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Although several mechanisms can promote cooperative behavior, there is no general consensus about why
cooperation survives when the most profitable action for an individual is to defect, especially when the population
is well mixed. Here we show that when a replicator such as evolutionary game dynamics takes place on inter-
dependent networks, cooperative behavior is fixed on the system. Remarkably, we analytically and numerically
show that this is even the case for well-mixed populations. Our results open the path to mechanisms able to sustain
cooperation and can provide hints for controlling its rise and fall in a variety of biological and social systems.
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I. INTRODUCTION

The onset of global cooperation in large populations of
unrelated agents when defective actions provide the largest
short-term benefits at the individual level constitutes one of
the most amazing puzzles for evolutionary dynamics [1–4].
Recently, the structure of the interactions among individuals
seems to have provided a way out for cooperation to survive
in those scenarios, such as the Prisoner’s Dilemma (PD)
game, in which defective behaviors are evolutionarily favored
under the well-mixed assumption [5–7]. Although recent
results have shown that network reciprocity is not always
a viable mechanism to explain cooperation among humans
[8], larger cooperative levels are achieved if an evolutionary
game dynamics takes place on top of structured populations
and networks, in which nodes account for players and links
represent the existence of game interactions. Moreover, further
including real structural patterns of large systems [9] (scale-
free distribution for the number of contacts a player has
[10–13], the small-world properties [14,15], nonzero density
of triads [16,17], etc.) provides also high cooperative outputs.

On the other hand, in most cases a real population—
be it a biological or a social system—is not isolated and
interactions take place at and between different levels (or
layers) following different rules [18,19]. Think, for instance,
of an economical system, where different levels account
for different competitive markets and their interdependencies
(developers, manufactures, providers). The rules governing the
interactions at one layer are not necessarily the same as those
driving the dynamics at another layer; admittedly, within each
layer competition should exist while this is not necessarily the
case for interlayer interactions. Thus, a natural question arises
as to whether the observed degree of interdependency in real
systems is a relevant factor for the emergence and survival of
cooperative behavior.

The previous interdependency, which is also referred to as
multiplexity, can be easily incorporated into the framework of
any dynamical process by coupling two or more networked
populations in which links between individuals of the same
population involve a different dynamical relationship to
those established between members of different populations
[20–23]. In this paper, we focus on the case in which an
evolutionary PD game drives the interactions between agents

of the same population. In turn, the existence of links between
agents of different populations allow the two networks to
interact. We will assume that the latter interactions are ruled by
the Snowdrift (SD) game. In this way, defection is punished
when facing other defectors outside the original population,
thus balancing the evolutionary advantage that defectors find
by exploiting cooperators in their respective populations.

We henceforth analyze what new emergent behavior results
from the multilevel nature. As a first step in understanding
multilevel structures, we investigate a system made up by two
populations that interact through a number of links connecting
nodes located at each subsystem. Let us remark that, in this
simple framework, the two populations do not overlap (i.e.,
each individual belongs to only one of the two populations
considered). Exact analytical calculations can be carried out
for the case in which the population of each layer is well mixed,
through the nonlinear analysis of the two-coupled-variable
replicator equation for the strategic densities in both layers.
Our results show the emergence of a polarized state in which all
the individuals in one of the populations cooperate while all in
the other population defect. In addition we find quasipolarized
states, so that all the agents in one population are defectors,
while most of the other one cooperate. Moreover, we also
numerically show that the previous results hold for the case
of networked populations. As we will discuss later on, our
findings provide mechanisms for the rise and survival of
cooperation and for its control.

Let us first describe the evolutionary dynamics of two
interacting populations of size N1 and N2 (see Fig. 1).
Two agents belonging to the same population α (=1,2)
play a PD game so that a cooperator facing a cooperator
(defector) in population α obtains a payoff R = 1 (S = 0).
On the other hand, a defector facing a cooperator (defector)
obtains a benefit of T = b > 1 (P = r � 0). The games
played between agents of different populations follow the same
parametrization except for the situation in which two defectors
meet. In this case, the associated punishment is negative, P =
ε < 0, thus interpopulation games follow the SD formulation.
Importantly, the strategists’ competition for replication only
occurs among own-population players. That is to say that there
is no “interbreeding” (as it happens for different species, in
biological contexts) or “strategic diffusion” (as for functionally
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FIG. 1. (Color online) Schematic representation of the setup
considered. Two networked populations of (in this case equal)
sizes N1 = N2 = 9 interact through six dashed interpopulation links
whereas individuals belonging to the same population interact
via solid edges. The evolutionary game dynamics governing the
interactions of dashed and solid links are different as described in
the text.

heterogeneous layers in social or economical contexts) among
the individuals of different populations. In terms of imperfect
(and/or irrelevant) knowledge, the strategists from a population
are unaware of the replicating success of strategies in the
other population (and/or this information is irrelevant for its
replication).

