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We generalize the theory of k-core percolation on complex networks to k-core percolation on multiplex
networks, where k ≡ (k1,k2, . . . ,kM ). Multiplex networks can be defined as networks with vertices of one kind
but M different types of edges, representing different types of interactions. For such networks, the k-core is defined
as the largest subgraph in which each vertex has at least ki edges of each type, i = 1,2, . . . ,M . We derive self-
consistency equations to obtain the birth points of the k-cores and their relative sizes for uncorrelated multiplex
networks with an arbitrary degree distribution. To clarify our general results, we consider in detail multiplex
networks with edges of two types and solve the equations in the particular case of Erdős-Rényi and scale-free
multiplex networks. We find hybrid phase transitions at the emergence points of k-cores except the (1,1)-core for
which the transition is continuous. We apply the k-core decomposition algorithm to air-transportation multiplex
networks, composed of two layers, and obtain the size of (k1,k2)-cores.

DOI: 10.1103/PhysRevE.90.032816 PACS number(s): 64.60.aq, 89.75.Fb, 05.70.Fh, 64.60.ah

I. INTRODUCTION

In the past decade, during the advent of network science, a
number of statistical descriptions were proposed to character-
ize the structure of the interactions of many diverse complex
systems [1–4]. One of fundamental features characterizing
the structure of an infinite network is the size of its giant
connected component, i.e., the size of the largest connected
cluster in the network, containing a finite fraction of vertices.
The existence of a giant connected component is particularly
important in networks carrying flows of different natures, such
as viruses and rumors in social systems, data in technological
networks, or goods and humans in transportation systems.
Thus, the maximum capacity for the spread and transport in
such systems is limited by the size of the giant connected
component. Apart from this practical meaning, the giant
connected component is the relevant order parameter that
shows the formation of a macroscopic cluster in the context of
ordinary percolation [5–7].

Apart from ordinary percolation, which results in a
continuous phase transition for the emergence of a giant
connected component (i.e., containing a finite fraction of
vertices) in an infinite network, a number of generalizations
of percolation were introduced. These versions lead to other
kinds of giant connected components, whose emergence is
associated with different phase transitions [8–13]. Among
these generalizations, there is k-core percolation, in which
a giant k-core exists if the vertex mean degree of the network
exceeds some threshold [8,9]. The k-core of a network is
defined as the largest subgraph whose vertices have degree
at least k. The phase transition associated with the k-core
problem is not continuous if k � 3. In this paper, as is typical
for percolation problems, we discuss only infinite networks. If
such a network contains finite length loops (mathematicians
say “cycles”), a k-core can consist of separate parts. Analytical
calculations, however, are practically possible only for infinite
networks with only infinite loops (so-called locally treelike

networks). Our calculations will be only for networks of this
kind and their generalizations. In these networks, a finite
neighborhood of a vertex is a tree in the sense that it has no
loops. One can see that proper trees cannot have (k � 2)-cores,
so finite k-cores are absent in locally treelike networks. Hence,
the k-core in a network of this kind (if it exists) consists only
of a single giant component, i.e., in these networks, the k-core
is always giant. This situation differs sharply from ordinary
percolation, in which finite connected components are present
even in locally treelike networks. Thus, each two vertices in
the giant k-core are interconnected by at least k paths, which
may partially overlap with each other.

The k-core of a given graph can be obtained by a recursive
pruning algorithm that, at each step, removes all existing
vertices with degrees less than k. As the result of this
pruning, the network is decomposed into a hierarchical set
of progressively enclosed k-cores with the highest k-core
being placed in the center. The application of this graph
decomposition technique to large real-world networks makes
it possible to describe qualitatively their structure in terms of
the complete set of their k-cores [14,15]. Moreover, it was
shown that the most efficient vertices in spreading processes
are those belonging to higher k-cores of a network [16]. For
these reasons, during the last years the k-core organization
of complex networks has been extensively studied [8,9,17].
The most remarkable result is that for k � 3 a k-core emerges
discontinuously at the percolation threshold through a hybrid
phase transition, combining a discontinuity and a critical
singularity and thus breaking the usual continuous scenario
of ordinary percolation.

Very recently, it has been considered that most of real-world
networks are not isolated objects but composed of many
coupled, interdependent networks such that the function of one
network depends on the others [18,19]. For such networks,
the pruning of vertices in one network can lead to removal
of dependent vertices in other networks. It was found that
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generalized percolation properties of these interdependent
networks differ strongly from ordinary percolation on a single
network [20–23]. In fact, they more resemble features of k-core
percolation (k � 3) in single networks including the hybrid
phase transition.

