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Motion-induced synchronization in metapopulations of mobile agents
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We study the influence of motion on the emergence of synchronization in a metapopulation of random walkers
moving on a heterogeneous network and subject to Kuramoto interactions at the network nodes. We discover
a mechanism of transition to macroscopic dynamical order induced by the walkers’ motion. Furthermore, we
observe two different microscopic paths to synchronization: depending on the rule of the motion, either low-degree
nodes or the hubs drive the whole system towards synchronization. We provide analytical arguments to understand
these results.
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I. INTRODUCTION

The spontaneous emergence of synchronization in systems
of coupled dynamical units [1,2] underlies the development
of coordinated tasks as diverse as metabolic cycles in eu-
karyote cells, cognitive processes in the human brain, and
opinion formation in social systems [3–6]. In the last decade
complex networks theory has revealed that the topology of
the interactions in a complex system has important effects
on its collective behavior [7,8]. As a consequence, many
recent studies have considered dynamical systems coupled
through nontrivial topologies [9], uncovering the impact of
the structure of the network on the existence [10–14] and
stability [15–18] of synchronized states.

Quite frequently, the interactions among the units of a
complex system keep changing over time. Their evolution can
either be driven by the synchronization process itself, as in
models of co-evolving networks [19–22], or be determined by
the fact that each unit moves at random over a continuous and
homogeneous space and interacts only with other units within
a given distance [23–27].

In many cases, the motion of the agents takes place on
discrete and heterogeneous media that can be represented as
complex networks. Typical examples include users browsing
the World Wide Web, airplane passengers traveling throughout
a country, or people playing online social games [28–30]. In
such systems, both the rule of motion adopted by the agents,
and the heterogeneity of the environment, have an impact
on the emergence and stability of collective behaviors. For
this reason, metapopulation modeling has been successfully
employed to explore the combined effect of mobility and
nontrivial interaction patterns in different contexts, including
the study of epidemic spreading and chemical reactions
[28,29,31–34].

In this work we propose a metapopulation model to
study the emergence of synchronization in populations of
individuals moving over discrete heterogeneous environments
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and interacting through nonlinear dynamical equations. We
assume that each agent is characterized by an internal state
(or opinion) and that it moves over the environment trying
to synchronize its opinion with that of the other individuals.
Thus, the evolution of the system is driven by the interplay
of two concurrent processes: On one hand, the interaction of
neighboring agents drives their internal state towards local
consensus; on the other hand, the agents’ motion dynamically
changes the pattern of interaction and allows each agent to be
exposed to different opinions. We discover a novel mechanism
of synchronization that we name motion-induced synchro-
nization since the transition from disorder to macroscopic
order is controlled by the value of the parameter tuning the
motion of the agents. Furthermore, we show that there are two
different microscopic mechanisms driving the system towards
synchronization, according to whether the walkers prefer to
visit or to avoid high-degree nodes.

II. MODEL

Our metapopulation model consists of two layers. At the
bottom layer we have a set of W mobile agents (walkers). Each
agent i (i = 1,2, . . . W ) is a dynamical system whose internal
state at time t is described by a phase variable θi(t) ∈ [0,2π ),
and changes over time as a result of the interactions with
other agents. The top layer consists of a complex network
with N nodes and E edges, which represents the environment
into which the agents interact (nodes) and move (edges). The
network is described by an adjacency matrix A, whose entry
aIJ is equal to 1 if nodes I and J are connected by an edge
and 0 otherwise (here and in the following we indicate nodes
of the graph in uppercase letters and walkers in lowercase).