II. WELL-MIXED POPULATION LIMIT

To start with, consider the case in which agents of the same
population (layer) are well mixed. Let us also assume that both
N1 and N2 are large enough (i.e., N1,N2 � 1). Under these
simple assumptions, an exact analytical description via the
analysis of the phase portrait of the two-dimensional replicator
equation for two-by-two matrix games is possible. In our well-
mixed population approximation an individual in population
α has Nα − 1 neighbors inside this population. Moreover, for
interactions between the two layers, we suppose that any pair
of nodes (each one of a different population) is present with
probability p. Thus, the number of interpopulation links is
equal to pN1N2.

Let us call xα the fraction of cooperators in the population α.
The replicator equations for the evolutionary game dynamics

are

ẋ1 = x1(1 − x1){(N1 − 1)[x1(1 − b + r) − r]

+N2p[x2(1 − b + ε) − ε]}
ẋ2 = x2(1 − x2){(N2 − 1)[x2(1 − b + r) − r]

+N1p[x1(1 − b + ε) − ε]}. (1)

The results of the theoretical analysis (see appendix) of these
coupled deterministic equations are illustrated in Fig. 2 for the
symmetric (thus nongeneric) case N1 = N2, and the simple
weak (r = 0) PD game for those intrapopulation encounters.
Below we will comment on the main qualitative changes for
the generic case [i.e., whenever both the size proportion β =
N1/N2 �= 1 and general PD (r > 0) game for intrapopulation
interactions apply].

The analysis of Fig. 2 shows a rather natural nonlinear
resolution of the conflict introduced by fitness-punishment
(ε) to interpopulations defective encounters. Briefly said,
even-symmetric (x1 = x2) states D (both populations are fully
defective) and C (fully cooperative populations) are both, for
any b > 1+, unstable against perturbations in all directions,
and stability resides instead on odd-symmetric polarized states
[A (all D in population 1 and all C in population 2) and its
symmetric transformed B (all C in population 1 and all D
in population 2)] for strictly positive temptation b less than
a bound bup(ε; p) = 1 − pε [see Fig. 2(a)]. At this critical
(bifurcation) value of b the interior nullclines ẋ1 = 0 and ẋ2 =
0 [see Fig. 2(b)] touch states A and B respectively. Increasing
the value of the temptation b above bup the polarized states
lose their stability in favor of the quasipolarized states [A′ (all
D in 1 and mostly C in 2) and its symmetric B′ ], which detach
from A and B and become attractors. At b = bc = 1 − pε

1−p

the interior nullclines coincide [see Fig. 2(c)] becoming a line
(A′B′) of marginally stable equilibria. Finally, for b > bc [see
Fig. 2(d)] the global attractor is the interior even-symmetric
state E, the intersection of the interior nullclines, which keeps
approaching, as b increases, the neighborhood of the high b

limit attractor, say the state D of fully defective populations.
This scenario remains qualitatively unchanged for strictly

positive values of the parameter r , provided 0 < r < −pε,
the only change being that the bifurcation value bc where the

FIG. 2. (Color online) Phase portrait of replicator equation (1) for the symmetric case (β = 1) and weak PD (r = 0) intrapopulation game,
for different values of the temptation b, with p = 0.3, and ε = −0.4. The direction of velocity field is indicated by the arrows, and its modulus
by the colors. We also plot the interior nullclines. For low values of b (a), the polarized states A and B are attractors. They lose stability at
b = bup (b), in favor of the quasipolarized states A′ and B′. These in turn destabilize at b = bc (c) when the nullclines coincide in a line of
marginally stable equilibria. From there on, the interior equilibrium E becomes the global attractor (d).
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quasipolarized states loose stability becomes

bc = 1 + r − pε

1 − p
. (2)

