical
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Fig. 6. Real, (a) and (b), and imaginary, (c) and (d), of a mobile (1, 0, 1)-discrete breather of frequency ωb = 2.712. The parameters of equation (13) are C1 = 1,
C2 = 0.14 and ν = 0.95 (µ = 0.05). The insets in (a) and (c) show the background far from the moving core. It can be observed that the wavenumbers in the
transversal direction are ky = ±π/2. (b) and (d) show the contour plot for both real and imaginary parts.
continuation for increasing values of the transversal coupling
C2 proceeds far from the weak coupling regime into where the
genuine two-dimensional effects start to be manifested, as we
will see below.

Most noticeable, the SVD-regularized Newton procedure
invariably selects the values ky = ±π/2 for all values of C2 and
ν, and thus the values of kx for the 2D resonant plane wave are
independent of C2 (so it remains equal to the k values of the 1D
(1, 1) fixed point for the uncoupled chain). The appearance of
an extended background modulation in the transversal direction
of ky = ±π/2 appears naturally as the best choice to take
advantage of approximately 1D breather propagation along the
strong coupling direction, for it keeps the value of kx favoured
by the strong coupling C1 value. Any other value of ky would
entail a different kx value. Note however that this provides only
a plausibility argument for the interpretation of the numerical
observation (ky = ±π/2).

The high accuracy of the computed solutions allows a
detailed analysis of many issues concerning 2D Schrödinger
breather exact mobility along the strong coupling direction.
We leave aside in this paper many of them, and focus here
on how the existence of quasi-collapse instabilities of pinned
Schrödinger breathers, for increasing C2-coupling values,
influences the stability properties of moving (1, 0, 1) breathers.
In other words, we search here for genuine 2D effects on these
“strong-coupling-direction” (quasi-1D) moving breathers.
We have performed an exhaustive exploration of two sectors
of the parameter space (C2, ωb, ν), corresponding to the
breather frequency values ωb = 2.5843, and ωb = 2.712, by
computing the continued (1, 0, 1) fixed point. These values of
ωb were chosen low enough to allow the analysis of pinned
breather quasi-collapse effects on mobility, which occur at
relatively low values of C th

2 (ν) for these values of ω.
The Floquet analysis of the computed solutions provides

the stability diagrams represented in Fig. 7. Both show no
qualitative differences. There are two regions in the (C2, ν)
plane where the (1, 0, 1) mobile breather is linearly unstable.
The figures are not “schematic”: Every point of the plane in
a fine grid of values of C2 and ν has been analyzed, i.e.
the Floquet spectrum of the computed (1, 0, 1) fixed point is
scrutinized, as shown in Figs 7(b) and 7(d), where the modulus
of the Floquet eigenvalues is shown as a function of either ν

(Fig. 7(b)) or C2 (Fig. 7(d)).
The first unstable region appears at low values of C2 and

intermediate to high values of the Salerno parameter ν, i.e. it
does not occur close to the A–L limit. This unstable region
is also bounded above in the direction of C2. The variation
of the modulus of the unstable Floquet eigenvalue versus
the transversal coupling parameter C2 shows that the mobile
breather becomes stable again at larger values of C2, before
the second instability at even higher coupling takes place. An
important observation is that the pinned discrete breather of the
same frequency is linearly stable at the points in this unstable
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Fig. 7. Stability diagram and evolution of the modulus of the Floquet eigenvalues for two (1, 0, 1)-discrete breathers of frequencies ωb = 2.584 (a) and (b), and
ωb = 2.712 (c) and (d). The stability diagram (a) and (c) show two regions where the mobile DB becomes unstable. For low values of the coupling C2 there is a
subset of values of ν where the breather suffers from fission (see text and Figs 8(a) and 8(b). On the other hand for higher values of C2 there is a second region
(quasi-independent of ν) where the unstable breather yields a travelling quasi-collapsing state (see text and Figs 8(c) and 8(d)). The evolution of the modulus of the
Floquet eigenvalues along different paths ν = 0.50 (b) and C2 = 0.17, 0.16, 0.02 (c) is shown.
region for (1, 0, 1) mobile breathers. Thus this instability
cannot be ascribed to pinned quasi-collapse effects.