The simplest particular case of interdependent networks
are multiplex networks in which each vertex depends on at
most one vertex of other networks. Multiplex networks can
be treated as superpositions of several networks (sometimes
called layers) with different edges [24,25]. In other words, all
vertices in these networks are of the same type, but the edges
are of different types (colors). Note that here a vertex does not
necessarily have all types of connections. Multiplex networks
have recently attracted a lot of attention as they are the kind of
substrates representing better the interaction patterns occurring
in many real systems, in which several ways for the interaction
between the elements coexist. This is the case of transportation,
social, and technological networks among others.

The structural and dynamical properties of multiplex
networks were studied in several contexts, including diffu-
sion [26,27], evolutionary games [28], Boolean dynamics [29],
epidemics [30], and, of course, percolation [31,32]. In this way,
in Ref. [32], a viable component for multiplex networks is de-
fined as a set of vertices in which, for every type of edges, each
two vertices are interconnected by at least one path following
only edges of this type. Similarly to k-cores, in locally treelike
multiplex networks, the viable component can be only giant
and single. Clearly, the giant viable component of a multiplex
network is a subgraph of the giant connected components of
all single networks (layers). The theory of ordinary percolation
on multiplex networks shows a hybrid transition which is
the birth of the giant viable components, similar to what
happens in k-core percolation in single networks. In Ref. [20]
it was shown that the giant viable component is a subgraph
of the so-called mutual component (or mutually connected
component). By definition, a vertex belongs to the mutual
component if for each type of its edges at least one edge has
the second end in the mutual component. Hereafter we focus
on the giant viable component in locally treelike multiplex
networks.

In this paper we study the organization of specific
subgraphs, k-cores for multiplex networks, where k ≡
(k1,k2, . . . ,kM ). We define the k-core of a multiplex network
as its largest subgraph in which each vertex has at least ki

edges of each type i. We consider in detail locally treelike
networks in which a finite neighborhood of a vertex has no
loops. Similarly to k-cores and viable components, for each
given k, only a giant, single k-core can exist in a multiplex
network of this kind. This is why the term “k-core” in these
networks implies that it is giant. We demonstrate for these
networks that if ki � 2 for all i, then between each two vertices
in the k-core, there are at least ki paths, following only edges
of type i. We will calculate parameters of the giant k-cores in
basic locally treelike multiplex networks.

The paper is organized as follows. In Sec. II, we introduce
an algorithm for the k-core decomposition of multiplex
networks and present an analytical framework enabling us
to describe the nature of the transitions corresponding to
the emergence of k-cores with arbitrary (k1,k2, . . . ,kM ). We
apply our general results to the Erdős-Rényi and scale-free

uncorrelated multiplex networks. In Sec. III, as an application
to the real multiplexes, we apply the k-core algorithm to
air-transportation multiplexes and compare the results with
our analytical predictions.

II. k-CORE OF A MULTIPLEX NETWORK

A. Analytical framework

Let us consider an uncorrelated multiplex network, having
M types of edges, with a given joint degree distribution
P (q1,q2, . . . ,qM ), which has a locally treelike structure in
the infinite network limit. These networks have only infinite
loops. It is the presence of infinite loops that makes possible
a giant k-core. Note the difference from infinite proper
trees, in which loops are absent, and viable components
and k-cores are consequently absent. For simplicity, we also
assume that the network is sparse and completely uncorrelated,
though, in principle, correlations between different edges,
i = 1,2, . . . ,M , of a vertex might be easily taken into account.
The k-core of a multiplex network is defined as its largest
subgraph in which each vertex has at least ki edges of each
type i. To obtain the k-core of a multiplex network, we use the
following pruning algorithm: At each step we remove every
vertex if for at least one type of edge i, qi < ki . As the result
of the pruning, the degrees of some vertices change. If there
are still vertices which one can prune, we remove them in the
next step. The pruning is continued until no vertex remains
of degree qi less than the threshold ki . Figure 1 shows the
k-core decomposition for a multiplex network with two types
of edges.