In other words, the weak PD limit (r = 0) for the intrapopula-
tion game is structurally stable with respect to (small enough)
positive parametric variations of the game parameter r . For
r > −pε, the scenario changes drastically: D is now a stable
equilibrium, but still, for b < bup (which doesn’t depend on r),
the polarized states are also stable equilibria. Only for larger
b > bup values of the temptation, D becomes the unique global
attractor. Summarizing the results for the symmetric case, the
attractor states for increasing values of b from b = 1+ follow
the sequence

A,B
bup→ A′,B′ bc→ E. (3)

when 0 � r < −pε while, when r > −pε, the sequence is

D,A,B
bup→ D. (4)

For the general case N1 �= N2, the lack of the population
interchange symmetry modifies some of the features seen in
the symmetric case. Without loss of generality, we assume that
β = N1/N2 > 1. On one hand, the lower bound of r for the
stability of the fully defective state D becomes now r = −βpε.
On the other hand, the bifurcation values at which the polarized
states lose their stability are now different,

b
up
B = 1 − pε

β
< b

up
A = 1 − βpε, (5)

as well as the bifurcation values (provided they exist) at which
quasipolarized states destabilize, bc

B < bc
A, where

bc
B = 1 + r2 − (pε)2

(r + βpε) − p(βr + pε)
(6)

bc
A = 1 + β(r2 − (pε)2)

(βr + pε) − p(r + βpε)
. (7)

Let us note that the polarized state A, where the defective
population is of larger size, turns out to have a wider range
of stability, as well as a larger basin of attraction, than the
state B. The results of the complete analysis of the replicator
equation (1) are summarized in Table I, where we show the
sequences of attractors coexisting in phase space. The seven
scenarios (a)–(g) correspond to different ranges of values of
the parameters r , β, p, and ε (see Appendix for further details).

III. EVOLUTION ON RANDOM NETWORKS

From the previous analysis of well-mixed populations, one
sees that polarized and quasipolarized states appear as generic
attractors of the evolutionary dynamics for wide ranges of
model parameters, which in turn has the effect of enhancing
in a remarkable way the asymptotic levels of cooperation in
the two-population system. On the other hand, for structured
populations, where individuals interact with their neighbors as
dictated by a given network of contacts, it is known that under
some assumptions cooperation is enhanced, a phenomenon
called network reciprocity [10,24].

While for well-mixed populations, the stability of polarized
states extends down to b = 1+, one should expect that at small
b > 1 values, the enhancement of cooperative fluctuations

TABLE I. Sequence of attractors in phase space for Eq. (1), as
b increases from b = 1+. The arrow indicates a bifurcation at the b

value that appears over the arrow. The scenarios (a)–(g) correspond to
different ranges of values of the parameters r , β, p, and ε, which are
made explicit in the appendix. Note that except for the scenario (a),
that corresponds to r > −βpε, polarized and quasipolarized states
dominate the asymptotic behavior.

Scenario Sequence

(a) D,A,B
b

up
B→ D,A

b
up
A→ D

(b) A,B
b

up
B→ A

b
up
A→ A′ bc

A→ E

(c) A,B
b

up
B→ A

b
up
A→ A′

(d) A,B
b

up
B→ A,B′ bc

B→ A
b

up
A→ A′

(e) A,B
b

up
B→ A,B′ bc

B→ A
b

up
A→ A′ bc

A→ E

(f) A,B
b

up
B→ A,B′ b

up
A→ A′,B′ bc

B→ A′

(g) A,B
b

up
B→ A,B′ b

up
A→ A′,B′ bc

B→ A′ bc
A→ E

due to network reciprocity in the defective population 1
destabilizes the polarized states below some critical value
blow. Moreover, one should also expect blow to decrease with
the parameter p, because higher values of p increase the
payoff that a (defector) individual in population 1 obtains
from encounters with (cooperator) individuals of population
2, thus decreasing the resilience of cooperative fluctuations
(network reciprocity) in population 1. In other words, for
low values of b, the interaction between populations acts
against network reciprocity. These expectations are fully
confirmed by the results from simulations of the evolutionary
dynamics in populations with a random network structure
of intrapopulation contacts, using the discrete version of
replicator dynamics.