At any given time, each agent is located in one of the nodes
of the network. The agent interacts for a fixed time interval with
other agents at the same node, trying to synchronize its phase
with the others’ phase. Then, it moves to one of the neighboring
nodes, chosen according to a one-parameter motion rule. More
precisely, assume that at time t we have i ∈ I , i.e., agent i is at
node I . The evolution of the phase θi(t) of agent i is ruled by
an all-to-all Kuramoto-like interaction with the other walkers
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being on the same node I at time t [3,35,36]

θ̇i(t) = ωi + λ
∑

j∈I

sin[θj (t) − θi(t)] , ∀i ∈ I, (1)

where ωi is the internal frequency of agent i and λ is a control
parameter accounting for the strength of the interaction among
walkers. Notice that, when the phases of the agents evolve
according to Eq. (1), the system is not driven by a single global
mean field (as in the classical all-to-all Kuramoto model).
Instead, each oscillator i interacts with the local mean-field
phase due to all the oscillators being at the same node as i.

At regular time intervals of length � all the agents perform
one step of a degree-biased random walk on the network.
Namely, we assume that a walker at node I moves to a
neighboring node J with a probability proportional to the
degree kJ of the destination node [37,38]

�I→J = aIJ kα
J∑N

L=1 aILkα
L

. (2)

Here α is a tunable parameter which biases the agents’
motion either towards low-degree nodes (α < 0) or towards
hubs (α > 0). For α = 0, we recover the standard (unbiased)
random walk. In summary, the metapopulation model has three
control parameters: λ regulating the interaction strength among
walkers, α tuning the rule of their motion, and � fixing the
ratio between the time scales of interaction and motion.

The degree of synchronization of the whole metapopulation
at time t is measured by the global order parameter

r(t) =
∣∣∣∣∣

1

W

W∑

i=1

eiθi (t)

∣∣∣∣∣ , (3)

where r � 0 if the phases of the agents are completely
incoherent, while r = 1 when the system is fully synchronized.
To quantify the degree of synchronization of a single node I

we introduce the local order parameter

rI (t) =
∣∣∣∣∣

1

wI (t)

∑

i∈I

eiθi (t)

∣∣∣∣∣ , I = 1,2, . . . ,N, (4)

where wI (t) is the number of agents at node I at time t . When
the phases of the walkers at node I are fully synchronized,
the local order parameter of the node is equal to 1, while
in the case of complete local disorder we have rI (t) = 0. We
can also quantify the average local synchronization of the
network rloc(t) as the average of rI (t) over all nodes, i.e.,

rloc(t) = 1

N

∑

I

rI (t). (5)

We notice that, having rI (t) � 1 ∀I , or equivalently,
rloc(t) � 1 is a necessary but not sufficient condition to attain
global synchronization. In fact, in the limiting case in which
there is no motion (� → ∞) and λ is large enough, it is
possible to have rI (t) � 1 ∀I and, at the same time, r(t) � 0.

III. RESULTS

We have simulated the metapopulation model on various
synthetic networks and, as an example of a real complex
network, on the U.S. air-transportation system, which includes

the flight connections between the N = 500 largest airports
in the U.S. Thanks to its intrinsic nature as a backbone
for human transportation, the U.S. airports’ network has
already been used to investigate reaction-diffusion dynamics
in metapopulation models [28]. This network has a long-tailed
degree distribution, exhibits degree-degree correlations, and
is relevant for the present study because opinion formation
in real social systems is often mediated by information,
communication, and transportation networks having similar
structural properties. We have generated, for comparison,
uncorrelated scale-free (SF) networks with N = 500 nodes
and a power-law degree distribution P (k) ∼ k−γ with a tunable
value of the exponent γ [39].

For the numerical simulations of the model, the initial
phases of the oscillators have been sampled uniformly in
[0,2π ), and their internal frequencies ωi from a uniform
distribution g(ω) = 1/2 ∀ ω ∈ [−1,1]. We started from a
stationary distribution of W = 5000 walkers over the network
[37], and we integrated Eq. (1) for all the agents for a time
t0 = m�, where m = 104 is the number of random walk steps
performed. After this transient, we estimated global and local
synchronization parameters (r , rloc, and rI for I = 1, . . . ,N)
by respectively averaging the values obtained from Eqs. (3),
(4), and (5) over a time window of length T = 2m�.