The second transition occurs for values of C2 close to, but
slightly higher than, the values C th

2 of the quasi-collapse of the
pinned breather of the same frequency. We had already seen in
the previous section that the quasi-collapse transition C th

2 (ν) is
only very weakly dependent on the value of ν, and note that the
same is true for this mobile breather bifurcation. These results
suggest that this second transition is related to quasi-collapsing
phenomena. Significantly, the stability of the (1, 0, 1) mobile
breather persists for a small interval of coupling values above
the pinned breather quasi-collapse. This should be regarded as
natural, for the mobile breather is a different solution. Note in
Fig. 7(b) that the modulus of the unstable Floquet eigenvalue,
in the interior of the unstable region, reaches much higher
values than those typical for the first type of instability, and
decreases for larger values of C2, before the breather solution
ceases to exist and only plane wave solutions are obtained by
our numerical method. Note that this behaviour of the unstable
Floquet eigenvalue also fits well to the main features of the
pinned quasi-collapse instability strength, as described by the
slope ∂N /∂ωb. From now on we will refer to this instability of
mobile breathers as the quasi-collapse instability.

In the next subsection we characterize both generic types of
instability, by looking at the details of the unstable manifold
associated with each type. As we will see, pulson states turn
out to play a role in the description of typical trajectories on the
unstable nonlinear manifolds.
4.2. Unstable manifold behaviour and ubiquity of pulson states

First, we analyze the quasi-collapse instability of (1, 0, 1)
mobile breathers. The unstable linear subspace in the tangent
space of the fixed point is one-dimensional. The typical
instantaneous profile of the (modulus) unstable Floquet
eigenvector driving the instability is shown in Fig. 8(d). It is an
exponentially localized 2D profile which decays asymptotically
to zero as m, n → ∞, i.e. it does not excite radiation.
These characteristics are shared by the quasi-collapse unstable
eigenvector of the pinned breathers, which further reinforce the
previous considerations leading us to consider this instability
as the mobile counterpart of the pinned quasi-collapse
transition.

In Fig. 8(c) we have visualized the time evolution of the field
modulus contour plot for a typical trajectory on the unstable
manifold. This is obtained by direct numerical integration of
the equations of motion, from an initial condition in which
a small perturbation along the quasi-collapse eigenvector has
been added to the unstable fixed point solution. One sees that
the breather translational motion slows down, and the energy is
transferred to width oscillations. These oscillations turn out to
be more irregular, see Fig. 9, than those observed in Section 3
when we inspected typical trajectories on the unstable nonlinear
manifold of pinned breathers.

The difference in the character of the width oscillations in
both (pinned and mobile) cases may be ascribed to the presence
of an extended background component in the mobile breather
solution, which naturally enters into the energy transfer taking
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Fig. 8. Time evolution of two unstable solutions, (a) and (c), of frequency ωb = 2.584 and the associated unstable Floquet eigenvector, (b) and (d) respectively.
Figures (a) and (c) show the time evolution of the contour lines corresponding to three different values of |Φn,m |, in order to visualize the 4-dimensional functions
|Φn,m |(t). Figures (a) and (b) shows the fission of the breather solution when perturbed along the unstable “M-shaped” Floquet eigenvector plotted in (b). It can be
seen how a low amplitude pulse emerges and the mobile breather becomes pinned. After this transient this low amplitude pulse decays into radiation. The parameter
of equation (13) are C1 = 1, C2 = 0.08 and ν = 0.5 (µ = 0.5). In the case of figures (c) and (d) the parameters are the same except for C2 = 0.19. In this case
the solution is in the “quasi-collapse” unstable region shown in Fig. 7(a). The final state when perturbed along the unstable eigenvector (d) is a travelling breather
whose amplitude oscillates in the same fashion as that of the pinned quasi-collapsing breathers, i.e. the localization center oscillates out of phase with respect to all
the other sites on the lattice.
Fig. 9. Time evolution of the maximum value of the modulus |Φn,m |(t) along the central (m = 0) chain and the adjacent (m = 1) one for a mobile (1, 0, 1) breather
with frequency ωb = 2.584. This magnitude is normalized to the initial value |Φn,m |(t0). Figure (a) shows this evolution for an stable situation (C2 = 0.15,
ν = 0.5). It can be observed how the localization center (m = 0) and its neighbour in the transversal direction (m = 1) follows two in-phase periodic trajectories
in their modulus due to the Peierls–Nabarro barrier surpassed during the motion. In contrast, figure (b) shows the case when the breather is unstable (C2 = 0.19,
ν = 0.5). Here the quasi-collapse dynamics is manifested while the localization center moves across the lattice. As can be observed, the oscillations of the two
amplitudes are out of phase and the amplitudes of these oscillations are one order of magnitude higher than those of figure (a).
place during temporal evolution. The slowing down of the
translational motion continues and eventually the breather pins
into a convulsive pulson state surrounded by the remaining
radiation.