In Fig. 3 we show the average cooperation 〈c〉 level
(over a sample of 200 different realizations) on the two-
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FIG. 3. (Color online) Average level of cooperation in the two-
population system as a function of b, for different values of the
fraction p of interpopulation contacts. Other parameters are r = 0,
ε = −0.4, N1 = N2 = 103. The two populations have a random
(Erdös-Rényi) network of contacts with average degree 〈k〉 = 6. See
the text for further details.
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FIG. 4. (Color online) Average level of cooperation in the popu-
lation 1 as a function of b, for different values of the fraction p of in-
terpopulation contacts. The population 1 (of size N1 = 103) has been
coupled to a smaller population 2 (N2 = 102). While initial strategies
in population 1 are equiprobables (random initial conditions), the
population 2 starts from the absorbent state of full defection. Other
parameters are r = 0, ε = −0.4. Both populations have a random
(Erdös-Rényi) network of contacts with average degree 〈k〉 = 6.

population system as a function of b for different values of
p and parameters as indicated. The two populations have a
random (Erdös-Rényi [9]) network of contacts with average
degree 〈k〉 = 6. In the initial conditions, the individuals of
both populations were chosen cooperators with probability
1/2. The plateau at 〈c〉 = 1/2 points out the asymptotic
polarized state. Moreover, the states with 〈c〉 <1/2 correspond
to quasipolarized regimes where all the individuals in one
population are defectors, while those with 〈c〉 >1/2, at values
of b < blow, result from states where all the individuals in
one population are cooperators. This represents a type of
quasipolarized states that were not found to be attractors of the
dynamics for well-mixed populations. The comparison with
the average cooperation level for noninteracting populations
(p = 0 in Fig. 3) confirms that for low values of b the
interpopulation interaction acts against network reciprocity.
From a complementary perspective, the networked populations
show new attractors, impossible to be so for coupled well-
mixed populations because they are the effect of network
reciprocity. On the other hand, for larger values of b, the
populations’ coupling favors the achievement of substantial
levels of cooperation, well beyond the typical values of b for
which network reciprocity ceases to be effective, this being
an effect already present in the well-mixed case. This clarifies
further the confluent effects of these two different mechanisms
of cooperation enhancement.

Finally, the robustness of polarized and quasipolarized
states suggests the use of the coupling to a defective population
as an engineered (control) procedure to induce high levels
of cooperation in a target population. To check for this
possibility, we have coupled a large population 1 with random
(equiprobable in strategies) initial conditions to a smaller
defective population 2. In Fig. 4 we show the asymptotic
average level of cooperation in a target population of size
N1 = 103 for different values of the average number, N2p, of
interpopulation contacts per individual of the target population.

IV. CONCLUSION

Summarizing, two PD populations SD coupled in condi-
tions of strict inbreeding (no interpopulation strategic diffu-
sion) evolve easily to polarized and quasipolarized strategic
probability densities in the well-mixed thermodynamical limit
of the evolutionary replicator dynamics. This happens also
when population structure is a complex network of contacts,
where other mechanisms (known as network reciprocity) of
enhanced cooperation also operate. The confluence of both
mechanisms has been analyzed in depth showing that polariza-
tion opposes network reciprocity at small values of the temp-
tation parameter, while both act (synergy) together enhancing
cooperation in one of the layers for higher temptation values.
This phenomenon, that could be rationalized as the effect
of incorporating a punishment to defective interpopulation
encounters, illustrates the remarkable effects that structural
multiplexity introduces in evolutionary dynamics.
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APPENDIX: PHASE PORTRAIT ANALYSIS OF THE
TWO-VARIABLE REPLICATOR EQUATION

The replicator equation that describes the continuum time
evolution of the cooperator fractions x1(t), x2(t) in subpopu-
lations 1 and 2 can be written as

ẋ1 = F1(x1,x2), ẋ2 = F2(x1,x2), (A1)

where the velocities F1,2, after time rescaling, are explicitly
given as

F1(x1,x2) = x1(1 − x1){β[x1(1 − b + r) − r]

+p[x2(1 − b + ε) − ε]},
F2(x1,x2) = x2(1 − x2){[x2(1 − b + r) − r]

+βp[x1(1 − b + ε) − ε]}. (A2)