A. Synchronization transition

In Fig. 1 we show the global order parameter r as a function
of the coupling strength λ and of the walker bias α. The three
phase diagrams have been obtained setting � = 0.05, but
qualitatively similar results have been obtained for different
values of �. The SF networks reported in Figs. 1(a) and 1(b)
have, respectively, γ = 2.7 and γ = 3. As expected, by
increasing λ at a fixed value of α, i.e., keeping fixed the
rules of motion, we observe a phase transition from the
incoherent phase (r � 0, dark regions of the diagrams) to a
synchronized state (r �= 0, bright regions of the diagrams).
However, the precise value for the onset of synchronization,
namely the critical value λc for which the incoherent state
becomes unstable, strongly depends on the motion bias α. In
particular, we find that λc(α) is first increasing as a function
of α and then decreasing. The function λc(α) reaches its
maximum λmax

c at a particular value of α, namely at α∗ � −0.5
for the air-transportation network and at α∗ � −1 for the two
SF networks. By comparing the diagrams obtained for the two
SF networks we also observe that, for any value of α, the
critical value of λc is smaller for SF networks with γ = 2.7
[Fig. 1(a)] than for those having γ = 3.0 [Fig. 1(b)], thus
confirming that degree heterogeneity tends to favor global
synchronization.

As a consequence of the shape of λc(α), for a wide range
of values of the strength λ such that λ < λmax

c , we observe
a novel mechanism of motion-induced synchronization. This
means that we can fix the value of the interaction strength
λ, and we can control whether the system is in the incoherent
phase (r � 0, dark regions) or in the synchronized state (r �= 0,
bright regions) solely by changing the rule of motion.

Let us focus on the case of the SF network shown in Fig. 1(b)
and suppose to keep λ fixed at 0.08 (see the horizontal line in
the figure). As shown in Fig. 1(d), we can start with a value
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FIG. 1. (Color online) Phase diagram r(α,λ) of the metapop-
ulation model on uncorrelated SF networks with (a) γ = 2.7,
(b) γ = 3.0, and (c) on the U.S. air-transportation network. The three
networks have N = 500 nodes. The dashed curves in panels (a) and
(b) are the corresponding lower-bound analytical predictions for the
onset of synchronization in uncorrelated graphs obtained from Eq. (9)
for α > −1, and from Eq. (10) for α < −1. Panel (d) shows r(α) for
λ = 0.08, corresponding to the horizontal line in panel (b).

of α within the incoherent phase, for instance, α = α∗ = −1,
and consider the behavior of the system as we decrease the
value of α. When α gets smaller than a particular critical value
αc1 (λ), in this case αc1 (0.08) � −2.0, we observe a transition
from the incoherent to the synchronized phase. Conversely,
we can start at α = −1 and get a synchronized state by
increasing the motion bias parameter to values larger than
αc2 (0.08) � −0.2. A fine-tuning of the rules controlling the
agents’ motion can effectively produce dramatic changes in
the macroscopic synchronization state of the system.

FIG. 2. (Color online) (a), (b) The average local order parameter
rk of nodes of degree k as a function of k, for various values of λ, and
for two fixed values of the bias, respectively, (a) α = −2.0 and (b)
α = −0.25, corresponding to the two vertical lines in Fig. 1(b). (c),
(d) rk for λ = 0.08 and various values of α [respectively, α < −1 in
panel (c) and α > −1 in panel (d)] corresponding to the horizontal
line in Fig. 1(b).