To find the size of the giant k-core, for each type i of
edge, we define xi as the probability that an end vertex of
a randomly chosen edge of type i is the root of an infinite
subtree of type i. The subtree of type i is, by definition, a tree
whose vertices have at least ki − 1 edges of type i and at least
kj edges of each of other types j �= i edges. Probabilities x1

and x2 for a multiplex network with two types of edges are

FIG. 1. (Color online) The (k1,k2)-core decomposition for a mul-
tiplex network with two types of edges. Solid black and dashed blue
edges are edges of type 1 and type 2, respectively. The cores from
the outermost to the innermost are the (1,1)-core, the (1,2)-core, the
(2,2)-core, and (1,3)-core.
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FIG. 2. (Color online) Schematic representation of the self-
consistency equations for the probabilities x1 and x2. The solid
black and dashed blue lines with infinity symbols at one end
represent probabilities x1 and x2, respectively. The edges lead to
finite components, namely, 1 − x1 and 1 − x2, are shown by solid
and dashed lines with cuts at one end.

schematically shown in Fig. 2. These probabilities play the
role of the order parameters of the phase transition associated
with the emergence of the k-cores. We can write the self-
consistency equations for probabilities xi using the locally
treelike structure of the networks,

xi =
∑

q

qiP (q)

〈qi〉

⎡
⎣ qi−1∑

s=ki−1

(
qi − 1

s

)
xs

i (1 − xi)
qi−1−s

⎤
⎦

×
M∏

j = 1
j �= i

⎡
⎣ qj∑

s ′=kj

(
qj

s ′

)
xs ′

j (1 − xj )qj −s ′

⎤
⎦ , (1)

where q ≡ (q1,q2, . . . ,qM ) is the degree of a vertex.
Let us briefly explain Eq. (1). The probability that the

end vertex of a randomly chosen edge of type i has degree
q is qiP (q)/〈qi〉. The combinatorial multiplier (mn) gives the
number of ways one can choose n edges from a sample of m

edges. At least ki − 1 edges of qi − 1 edges of type i (other
edges than the starting one) must lead to an infinite subtree
of type i (probability xi) and at least kj edges of each of
qj edges (j �= i) must lead to the infinite subtrees of type j

(probability xj ).
Using these probabilities, we can obtain the relative size

of the giant k-core. A vertex is in the giant k-core when, for
each type of edge i, the vertex has at least ki edges, leading to
infinite i subtrees. The probability that a vertex belongs to the
(k1,k2)-core for multiplex networks with edges of two types,
is shown schematically in Fig. 3. Hence, the relative size of
the core is given by the following expression:

nk-core =
∑

q

P (q)
M∏
i=1

⎡
⎣ qi∑

s=ki

(
qi

s

)
xs

i (1 − xi)
qi−s

⎤
⎦. (2)

FIG. 3. (Color online) Schematic representation of the proba-
bility that a vertex belongs to (k1,k2)-core, which is the relative
size nk-core of the k-core; see Eq. (2). The figure shows the terms
contributing to this probability.

We can now rewrite Eqs. (1) and (2) using generating func-
tions [7], which enable us to solve these equations analytically.
For a single network with a given degree distribution P (q), the
generating function G(x) is defined as

G(x) ≡
∑

q

P (q)xq. (3)

If we assume that there is no correlation between the degrees
q1,q2, . . . ,qM , so that P (q) = P (q1)P (q2), . . . ,P (qM ), then
Eqs. (1) and (2) can be rewritten as

xi =
[

1 − 1

〈qi〉
ki−2∑
s=0

xs
i

G
(s+1)
i (1 − xi)

s!

]

×
M∏

j = 1
j �= i

⎡
⎣1 −

kj −1∑
s ′=0

xs ′
j

G
(s ′)
j (1 − xj )

s ′!

⎤
⎦ (4)

and

nk-core =
M∏
i=1

[
1 −

ki−1∑
s=0

xs
i

G
(s)
i (1 − xi)

s!

]
, (5)

where we used the notation Gs(x) for the sth derivatives of
G(x), which produce the higher moments of the distribution
P (q). Note that in these equations, (1 − x) is the argument of
the generation function and its derivatives.