The unit square 0 � x1,x2 � 1 is the invariant set of
interest here. To follow the phase portrait variation of a
two-degrees of freedom nonlinear system such as Eq. (A1)
is pretty straightforward for one-parameter variations. We are
dealing with a model where b, r, ε, β, and p are free model
parameters, each one inside their natural range (i.e., b > 1+,
0 � r � 1, ε < 0−, β � 1, and 0 � p � 1). In our systematics
below, we will consider continuum variation of b, from b = 1+
up to infinity, at fixed values of the other parameters and so we
will obtain the critical (bifurcation) points b∗(ε,r; β,p), where
the phase portrait of the evolution experiences qualitative
changes: the direction of increasing temptation b is most often
considered in recent literature on PD games. But we will
pay due attention also to variations of the parameter r and
find two important critical values that do not depend on the
value of the temptation b so that different scenarios of phase
transitions (inside the well-mixed population approximation
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to the thermodynamical limit N1,N2 → ∞) as b varies do
appear. Finally, we choose also β as an interesting (e.g., for
control applications) parameter to vary, and find also two
critical values that are temptation independent, which in turn
increases the number of those scenarios.

The best visualization of the velocity field is a phase portrait
where fixed (equilibrium) points and nullclines are also plotted,
as in Fig. 1 in the main text. A nullcline is the locus of
points defined by Fi(x1,x2) = 0 for some i. The nullclines
that correspond to F1(x1,x2) = 0 are the straight lines

x1 = 0, (A3)

x1 = 1, (A4)

x2 = −x1β(b − 1 − r) − (βr + pε)

p(b − 1 − ε)
, (A5)

while those that correspond to F2(x1,x2) = 0 are

x2 = 0, (A6)

x2 = 1, (A7)

x2 = −x1βp(b − 1 − ε) − (r + βpε)

(b − 1 − r)
. (A8)

The possible equilibria are the crossing points of any line
from the first group with any other line from the second one,
so there are nine candidates. Moreover, only solutions in the
unit square, 0 � x1,x2 � 1, interest us and this excludes two
of the crossing points (see below) leaving the following seven
possibilities, namely the four corners of the unit square

(i) A = (0,1),
(ii) B = (1,0),

(iii) C = (1,1),
(iv) D = (0,0),

and those whose location depends on parameter values,
(i) We call A′ the crossing point of nullclines (A3)

and (A8), whose coordinates are x1(A′) = 0 and

x2(A′) = −(r + βpε)

(b − 1 − r)
. (A9)

(ii) We call B ′ the crossing point of nullclines (A5)
and (A6), so that x2(B ′) = 0 and

x1(B ′) = −(βr + pε)

β(b − 1 − r)
. (A10)

(iii) Finally, we call E the crossing of (A5) and (A8). Its
coordinates are obtained as:

x1(E) = (b − 1 − r)(βr + pε) − p(b − 1 − ε)(βr + pε)

β[(p(b − 1 − ε)2 − (b − 1 − r)2]
,

(A11)

x2(E) = (b − 1 − r)(r + βpε) − p(b − 1 − ε)(r + βpε)

(p(b − 1 − ε)2 − (b − 1 − r)2
.

(A12)

The (missing in the list) crossings of (A4)–(A8), and of (A5)–
(A7), are easily seen to be always outside the unit square for
the range of parameters considered. Also inside this range, the
nongeneric event of nullclines’ coincidence only could happen
provided β = 1 and r > −pε, at a value bc(ε,r; β = 1,p) =
1 + r−pε

1−p
. Only then, the exotic (forced by symmetry) situation

in which there is a segment of marginally stable equilibria
occurs.

To determine the bifurcation points, one uses the spectral
analysis of tangent space perturbations around equilibria. The
linearized evolution of small perturbations around the fixed
point x∗ is given by the matrix(

∂F1
∂x1

∂F1
∂x2

∂F2
∂x1

∂F2
∂x2

)
x=x∗

(A13)

In what follows, the presentation of the results from the
phase portrait analysis of the nonlinear coupled ODE (A2)
tries to rationalize them in terms of evolutionary game theoretic
concepts, within a thermodynamical limit (statistical physics)
perspective.

1. Symmetric case: N1 = N2(= N).

For simplicity, as well as to illustrate neatly the systematics
that we follow, we analyze first the case of equal population
sizes. For this case, where populations are identical (though
distinguishable), the population interchange symmetry im-
poses that phase portrait is invariant under permutation of
coordinates (x1 ↔ x2), a nongeneric property that limits
severely the possible scenarios. The stability analysis of the
equilibria shows that there are two generic scenarios for the
sequence of bifurcations that appear when b increases from 1+
up to infinity.