We have found that the bias in the motion affects the onset of
synchronization also at the microscopic level. To illustrate this
result we look at the microscopic paths to synchronization [12]
as we increase λ, by following the two vertical lines shown
in Fig. 1(b). In particular, we have computed the value of the
local order parameter for each of the nodes of the graph, as
in Eq. (4), and we have grouped nodes by degree classes. We
computed the average value of the local synchronization of
nodes of degree k as

rk = 1

Nk

N∑

I=1

rI δ(kI ,k), (6)

where Nk = NP (k) is the number of nodes of degree k. We
report in Figs. 2(a) and 2(b) the quantity rk divided by the
value rk(λ � 0) obtained when λ is close to 0 as a function
of k, and for different values of λ. Figure 2(a) corresponds
to α = −2.0 and Fig. 2(b) to α = −0.25. When α = −2.0
the nodes having a small degree are the first ones to attain
local synchronization as soon as λ crosses the critical value
λc(−2.0) � 0.08; conversely, for α = −0.25, the hubs are the
nodes which synchronize first when λ > λc(−0.25) � 0.07.
We thus observe two microscopic paths to synchronization:
either driven by low-degree nodes (α < α∗), or by the hubs
(α > α∗). The two different synchronization mechanisms are
also evident by following the horizontal line in Fig. 1(b), i.e.,
by plotting rk for a fixed value of λ and different values of α,
as shown in Figs. 2(c) and 2(d).
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JESÚS GÓMEZ-GARDEÑES et al. PHYSICAL REVIEW E 87, 032814 (2013)

B. Analytical estimation of the synchronization threshold

The effects of motion on synchronization can be explained
by analytical arguments in the case of networks without
degree-degree correlations. In particular we derive, as follows,
a lower-bound estimate for the critical strength λc as a
function of α. The average number wI of biased random
walkers at a node I of an undirected connected graph without
degree-degree correlations reads [37,38]

wI = WcIk
α
I∑N

J=1 cJ kα
J

� Wkα+1
I∑N

J=1 kα+1
J

= Wkα+1
I

N〈kα+1〉 , (7)

where cI = ∑N
J=1 aIJ kα

J . For a given α, the value wI depends
only on the connectivity kI of the node, so that all the nodes
with the same degree will have the same average number of
walkers. Thus, in the following we indicate as wk the number
of agents on a node with degree k.

We consider now the two limiting cases � → 0 and
� → ∞. When � → 0 (fast-switching approximation) the
agents on a node interact for an infinitesimal time interval
before moving to another node. In this limit we have a
well-mixed population of oscillators that can be approximated
as a single all-to-all Kuramoto model of W elements. Thus,
the critical value of the coupling λ in this case reads �c =
2/[W · π · g(0)] [3,36] and does not depend on α.

When � → ∞ (slow-switching approximation), i.e., when
the walk is much slower than the Kuramoto dynamics,
each node of the network is an all-to-all Kuramoto system
independent from the others. For a fixed value of λ, in some
nodes the oscillators will reach local synchronization before
eventually walking away, while in some other nodes they
will not. In fact, the critical coupling strength of a node I

is that of a set of wI all-to-all coupled Kuramoto oscillators
λc(I ) = 2/[wIπ · g(0)]. Hence, the critical coupling strength
for the local synchronization of the walkers at a node of degree
k reads

λc(k) = 2

wkπg(0)
= 4N〈kα+1〉

Wπkα+1
, (8)

where we have made use of Eq. (7). Therefore, in the slow-
switching approximation, at fixed values of W/N , α, and λ,
only agents at nodes of degree k such that λc(k) < λ will
attain local synchronization. Consequently, a necessary but
not sufficient condition to have global synchronization is that
there is at least one node J in the graph for which λc(kJ ) < λ.

