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We present a mechanism to avoid congestion in complex networks based on a local knowledge of traffic
conditions and the ability of routers to self-coordinate their dynamical behavior. In particular, routers make use
of local information about traffic conditions to either reject or accept information packets from their neighbors.
We show that when nodes are only aware of their own congestion state they self-organize into a hierarchical
configuration that delays remarkably the onset of congestion although leading to a sharp first-order-like con-
gestion transition. We also consider the case when nodes are aware of the congestion state of their neighbors.
In this case, we show that empathy between nodes is strongly beneficial to the overall performance of the
system and it is possible to achieve larger values for the critical load together with a smooth, second-order-like,
transition. Finally, we show how local empathy minimize the impact of congestion as much as global mini-
mization. Therefore, here we present an outstanding example of how local dynamical rules can optimize the
system’s functioning up to the levels reached using global knowledge.
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I. INTRODUCTION

Complex communication networks have recently attracted
a lot of attention from scientists due to the discovery of the
topological features of real communication systems such as
the Internet �1�. The structure of these communication sys-
tems is efficiently described by a graph in which nodes rep-
resent routers and edges account for the communication
channels. However, the structure of these graphs is far from
being purely random. Quite on the contrary, they typically
show a scale-free �SF� distribution for the number of com-
munication channels departing from and arriving to a sys-
tem’s element. The use of modern complex network theory
�2–4� together with tools inherited from nonequilibrium sta-
tistical physics �5� have allowed to study the dynamical
properties of such communication systems. In particular, this
approach has been successfully applied to the study of the
structural evolution �6,7� of the Internet, its navigability
�8–10� and dynamical properties �11–13�, or the design of an
efficient Digital Immune System �14–19�.

A lot of the recent literature on communication networks
has tackled the critical properties of their jamming and con-
gestion transitions �20–29�. These studies have focused on
the design of efficient routing strategies that, on one hand,
provide with short delivery times and, on the other hand,
avoid the onset of the congested state in which the load of
packets in the system increases, thus causing the failure of
information flow. It has been shown that finding the best
suited strategy depends strongly on two main features: the
topological patterns of the particular network and the load of
information on top of it. Regarding the first of these two
issues, a number of routing mechanisms have been studied
on different structures �29–32� allowing to design resilient
network backbones �33–35�.

Many of the routing policies proposed so far rely on the
�static� structural properties of the communication network.
Examples of such policies are biased random walks �36,37�,
shortest-path �38,39�, and efficient-path �40� schemes. These
routing mechanisms can be conveniently reformulated to in-
corporate the information about the dynamical state of the
system, i.e., the congestion state of routers. This allow to
dynamically change the paths followed by information pack-
ets in order to bypass those overcongested routes. In this
line, congestion-aware schemes have significantly improved
the performance of biased random walks �41�, shortest-path
�42,43� and efficient-path �44� routings. In addition to the
design of efficient routing protocols, several strategies to
avoid congestion have been implemented. Remarkable ex-
amples of these strategies are the implementation of incom-
ing flow rejection �45,46� and packet-dropping mechanisms
�47� for avoiding the congestion of single nodes, or the ad-
dition of a router memory to avoid packets getting trapped
between two adjacent nodes �48�.