(s1) If r > rc = −pε there is only one bifurcation at
bup(r,ε,β = 1,p) = 1 − pε. For b < bup, the phase portrait
has three stable equilibria with their own basins of attraction:
D, A, and B. The equilibria C, A′, and B′ are unstable,
and E is outside the unit square. At b = bup, A and B
destabilize (through collision with A′ and B′ that exit the unit
square) becoming saddle equilibria, and D becomes the unique
global attractor for b > bup. This translates into the following
sequence of attractors when temptation increases from 1+:

D,A,B
bup→ D. (A14)

(s2) If r < rc(p,ε), however, D is always unstable, and there
are two bifurcations at bup and bc (and note that bup < bc). For
b < bup the equilibria C, D are sources, E is a saddle, and A
and B are attractors, becoming saddle equilibria at bup where
A′ and B′ enter into the unit square. For bup < b < bc A′ and
B′ are the only attractors. At bc the segment A′B′ of marginally
stable equilibria is the limit set for all trajectories (nullcline’s
coincidence). For b > bc E becomes the unique (and even-
symmetric) global attractor. This last bifurcation restores the
symmetry of the asymptotic evolution that was spontaneously
broken at lower b values. The sequence of stationary limiting
(point) densities is

A,B
bup→ A′,B′ bc→ E. (A15)

Note that the condition r = rc(p,ε) that separates the
regimes where the equilibrium D is unstable (r < −pε) or
attractor (r > −pε), corresponds to the exact compensation
of the surplus rN of defective intrapopulation interactions
of a defector and the punishment pεN it receives from
interpopulation interactions. Below this critical value, full
defection is unstable to cooperative fluctuations. But, as we
have just seen, even in case the punishment from coupling is
weaker than surplus, polarized states have their own basins of
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attraction, away from whole defection, at low values of b > 1+.
This can be rationalized from the role that punishment plays
in our no interbreeding, punishing defective coupling setting.
Populations’ strategic polarization emerge as stable generic
asymptotic states of evolution, even when defectors can afford
external punishment (D being then fully stable): The duplex
(two coupled populations) has always the option to become
polarized or quasipolarized provided the initial conditions
belong to its basin of attraction.

2. General case: N1 �= N2.

The parameter p determines the fraction of interpopulation-
to-intrapopulation interactions any agent plays per unit time
in the symmetric (N1 = N2) case. This fraction changes to βp

and p/β (β > 1) for small and large populations respectively,
when symmetry of population interchange is absent. This
combination of parameters regulates how important to the
replicating power (fitness) of an individual the interpopulation
coupling is, and we then see that for the largest population the
effective coupling p/β is smaller. This makes the polarized
state A (where population 1 is defective) more robust than the
polarized state B, and provided both are attractors, the basin
of attraction of A is correspondingly larger. This is a major
qualitative change in the phase portrait of the velocity field of
evolution in the absence of symmetry. The concomitant change
is the shift, and in more extreme cases the disappearance, of
the bifurcations associated to the quasipolarized equilibria A′
and B′ (i.e., b

up
A,B and bc

A,B)

b
up
B (r,ε; β,p) = 1 − (p/β)ε, (A16)

b
up
A (r,ε; β,p) = 1 − βpε, (A17)

bc
B(r,ε; β,p) = 1 + r2 − (pε)2

(r + βpε) − p(βr + pε)
, (A18)

bc
A(r,ε; β,p) = 1 + β(r2 − (pε)2)

(βr + pε) − p(r + βpε)
. (A19)

Note that the minimum of this set of values is b
up
B , its

maximum is bc
A, and that the relative order of the other two

values is parameter dependent. Several generic scenarios of
phase portrait variations naturally follow from these major
effects, when the population interchange symmetry is absent.
Still, let us remark that the evolutionary attractiveness of the
odd-symmetric polarized (A and B) and quasipolarized (A′
and B′) asymptotic densities still dominates ample regions of
parameter space.

A first scenario, similar to the first one seen above for the
symmetric case, is found when r > rA

c (ε; β,p) = −βpε. In
this scenario, the fully defective state D is stable for all b > 1
values. For very low values of b, A and B are also stable. Due

to asymmetry, the instabilities of A and B occur at different
bifurcation values, b

up
B < b

up
A , so that state B destabilizes first

when b increases from b = 1+, as expected, i.e.,
(i) If rA

c < r there are only two bifurcations at b
up
B < b

up
A .