Equation (8) sheds light on the two different microscopic
paths to synchronization observed in Fig. 2. Let us indicate as
kmin and kmax, respectively, the minimum and the maximum
degrees in the network. Consider two values of α, one larger
and one smaller than α∗ = −1, for instance, the two values
α = −2 and α = −0.25 corresponding to the two vertical lines
in Fig. 1(b). If we start increasing λ from λ = 0, the slow-
switching approximation predicts no local synchronization
until λ becomes larger than the smallest value of λc(k), cor-
responding to k = kmin if α < −1, or to k = kmax if α > −1.
At this point, if α < −1 (α > −1) the walkers at nodes with
the smallest (largest) degree attain local synchronization. If
we keep increasing λ, local synchronization is progressively
reached also at nodes with larger (or smaller) degrees when
α < −1 (or α < −1). We can therefore derive a lower bound

λ̃c(α) for the curve λc(α) delimiting the synchronization region
in Fig. 1(b), by considering the smallest value of λ at which
at least one class of nodes attains local synchronization. In
particular, for a finite-size SF network with P (k) ∼ k−γ with
γ ∈ (2,3], as the ones used in our simulations, we get

λ̃c(α) = 4(γ − 1)[(kmin)γ−1 − (kmin)α+1(kmax)γ−α−2]

πW (α + 2 − γ )
, (9)

when α > −1, and

λ̃c(α) = 4(γ − 1)[(kmax)α+1(kmin)γ−α−2 − (kmax)γ−1]

πW (α + 2 − γ )
,

(10)

for α < −1.
We notice that if the graph is uncorrelated, a motion rule

with α = −1 leads to a uniform distribution of the walkers over
the nodes since wI = W/N ∀I in Eq. (7), and all the nodes
attain local synchronization altogether at λ = 4N/(Wπ ), as
can be seen from Eq. (8). This corresponds to the largest
possible value λmax

c of the critical interaction strength. In
Figs. 1(a) and 1(b) we report as a dashed line the curves λ̃c(α)
obtained for the same values of W/N , kmin, kmax, and γ used
in the numerical simulations. Although the slow-switching
approximation provides only a lower bound for the critical
interaction strength, it works quite well for both kinds of SF
networks, and it also predicts quite accurately the position of
the cusp at α = α∗ = −1 for any value of γ in (2,3]. In general,
Eqs. (9) and (10) depend on the actual value of kmin and kmax.
However, power-law degree distributions with γ ∈ (2,3] are
characterized by unbound fluctuations, so that the value of kmax

for scale-free random graphs having the same values of N and
γ can vary in a substantial manner across different realizations.
In Fig. 3 we report the theoretical predictions for λc(α) as a
function of kmax obtained by Eqs. (9) and (10) for two values of

10-2

100

λc

50
100
150
200
250
300

-3 -2 -1 0
α

10-2

100

λc

γ=2.0

γ=3.0

kmax

FIG. 3. (Color online) Theoretical predictions for the critical
coupling strength λc(α) as a function of kmax for scale-free random
graphs with exponent γ = 2.0 (top panel) and γ = 3.0 (bottom
panel). When kmax increases, global synchronization is attained for
larger values of λ. Also an increase of γ , which corresponds to more
homogeneous degree distributions, produces an increase of the critical
coupling strength.
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γ , namely, γ = 2.0 and γ = 3.0. We observe that for fixed γ

larger values of kmax correspond to higher values of the critical
coupling λc(α). Moreover, by increasing γ , i.e., by moving
towards more homogeneous degree distributions, the critical
coupling for the onset of synchronization becomes larger. This
observation confirms that degree heterogenity tends to promote
global synchronization, as suggested by the phase diagrams
reported in Figs. 1(a) and 1(b).

C. Interaction versus motion time scales

We now briefly discuss the impact on synchronization of the
parameter �, which controls how often the agents perform a
step of random walk. We first consider the model in the limiting
case � → ∞, in which the agents are not allowed to move.
For each value of α, we distributed a population of W = 5000
walkers across the nodes of a random scale-free network with
N = 500 nodes and P (k) ∼ k−3, according to the stationary
distribution of Eq. (7). Since there is no motion, each oscillator
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FIG. 4. (Color online) Phase diagram reporting the local and
global order parameters rloc (upper panel) and r (lower panel) as
a function of α and λ for the metapopulation model in the limit
� → ∞ (W = 5000 agents on a scale–free network with N = 500
nodes and P (k) ∼ k−3). When there is no motion, the system is
globally incoherent, even if the local synchronization at the nodes
can be enhanced at will by increasing the value of the interaction
strength λ.

will remain at the initial node and will interact with the same
set of oscillators for the duration of the simulation. In this
limit, the metapopulation model is equivalent to a set of N

independent all-to-all Kuramoto systems, with the system at a
node of degree k having a critical interaction strength given in
Eq. (8).