In general, Eq. (4) is a set of self-consistency equations
of the form xi = fi(x1,x2, . . . ,xM ). Let us choose 〈qi〉 as
control parameters. For small values of 〈qi〉, there is only
zero root of these equations and, hence, the giant k-core does
not exist. The critical value of a control parameter is obtained
from the system of equations xi = fi(x1,x2, . . . ,xM ) together
with the condition det[J − I] = 0 for the Jacobian matrix J,
defined as Jij = ∂fj/∂xi , and I is the identity matrix. Figure 4
demonstrates that in the symmetric case of the (2,2)-core of a
multiplex network with identical degree distributions for two
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FIG. 4. (Color online) Graphical solution of Eq. (15) for the
(2,2)-core in a multiplex graph with a Poisson degree distribution.
The straight line and the curves f (x) show, respectively, the left- and
right-hand sides of the equation as functions of x for different values
of the mean degree c. The solution appears above the critical value
c = 3.8166, at which the right-hand side curve f (x) starts to intersect
the straight line. The physical solution is provided by the largest root
of the equation x = f (x) (the upper intersection in the plot).
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types of edges, the critical point occurs when f (x) starts to
meet x at x > 0. The values of the jumps of xi at the critical
point follow from this system of equations. The physical
solution above the critical point is given by the largest root of
the equations xi = fi(x1,x2, . . . ,xM ) by the following reason:
With increasing the control parameters, the size of k-core
should increase. One can see that a hybrid phase transition
combining a jump and a square-root critical singularity takes
place at the critical point. Expanding fi(x1,x2, . . . ,xM ) around
the transition point enables us to find the singularity of xi and
hence nk-core. One can find that this is a square-root singularity.
For example, in a simple symmetric case of the (2,2)-cores
in a multiplex network in which the degree distributions for
the two types of edges coincide and so 〈q1〉 = 〈q2〉 ≡ c, we
have a single order parameter x, which is the largest root of
the equation x = f (x); see Fig. 4. Expanding f (x) near the
critical point, c = cc + δ, x = xc + �, we have

xc + � = f (xc,cc) + ∂xf (x,c)|x=xc,c=cc
�

+ ∂cf (x,c)|x=xc,c=cc
δ+ 1

2∂2
xxf (x,c)|x=xc,c=cc

�2+ · · · . (6)

Taking into account xc = f (xc,cc) and 1 = ∂xf (x,c)|x=xc,c=cc
,

we obtain the square-root singularity for the order parameter:

� ∼=
[
−2

∂cf (xc,cc)

∂2
xxf (xc,cc)

]1/2√
δ. (7)

A similar square-root singularity can be found for the size of
the k-core.

The structure of the k-core is described by the degree
distribution Pk(q) defined as the probability to find a vertex of
degree q ≡ (q1,q2, . . . ,qM ) in the k-core,

Pk(q) = nk(q)

nk-core
, (8)

where nk(q) is the fraction of vertices with degree q, which
fall into the k-core. This fraction is given by the following
expression:

nk(q) =
∑
q′�q

P (q′)
M∏
i=1

[ (
q ′

i

qi

)
x

qi

i (1 − xi)
q ′

i−qi

]
. (9)

In particular, Eq. (9) helps us to find the size of the corona (a
subset of vertices of degree k in the k-core, which generalizes
the notion of the corona clusters of the k-core). Setting q = k
and making use of generating functions, we find the relative
size of the corona:

nk(k) =
M∏
i=1

x
ki

i

G
(ki )
i (1 − xi)

ki!
. (10)

Furthermore, the average total degree q1 + q1 + · · · + qM of
a vertex in the k-core can be obtained using the degree
distribution of the k-core in the following way:

ck-core =
∑

q

(q1 + q2 + · · · + qM )Pk(q). (11)

To clarify our results, in the following we consider Erdős-
Rényi and scale-free multiplex networks with two types of
edges to describe the k-core organization of these multiplex
networks.

B. Erdős-Rényi networks

Let us first consider Erdős-Rényi multiplex networks with
Poisson degree distributions: P (q1) = c

q1
1 e−c1q1/q1!, P (q2) =

c
q2
2 e−c2q2/q2!, where c1 and c2 are the mean vertex degrees for

types 1 and 2 edges, respectively. For the Poisson distribution,
the generating function and its sth derivative are Gi(x) =
e−ci (1−x) and Gs

i (x) = cs
i e

−ci (1−x), respectively.
For the sake of simplicity, let us consider the symmetric case

c1 = c2 ≡ c. The largest core is the core with k1 = k2 = 1, that
is, (1,1)-core. In this case one can obtain x1 = x2 ≡ X, such
that X = 1 − e−cX. For c > 1, this equation has a nonzero
nontrivial solution. Figure 5(a) shows the relative size of the
(1,1)-core, displaying a continuous transition at c = 1, and is
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FIG. 5. (Color online) The relative sizes of (a) k-core and (b)
corona, and (c) the mean vertex degree of a k-core in Erdős-Rényi
multiplex networks for some values of k1 and k2 vs the vertex mean
degree c1 = c2 = c of the network.
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given by the expression

n(1,1)-core = (1 − e−cX)2 ∼= 4(c − 1)2, (12)