All the above studies have assumed that both network
topology and the mechanisms to avoid congestion are static
�i.e., neither topology nor the routing strategies change�.
However, this approach neglects that, even for the same
graph, the optimal routing policy depends strongly on the
state of congestion of the system �42,43,45,46,49,50�. There-
fore, in order to balance correctly the congestion in a com-
munication system it seems appropriate to allow the ele-
ments �routers� to switch to the best suited strategy to avoid
congestion given the instant traffic conditions. In this article,
we propose an adaptive mechanism that allows nodes to
choose their individual strategies instead of imposing a com-
mon policy. In this adaptive protocol routers exploit their
local information about the congestion state of the system to
decide whether to accept incoming packets. First, in Sec. II,
we introduce a minimal routing model without any adaptive
mechanism that allow us to unveil the role of rejection when
it is externally tuned. In Sec. III, we will consider that each
router can adopt its own rejection strategy and make some*gardenes@gmail.com
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analytical derivations about the optimal strategic configura-
tion to avoid the congestion onset. In Sec. IV we will imple-
ment our first adaptive mechanism and show that when
nodes are allowed to dynamically adapt their own strategy,
while only being aware of their own congestion state �myo-
pic case�, the onset of congestion is shifted to a larger critical
load �with respect to the static algorithm introduced in Sec.
II�. This improvement is due to the self-organization of the
strategies of nodes into degree-correlated configurations.
However, we will show that the delay of the onset of con-
gestion comes together with a sharp, first-order-like, transi-
tion that provides no dynamical signals about the onset of
congestion. Finally, in Sec. V we show that when nodes are
aware of the congestion state of its nearest neighbors and
empathize with them, it is possible to recover the former
large critical load together with a smooth phase transition,
avoiding the uncertain scenario of the myopic adaptive
model. More importantly, we will show that tuning conve-
niently the degree of empathy between routers it is possible
to recover, through a local mechanism, both the congestion
levels and the rejection patterns provided by the global mini-
mization introduced in Sec. III.

II. MINIMAL TRAFFIC MODEL

Let us start by introducing the minimal traffic model in
which the adaptive algorithm will be implemented below. In
this model, we consider the transfer of information packets
between adjacent routers as a probabilistic event. Inspired by
�45,46�, we consider a set of stochastic equations for describ-
ing the time evolution of the queue length of the nodes at
some time t, qt= �qi

t�. The queue length of a given node, qi
t,

can either increase or decrease due to several events. First, at
each time step and with probability p, a new packet is gen-
erated being added to the queue of the node. Second, at each
time step each node tries to send a packet in its queue to any
of its first neighbors. This packet can be rejected by the
chosen neighbor with some probability �. If the packet is
accepted, it may be removed from the system with certain
probability �. These two latter events mimic the effects, al-
though with some important differences, of an active queue
control strategy as the random early detection �RED� �51�
present on Internet routers and the arrival of the packet to its
final destination, respectively. Following the above ingredi-
ents we can write the time-discrete Markov chain of the
minimal traffic model as

qi
t+1 = qi

t + p + �
j=1

N
��qj

t�Aji

kj
�1 − ���1 − ��

− ��qi
t��

j=1

N
Aij

ki
�1 − �� , �1�

where Aij represents the �i , j� term of the adjacency matrix of
the network substrate and ��x� is the Heaviside step function
���x�=1 if x�0 and ��x�=0 otherwise�. Since our network
is undirected and unweighted, the adjacency matrix is de-
fined as Aij =Aji=1 if nodes i and j are connected and Aij
=Aji=0 otherwise. The quantity ki is the degree of a node

i�� jAij =ki�, i.e., the number of routers connected to it. The
right-hand-side of Eq. �1� contains two terms accounting for
the incoming flow of packets that arrive to the queue of node
i, namely, p �accounting for the external load of packets� and
the first sum �accounting for the arrival of packets from its
first neighbors�. On the other hand, the second sum in Eq. �1�
accounts for the probability that a packet from i is delivered
to a first neighbor.

The set of Eqs. �1� are solved starting from a zero con-
gestion state: qi

0=0∀ i. The evolution of the system is moni-
tored by means of the following order parameter �23�:

��t� = lim
T→�

Q�t + T� − Q�t�
pT

, �2�

where Q�t� is the sum of all the queue lengths at time step t,
Q�t�=�i=1

N qi
t. The stationary value, �, of the above order pa-

rameter is bounded �0���1� and describes the dynamical
regime in which the system ends up. Namely, �=0 indicates
that the system is able to balance the incoming flow of new
packets with a successful delivery of the old ones. In this
case the system is said to operate in the free-flow regime.
Instead, when ��0 the above balance is not fulfilled and the
queues of the nodes increase their size in time at a rate � · p.
In this latter situation the system is in the congested phase.