In Fig. 4 we report the local and global order parameters
rloc and r as a function of α and λ. We observe that, for each
value of α, there exists a critical value of λ such that at least
one node of the network can attain local synchronization, and
by increasing λ we can reach high values of rloc [Fig. 4(a)].
Conversely, the global order parameter r always remains close
to zero, and no global synchronized state is found for any
value of α and λ [Fig. 4(b)]. Notice that the phase diagram
of Fig. 4(b) looks quite different from the one reported in
Fig. 1(b), which corresponds to a simulation with � = 0.05 on
the same network. This indicates that, in the absence of motion,
the system will remain incoherent at a global scale, even if
synchronization can emerge at the level of network nodes.

The behavior of the model for � → ∞ is better illustrated
by the cross-section plots shown in Fig. 5. Here, we report
the values of local and global order parameters rloc and r

for three different choices of the bias, namely, for α = −1.5
(black), α = −1.0 (red), and α = −0.5 (blue). Notice that
if λ is large enough all the nodes will eventually attain local
synchronization (rloc � 1), but for any combination of α and λ,
the system remains globally incoherent (r � 0). As expected,
all the nodes achieve full local synchronization altogether
when α = −1.0, i.e., when the system is initialized with an
equal number of walkers at each node.

We now consider the metapopulation model for finite values
of �. In Fig. 6 we report the value of the global order parameter
r as a function of �, for λ = 0.1 and two values of the motion
bias, namely α = −2.0 (red open circles) and α = 0.5 (blue
filled circles). When the value of � is large, i.e., when the
motion is rare with respect to the agents’ interaction, the

0 0.1 0.2 0.3 0.4 0.5
λ

0

0.2

0.4

0.6

0.8

1

r
loc

 - α = -1.5
r
loc

 - α = -1.0
r
loc

 - α = -0.5
  r

FIG. 5. (Color online) Cross-section plots of the two phase
diagrams in Fig. 4. We report rloc and r as a function of the coupling
strength λ for three different values of α. The absence of motion
hinders global synchronization (r � 0, orange dashed lines), even if,
for an appropriately large value of λ, all the nodes of the network can
reach complete local synchronization (rloc = 1, solid lines).
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FIG. 6. (Color online) Global order parameter r as a function
of � for λ = 0.1 and two values of the motion bias, respectively,
α = −2.0 (red open circles) and α = 0.5 (blue filled circles). Global
synchronization is attained when agents move frequently (� → 0),
while the system remains in an incoherent state if the motion is too
slow (� → ∞).

global order parameter decreases dramatically and approaches
the behavior of the limiting case � → ∞. This means that
even if the value of λ is large enough to guarantee that all
the agents on a node will attain full synchronization between
two subsequent steps of the random walk, the poor mixing
due to rare motion prevents the emergence of global order.
Conversely, if � is small then the interaction interval at
each node is not large enough to allow local synchronization;
nevertheless, the presence of fast motion enhances mixing
and promotes the convergence of each oscillator towards
a global synchronized state. The good agreement between
the prediction in the slow-switching approximation and
the numerical simulations reported in Fig. 1 indicates that
the value � = 0.05 corresponds indeed to an intermediate
regime of the system in which the motion is fast enough
to allow a sufficient mixing and the attainment of global
synchronization and, at the same time, it is slow enough to
avoid full mixing, for which λc(α) = �c ∀α.