Note that there exist paths between the vertices of the
(1,1)-core but these paths do not necessarily follow edges of
the same type. Hence, the giant (1,1)-core does not coincide
with the giant viable component. In ordinary single networks,
the giant 1-core also does not coincide with the giant connected
component.

Furthermore, if only one of the two ki values is equal to
1, then in the (k1,k2)-core there are less than k1 + k2 paths
between two vertices following edges of the corresponding
types. However, in this case there are k1 + k2 � 3 paths
between each two vertices within the (k1,k2)-core following
edges of alternating types. So such a k-core is not a subgraph
of the viable component.

For instance, let us consider the (1,2)-core. In this case, one
can find the following equations for x1 and x2:

x1 = (1 − e−c2x2 − c2x2e
−c2x2 ),

(13)
x2 = (1 − e−c2x2 )(1 − e−c1x1 ).

Using these probabilities, the relative size of the (1,2)-core is
given by the following expression:

n(1,2)-core = (1 − e−c1x1 )(1 − e−c2x2 − c2x2e
−c2x2 ). (14)

Figure 5(a), in particular, shows the relative size of the n(1,2)-core

in the symmetric case of c1 = c2 = c. While the giant core is
nonviable, a hybrid transition appears at the emergence point
of the core at c 	 2.7461.

Let us now assume that each ki exceeds 1. In this case,
considering the tree for xi in Fig. 2, one can show that for
every type i of edges, each two vertices within this core are
interconnected by at least ki paths following only edges of this
type (see Fig. 3). Hence, k-core is a subgraph of the viable
component if all the components ki of the vector k exceed 1.

As an example, let us consider k1 = k2 = 2. In the sym-
metric case of c1 = c2 ≡ c, we find x ≡ x1 = x2 satisfying
the following equation:

x = (1 − e−cx)(1 − e−cx − cxe−cx). (15)

Solving the equation for x, we can find that the transition oc-
curs at c 	 3.8166 (see Fig. 4). The relative size of (2,2)-core
is given by the expression

n(2,2)-core = (1 − e−cx − cxe−cx)2. (16)

This core emerges discontinuously at the transition point, as
shown in Fig. 5(a). Figure 5(a) also shows the relative sizes of
the (k1,k2)-cores for some other values of k1 and k2. There is
a jump at the birth points of the cores, which, together with
a critical singularity, points out a hybrid transition for k1 � 2
and k2 � 2.

One can obtain the relative size of the corona for the Erdős-
Rényi networks using Eq. (10) as

nk1,k2 (k1,k2) = (c1x1)k1e−c1x1

k1!

(c2x2)k2e−c2x2

k2!
. (17)

Figure 5(b) displays the dependence of the corona sizes on
the vertex mean degree c. Furthermore, using Eq. (8), we can
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FIG. 6. (Color online) (a) The relative sizes and the birth points of
the (3,3)-cores in the Erdős-Rényi multiplex network are compared
with the 3-core in the corresponding ordinary single Erdős-Rényi
networks. (b) The relative size of the (2,2)-core of the Erdős-Rényi
multiplex network vs the mean degree of its vertices, compared
with the 4-core in the corresponding ordinary single Erdős-Rényi
networks.

write the degree distribution of the (k1,k2)-core, that is,

P(k1,k2)(q1,q2) = 1

n(k1,k2)-core

(
x

q1
1 c

q1
1 e−c1x1

)(
x

q2
2 c

q2
2 e−c2x2

)
q1!q2!

.

(18)

Hence, the total vertex mean degree of the (k1,k2)-core for
uncorrelated Erdős-Rényi networks with two types of edges,
1 and 2, is

c(k1,k2) = c1x1 + c2x2. (19)

As one can notice from Fig. 5(c), in the symmetric case of
c1 = c2 = c, the total mean degree of the (k1,k2)-core changes
almost linearly with c.