For all b > 1+, C is unstable and E is outside the unit square.
For b < b

up
B , the states D, A, and B are attractors. At b

up
B , B

collides with the unstable B′ that exits the unit square, then
becoming a saddle with unstable direction corresponding to
defective fluctuations in cooperative population 1. The same
happens mutatis mutandi (1 ↔ 2 interchange) to A at b

up
A ,

leaving finally D (for b > b
up
A ) as the global attractor.

D,A,B
b

up
B→ D,A

b
up
A→ D. (A20)

At r = rA
c , for a defective individual in population 2, and

state D, the internal surplus coupling punishment balance
exactly compensates. This means that changing to cooperator
makes no difference to its replicating power, and thus a zero
eigenvalue appears in the spectrum of the Jacobian (linear
stability) matrix of the fully defective state D. Inside the
range r < rA

c , D is always unstable faced with cooperative
fluctuations in the smaller population. Further down in surplus
(r) values, at r = rB

c = −(p/β)ε, D becomes also unstable
faced with cooperative fluctuations in the large population. In
other words, when decreasing r from large (compared to rA

c )
positive values of intrapopulation surplus, to 0+ (weak PD
limit), there are two critical values, where qualitative changes
of the phase portrait occur, which coincide with the change of
stability of D from stable (r > rA

c ) to saddle (rB
c < r < rA

c ),
to source (r < rB

c ).
Provided r < rA

c , if one considers the high b (→ ∞) limit,
one easily finds that it can be either mixed type (state E, interior
to the unit square) or quasipolarized (state A′, on the vertical
x1 = 0) regarding its convergence to virtually full defection.
The transition between these two qualitatively different high
temptation limit behaviors, for given values of ε,p, and r , is
controlled by the value of the population ratio β and it occurs
at the critical value

βA
c (ε,r; p) = p(r − ε)

r − p2ε
. (A21)

At this value of the population ratio, the bifurcation value
bc

A (where A′ collides with state E, this one entering into the
unit square) formally diverges, so that the collision occurs (or
doesn’t), depending on the value of the population ratio β, for
fixed value of p, r , and ε.

On the other side, the bifurcation value at bc
B only occurs

provided r < rB
c , but its relative order with respect to b

up
A

depends also on the value of β with a critical value at

βB
c (ε,r; p) = −pε(p2ε − r) −

√
p2ε2(p2ε − r)2 − 4p2ε(r − ε)(p2ε2 − r2)

2p2ε(r − ε)
. (A22)

The different possible combinations of all the previous
possibilities give the following scenarios.

(ii) If rB
c < r < rA

c , then the stable linear manifold of the
saddle point D (x2 = 0) does not allow B′ to be a stable

056113-6



EVOLUTIONARY DYNAMICS ON INTERDEPENDENT . . . PHYSICAL REVIEW E 86, 056113 (2012)

equilibrium, while its unstable direction (x1 = 0) pushes
evolution to polarized A or quasipolarized A′ states; C
is a always a source for all b > 1. Two different sce-
narios are realized depending on the interpopulation ratio
value, β.

(ii1) If β > βA
c [see Eq. (A21)], bifurcations only occur

at b
up
B < b

up
A . At b

up
B , the collision of B and the unstable

exiting B′ occurs, while at b
up
A , it takes place the collision

of A with the entering state A′. The corresponding
sequence of attracting equilibria is given by

A,B
b

up
B→ A

b
up
A→ A′. (A23)

(ii2) If βA
c > β, besides the bifurcations described in

(ii1), there is an additional bifurcation at bc
A, where A′

collides with state E that enters into the unit square. The
corresponding sequence of attracting equilibria is given
by

A,B
b

up
B→ A

b
up
A→ A′ bc

A→ E. (A24)

The presence or absence of the bifurcation bc
A determines

whether the approach to the high temptation limit is via mixed
interior type E state, or edge quasipolarized type A′ state, so
that for values of β below critical (βA

c ), virtually full defection
(1−,1−) is approached with nonzero cooperation levels in both
populations as b diverges.

(iii) If r < rB
c , both quasipolarized states A′ and B′ enter

into the unit square at b
up
B and b

up
A , respectively. B′ always

destabilizes at bc
B (> b

up
B always) to become a saddle through

collision with the exiting unstable interior equilibrium E. This
may happen before [as in (iii1) and (iii2) below] or after [as
in (iii3) and (iii4)] the entrance of A′ at b

up
A depending on β

value (relative to βB
c ). And finally note that the bifurcation at

bc
A only occurs for β < βA

c , as analyzed above, to arrive at the
following possible four scenarios.