IV. CONCLUSION

In this work we have shown a mechanism to induce and
control synchronization that is solely based on the agents’
motion. To this end, we introduce and study a metapopulation
model of random walkers moving over a complex network.
The agents obey a one-parameter motion rule that can bias
the motion either towards low-degree nodes or towards hubs.
Each walker is a Kuramoto oscillator and interacts with the
other oscillators present on the same node at a given time. To
our knowledge, this is the first time that synchronization has
been studied in a metapopulation model.

We have shown both numerically and analytically that (i)
the emergence of a synchronized phase is determined by
the value of the motion bias, which effectively acts as a
control parameter of a motion-induced phase transition; (ii)
for each fixed value of the interaction strength, there are two
critical values of the motion bias, so that a fall-and-rise of
synchronization can be purely driven by motion; and (iii)
the two phase transitions are associated with two different
microscopic paths to synchronization, respectively, driven
either by hubs or by low-degree nodes.

Prior research has suggested that the strength and topology
of interactions were the unique elements driving the transition
from an incoherent state to synchronization. Here we prove
that motion alone can control the onset of global coherence.
This study paves the way towards further investigations of the
interplay between mobility and synchronization in complex
systems.
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[38] R. Sinatra, J. Gómez-Gardeñes, R. Lambiotte, V. Nicosia, and

V. Latora, Phys. Rev. E 83, 030103(R) (2011).
[39] E. A. Bender and E. R. Canfield, J. Comb. Theory, Ser. A 24,

296 (1978).

032814-7

http://dx.doi.org/10.1103/PhysRevLett.96.034101
http://dx.doi.org/10.1103/PhysRevLett.96.034101
http://dx.doi.org/10.1103/PhysRevLett.100.174104
http://dx.doi.org/10.1103/PhysRevLett.100.174104
http://dx.doi.org/10.1103/PhysRevLett.96.164102
http://dx.doi.org/10.1103/PhysRevLett.100.114101
http://dx.doi.org/10.1103/PhysRevLett.102.034101
http://dx.doi.org/10.1103/PhysRevLett.107.234103
http://dx.doi.org/10.1063/1.2166492
http://dx.doi.org/10.1063/1.2166492
http://dx.doi.org/10.1103/PhysRevLett.100.044102
http://dx.doi.org/10.1103/PhysRevE.83.025101
http://dx.doi.org/10.1103/PhysRevE.83.025101
http://dx.doi.org/10.1103/PhysRevLett.108.204102
http://dx.doi.org/10.1103/PhysRevLett.108.204102
http://dx.doi.org/10.1103/PhysRevLett.110.114101
http://dx.doi.org/10.1103/PhysRevLett.110.114101
http://dx.doi.org/10.1038/nphys560
http://dx.doi.org/10.1038/nphys560
http://dx.doi.org/10.1073/pnas.0510525103
http://dx.doi.org/10.1073/pnas.0510525103
http://dx.doi.org/10.1038/srep00457
http://dx.doi.org/10.1038/srep00457
http://dx.doi.org/10.1103/PhysRevLett.99.148701
http://dx.doi.org/10.1103/PhysRevLett.99.148701
http://dx.doi.org/10.1016/j.jtbi.2007.11.028
http://dx.doi.org/10.1016/j.jtbi.2007.11.028
http://dx.doi.org/10.1073/pnas.0907121106
http://dx.doi.org/10.1073/pnas.0907121106
http://dx.doi.org/10.1038/srep00062
http://dx.doi.org/10.1007/BFb0013365
http://dx.doi.org/10.1103/RevModPhys.77.137
http://dx.doi.org/10.1103/PhysRevE.78.065102
http://dx.doi.org/10.1103/PhysRevE.78.065102
http://dx.doi.org/10.1103/PhysRevE.83.030103
http://dx.doi.org/10.1016/0097-3165(78)90059-6
http://dx.doi.org/10.1016/0097-3165(78)90059-6