Now we pay attention to the “low C2” instability of (1, 0, 1)
mobile breathers. The modulus profile of the unstable Floquet
eigenvector that drives this instability is M-shaped (bimodal),
as shown in Fig. 8(b), and is asymptotic to an extended
plane-wave-like profile as m, n → ∞, i.e. it is not a purely
localized perturbation. It is indeed rather different from the
quasi-collapse unstable eigenvector analyzed above, which is
consistent with the fact that the pinned breather of the same
frequency is linearly stable in this region of parameter space.
As argued above, this instability is not related to quasi-collapse
phenomena, and it does not appear in the region of small values
of the Salerno parameter ν, close to the A–L limit.
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A typical trajectory on the unstable manifold associated with
this instability is shown in Fig. 8(a), where we have plotted
the time evolution of the field modulus contour plot. We can
see there that the mobile breather pins quickly while a small
pulse moving backwards is ejected, which spreads and finally
mixes with the remaining delocalized background. However
some energy is transferred to width oscillations of the pinned
breather so that also in this case we observe the formation
of pulson states surrounded by the remaining radiation. As
the main difference of this behaviour, with respect to the
evolution observed on the quasi-collapse unstable manifold,
is the ejection of the small moving pulse, we refer to this
instability as fission.

By increasing the strength of the initial perturbation along
the direction of the unstable eigenvector, one observes that
the size of the ejected pulse increases. This observation is
consistent with the results reported in [22], where the evolution
of initial moving gaussian pulses in isotropic 2D Schrödinger
lattices was studied. These numerical experiences lead the
authors to conclude that “the characteristic feature of the
discrete quasi-collapse of a moving pulse is the splitting of
the initially moving broad pulse into a track of the standing
narrow structures...” (sic). However, we see from our study of
the stability of exact moving discrete breathers that the fission
and the quasi-collapse instabilities have different origins and
they appear in different regions of parameter space. On the
other hand, the ubiquitous phenomenon of width oscillations of
pinned localized structures (pulson states) cannot be ascribed
to quasi-collapse. They also appear as the preferred way to
allocate excess of (localization) energy in regions of parameter
space far from the quasi-collapse unstable region.

5. Conclusions and prospective remarks

We have studied here the dynamics of exact numerical
discrete breathers, both pinned and mobile, in two-dimensional
anisotropic nonlinear Schrödinger lattices. These solutions
are computed using a SVD-regularized Newton method by
continuation from a set of uncoupled 1D chains into increasing
non-zero values of the coupling in the transversal direction.

We have performed an extensive exploration in the
parameter space (ωb, C2, ν) of breather frequency, transversal
coupling and Salerno parameter, by computing the Floquet
spectra of the numerical solutions. We have also computed
the breather norm N (ωb, C2, ν) and further corroborate the
general validity of the criterion found in [20], namely that
the partial derivative ∂N /∂ωb is positive for stable pinned
breathers. Furthermore, we have analyzed the dynamics on the
quasi-collapse unstable manifold, where the unstable breather
experiences a shift in frequency towards the (higher) value
of the stable breather with the same norm. The excess of
energy is coherently transferred to oscillations of the breather
width, so that the resulting pulson state is characterized by two
frequencies.

We have studied discrete breathers moving along the
strong coupling direction. These solutions are composed of an
exponentially localized core on top of an extended background
which is itself the finite sum of a finite set of nonlinear 2D
plane waves. The time scales associated with these plane waves
are resonant with the core internal frequency as happens in the
1D case. In particular, the background chooses a finite set of
plane waves from a continuous family of resonant solutions.
The Floquet analysis of these mobile discrete breathers reveals
the existence of two distinct types of instability. One is
the counterpart, for mobile breathers, of the quasi-collapse
experienced by pinned breathers. The other instability occurs in
a region of parameter space where pinned breathers are linearly
stable. The analysis of the dynamics on the unstable manifold
shows that the excess of energy is partly transferred to a small
moving pulse, ejected from the center of localization, which
justifies the designation of a fission instability. However, part
of the energy excess is also transferred to width oscillations.
The appearance of pulson states far from the quasi-collapse
regime indicates that the tendency to allocate energy in the form
of width oscillations is a general 2D feature, not exclusively
associated to quasi-collapse instabilities.

In a future work we will focus on mobility of 2D discrete
breathers in an arbitrary lattice direction. The results obtained
here shed light about how this mobility can be obtained. In fact,
our experiences show that mobility of pinned breathers can be
induced based on the existence of the extended background
in the numerically exact mobile solution. On the other hand,
the results obtained here and the aforementioned future work
may help to design and better understand recent numerical
experiments reported in [53], concerning the interaction
between high amplitude pinned breathers and mobile ones.
These experiments provides a possible way for routing and
blocking mobile discrete breathers via the interaction with
the high amplitude pinned ones, resulting in a plausible
implementation of logical functions.
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