(iii1) If max(βA
c ,βB

c ) < β, then bc
B < b

up
A , and bc

A is absent

A,B
b

up
B→ A,B′ bc

B→ A
b

up
A→ A′. (A25)

(iii2) If βB
c < β < βA

c , then bc
B < b

up
A , and bc

A occurs

A,B
b

up
B→ A,B′ bc

B→ A
b

up
A→ A′ bc

A→ E. (A26)

(iii3) If βA
c < β < βB

c , then b
up
A < bc

B , and bc
A is absent

A,B
b

up
B→ A,B′ b

up
A→ A′,B′ bc

B→ A′. (A27)

(iii4) If β < min(βA
c ,βB

c ), then b
up
A < bc

B , and bc
A occurs

A,B
b

up
B→ A,B′ b

up
A→ A′,B′ bc

B→ A′ bc
A→ E. (A28)

This analysis provides the three-dimensional phase diagram
(r,β,b) for fixed, though arbitrary, ε and p. It exhibits a wealth
of different macroscopic phases separated by critical lines and
surfaces. It shows that polarized and quasipolarized phases
dominate wide regions in parameter space. This illustrates
the effects of interpopulation trade of fitness (even under the
simplest possible structure of interpopulation and intrapop-
ulation contacts) on the evolution of PD replicators. Note
that if one uses the adjusted replicator equation introduced
in Ref. [1], the stability analysis of the fixed points of the
dynamics could show some differences, as already remarked
in Ref. [25] concerning the evolutionary dynamics of the Battle
of the Sexes game.
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[11] J. Gómez-Gardeñes, M. Campillo, L. M. Florı́a, and Y. Moreno,
Phys. Rev. Lett. 98, 108103 (2007).
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Moreno, Phys. Rev. E 79, 026106 (2009).
[25] A. Traulsen, J. C. Claussen, and C. Hauert, Phys. Rev. Lett. 95,

238701 (2005).

056113-7

http://dx.doi.org/10.1146/annurev.soc.24.1.183
http://dx.doi.org/10.1126/science.309.5731.93
http://dx.doi.org/10.1126/science.325_1196
http://dx.doi.org/10.1016/j.physrep.2007.04.004
http://dx.doi.org/10.1016/j.plrev.2009.08.001
http://dx.doi.org/10.1016/j.plrev.2009.08.001
http://dx.doi.org/10.1016/j.biosystems.2009.10.003
http://dx.doi.org/10.1073/pnas.1206681109
http://dx.doi.org/10.1073/pnas.1206681109
http://dx.doi.org/10.1016/j.physrep.2005.10.009
http://dx.doi.org/10.1103/PhysRevLett.95.098104
http://dx.doi.org/10.1103/PhysRevLett.95.098104
http://dx.doi.org/10.1103/PhysRevLett.98.108103
http://dx.doi.org/10.1016/j.jtbi.2008.03.007
http://dx.doi.org/10.1016/j.jtbi.2008.03.007
http://dx.doi.org/10.1142/S0129183107011212
http://dx.doi.org/10.1142/S0129183107011212
http://dx.doi.org/10.1103/PhysRevE.63.030901
http://dx.doi.org/10.1103/PhysRevE.63.030901
http://dx.doi.org/10.1140/epjb/e2007-00124-5
http://dx.doi.org/10.1103/PhysRevE.77.036120
http://dx.doi.org/10.1103/PhysRevE.77.036120
http://dx.doi.org/10.1103/PhysRevE.78.017101
http://dx.doi.org/10.1103/PhysRevE.78.017101
http://dx.doi.org/10.1073/pnas.1004008107
http://dx.doi.org/10.1073/pnas.1004008107
http://dx.doi.org/10.1126/science.1184819
http://dx.doi.org/10.1038/nature08932
http://dx.doi.org/10.1073/pnas.1008404108
http://dx.doi.org/10.1073/pnas.1008404108
http://dx.doi.org/10.1209/0295-5075/97/48001
http://dx.doi.org/10.1209/0295-5075/97/48001
http://dx.doi.org/10.1038/srep00620
http://dx.doi.org/10.1103/PhysRevE.79.026106
http://dx.doi.org/10.1103/PhysRevLett.95.238701
http://dx.doi.org/10.1103/PhysRevLett.95.238701