To round off the study of Erdős-Rényi multiplexes, we com-
pare k-core percolation on a Erdős-Rényi multiplex network
and k-core percolation on its counterpart single network. As
one can see in Fig. 6(a), the (3,3)-core emerges at a much
higher mean degree value than the 3-core of the corresponding
single Erdős-Rényi graph. In general, (k1,k2)-core percolation
on the multiplex network has a higher threshold than the k1 or
k2-core on single networks. However, the (k1 + k2)-core in a
single network has a higher threshold than the (k1,k2)-core in
the corresponding multiplex networks. Figure 6(b) compares
the relative sizes of the (2,2)-core of the Erdős-Rényi multiplex
network with the 4-core in the corresponding ordinary single
Erdős-Rényi networks.
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FIG. 7. (Color online) The relative size of the (2,2)-core for
scale-free multiplex networks with an exponential degree cutoff κ

at different values of the exponent γ of the degree distribution. The
core disappears as γ increases and approaches 2. The inset shows
the dependence of the relative size of the (2,2)-core on the cutoff
parameter κ for different values of the exponent γ .

C. Scale-free networks

Let us consider scale-free multiplex networks with two
types of edges. For simplicity we assume that the degrees
q1 and q2 are distributed in the same manner with the
power-law exponents γ1 = γ2 ≡ γ and the mean degrees
〈q1〉 = 〈q2〉 ≡ c. First we consider the organization of k-cores
for the power-law distributed networks with an exponential
degree cutoff, i.e., for instance, P (q) = q−γ e−q/κ

Liγ (e−1/κ ) , where Lin(x)
is the nth polylogarithm of x. The mean degree, c, is related

to the cutoff parameter κ as c = Liγ−1(e−1/κ )
Liγ (e−1/κ ) . For this distri-

bution, the generating function defined by Eq. (3) is G(x) =
xLiγ (e−1/κ )
Liγ (e−1/κ ) . The results significantly depend on the low-degree

part of the degree distribution. The presence of a cutoff enables
us to consider even low values of γ , including γ < 2. For each
value of the exponent γ , we vary the cutoff κ (and thus the
mean degree c) as the control parameter. The relative sizes of
the k-cores are obtained by solving Eqs. (4) and (5). Figure 7
shows n(2,2)-core for different values of γ . It becomes clear that
the size of the core decreases as γ approaches to 2. Hence,
for scale-free networks with exponential degree cutoff and,
particularly, for the case of pure scale-free networks (κ → ∞),
the (k1,k2)-core does not exist for γ > 2.

Next we consider asymptotically scale-free networks gen-
erated by the static model with

P (q) =
{[

c(γ − 2)

2(γ − 1)

]γ−1

�

[
q − γ + 1,

c(γ − 2)

2(γ − 1)

]}/
�(q + 1), (20)

where �(s) is the gamma function and �(s,x) is the upper
incomplete gamma function [33]. This function in the large
q limit is asymptotically power law, P (q) ∼ q−γ for γ > 2.
The generating function is G(x) = (γ − 1)En[(1 − x) c(γ−2)

2(γ−1) ],

where En(x) = ∫ ∞
1 dye−xyy−n is the exponential integral.

For different values of γ , Fig. 8 shows the relative size
of the (2,2)-core and the (2,3)-core and their corresponding
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FIG. 8. (Color online) The relative size of (a) (2,2)-core and (b)
(2,3)-core, for Erdős-Rényi and asymptotically scale-free networks,
with different values of γ . For scale-free networks with smaller γ ,
the critical point shifts to higher mean degree values.

emergence points. The value of the jumps at the critical
point increases with increasing γ . Also, when the exponent
γ decreases, the transition point moves towards higher values
of mean degree. In Fig. 8 we compare the emergence of cores
for scale-free and Erdős-Rényi networks. As one can see, the
dependency of the cores on c for these networks is similar and,
as expected, the curves with larger γ approach the result for
Erdős-Rényi networks. Note that Figs. 7 and 8 present results
obtained for very different distributions. The former is for a
power-law distribution with a cutoff, and the latter is for a
distribution which approaches a power-law form in the large
degree limit.

III. REAL MULTIPLEX NETWORKS

As an example of real multiplex networks, we consider air-
transportation networks, in which vertices represent airports
and edges direct flight connections between airports. Since
flights can be operated by different airlines, a detailed repre-
sentation of this kind of systems is given by multiplexes [34].
For the sake of simplicity we consider air-transportation
multiplexes composed of two types of edges (two different
airlines). Among the possible choices for composing these
multiplexes, we have considered both low-cost airlines and
major carriers. The main difference between the organization
of these airlines is that low-cost companies diversify their
main airports and their goal is mainly driven by the economic
growth. Instead, major carriers are typically associated with
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FIG. 9. (Color online) The relative size of the giant k-cores of BritishAirway-Lufthansa, AirBerlin-Lufthansa, AirBerlin-EasyJet, and
Ryanair-EasyJet multiplex transportation networks, for different values of k1 and k2.

one country as they are originally designed to serve the national
and international mobility of the corresponding citizens. These
major airlines are thus designed following the so-called
hub-and-spoke structure in which one airport (the hub) is
surrounded by many low-degree vertices forming a kind of
starlike graph.

We have considered three different types of multiplexes
comprising (i) two low-cost airlines, (ii) two major airlines,
and (iii) one low-cost and one major airline. In particular,
we have considered these combinations: EasyJet-Ryanair and
EasyJet-AirBerlin (combination of two low-cost airlines),
Lufthansa-British Airways (combination of two major airlines)
and Lufthansa-AirBerlin (combination of low-cost and major
airlines).

Figure 9 shows the sizes of the giant k-cores of these
networks for different values of k1 and k2. For the case
EasyJet-Ryanair and Lufthansa-AirBerlin (which are two
airlines operating in the same country), we obtain more central
cores, since the combined companies have many common
vertices with a large number of connections for each type of
edge. On the other hand, for EasyJet-AirBerlin, the common
vertices have a few connections for each type of edge, which
are removed in the first steps of k-core algorithm. Hence,
this multiplex network has only a few cores. Similarly, the
Lufthansa-British Airways multiplex network has a few cores,
since these two major airlines operate from different countries

and thus the connectivity of the overlapping vertices is very
different.

In Fig. 10, we have compared the size of
the giant (2,2)-core and the giant (2,3)-core
for air-transportation multiplex networks with the
corresponding analytical results, obtained from Eqs. (4)
and (5) in which we made use of the degree distributions
of the empirical multiplex networks. As one can see, in
some cases there is a noticeable difference between theory
and reality, which arises from clustering, degree-degree
correlations, and structural motifs in real-world networks,
which we did not take into account. Furthermore, the effects
of overlapping between edges from different layers in the
real-world multiplex networks can also be significant as noted
in [35,36].

IV. CONCLUSION

In this work we have generalized the theory of k-core
percolation to the multiplex networks. We proposed a pruning
algorithm for the k-core decomposition of multiplex networks
that may be useful for describing the topological structure of
these networks. We have analytically solved the k-core perco-
lation problem for uncorrelated multiplex networks with arbi-
trary degree distributions. In the particular case of (1,1)-core,
the transition is continuous. This does not contradict previous
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FIG. 10. (Color online) Comparison between k-core sizes ob-
tained from empirical data and our theory for the relative sizes of
(a) the giant (2,2)-core and (b) the giant (2,3)-core of transportation
multiplex networks. Theoretical values are calculated for uncorrelated
counterparts of the corresponding empirical multiplex networks.

results for ordinary percolation on multiplex networks, be-
cause in this case the (1,1)-core is not a viable component.
We showed, however, that the transitions for higher cores are
hybrid. In particular, the (1,2) and (2,1)-cores display hybrid
transitions. Moreover, we found that the (k1,k2, . . . ,kM )-core
on uncorrelated multiplex networks has a higher threshold than
the ki-core on any counterpart single network i. Hence, we
conclude that multiplex networks are less robust compared to
their counterpart single networks, if we analyze the destruction
of the k-cores induced by random removal of vertices.

In summary, the k-core problem for the multiplex networks
turns out to be essentially richer than the k-core problem for
single networks. The pruning algorithm allows one to extract
the k-cores in the multiplex networks in an easier way than
their viable components. So the k-core decomposition of these
complex networks is algorithmically efficient. In the analytical
framework presented here, we focused on uncorrelated and
locally treelike multiplex networks, ignoring the overlap of
different types of edges, clustering, and correlations. Our
empirical data analysis has revealed that these features may
be significant for the sizes and organization of k-cores. We
suggest that our theory could be extended to consider the
case of complex multiplex networks with diverse structural
correlations.
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