We have studied the behavior of the order parameter � by
taking the rate of packet creation p as the control parameter.
The arrival-to-destination probability is set to �=0.2 as the
usual value found in the Internet �1�. The corresponding
phase diagrams are shown in Fig. 1 for several values of the
rejection probability � using a SF network of N=5000 with
P�k��k−2.2. As observed in the figure, the transition from
free-flow to congestion occurs in a smooth way at low values
of p being the critical point pc=0.02 for �=0 �no rejection�.
However, as the rejection rate � increases the value of pc
decreases and � increases faster �see inset in Fig. 1�.

III. ANALYTICAL APPROXIMATION OF GLOBAL
CONGESTION MINIMIZATION

The above results question the convenience of implement-
ing a rejection mechanism in routing models. However, the
bad performance of this rejection mechanism relies on the
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FIG. 1. �Color online� Phase diagrams, ��p�, of the minimal
traffic model using different values of the rejection rate �. The inset
shows the existence of different critical values pc when varying �.
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homogeneous distribution of the rejection rates across the
routers of the network. We now explore the general situation
in which the individual rejection rates are independent.
Therefore the set of Eqs. �1� transforms into

qi
t+1 = qi

t + p + �
j=1

N
��qj

t�Aji

kj
�1 − ���1 − �i�

− ��qi
t��

j=1

N
Aij

ki
�1 − � j� . �3�

This new set of equations is now used to determine the op-
timal set ��i� so that congestion is minimized for a given
value of p. To this aim, we first use two assumptions: �i� the
nodes have reached a stationary state, qi

t+1=qi
t∀ i, and �ii� the

queue length of nodes is nonzero, ��qi
t�=1∀ i. These provi-

sos admitted, Eqs. �3� turn into the following set of equations
for the rejection rates of the routers ��i�:

0 = p + �
j=1

N
Aji

kj
�1 − ���1 − �� − �

j=1

N
Aij

ki
�1 − �� . �4�

Now we make use of the annealed approximation of the ad-
jacency matrix �52–54�:

Aij = Aji =
kikj

N	k

, �5�

where 	k
 is the average degree of the network �	k
�4 in our
case�. Introducing the annealed expression �5� into Eqs. �4�
we obtain

ki�1 − �i� =
1

1 − �
�	k�1 − ��
 − p	k
� , �6�

where 	k�1−��
=� jkj�1−� j� /N. Equation �6� clearly shows
that the larger the degree of a router the larger its rejection
rate. Therefore, from this expression we observe that a non-
homogeneous distribution of rejection rates across the rout-
ers is beneficial to assure the free-flow condition �and thus to
delay the onset of congestion�. We can calculate the expres-
sion of the rejection rate by computing the value of
	k�1−��
. From Eq. �6� we obtain

	k�1 − ��
 =
1

1 − �
�	k�1 − ��
 − p	k
� , �7�

and finally we have

	k�1 − ��
 =
p

�
	k
 . �8�

Therefore, the rejection rate of a node with connectivity ki
reads

�i = 1 −
p	k

�ki

. �9�

As anticipated above, expression �9� shows that the rejection
rates of nodes should depend on their degrees rather than
being externally set to a constant value. In Fig. 2 we apply
Eq. �9� to plot the rejection patterns corresponding to differ-

ent values of the external load p. As shown, �i decreases
with p and increases with ki.

The assumptions made in order to obtain Eq. �9� point out
that its validity, for all the nodes, should be restricted to the
proximity of the critical point pc. First, for p	 pc many of
the queues are zero �invalidating assumption �ii�� thus mak-
ing the rejection rate imposed by Eq. �9� too restrictive for
the real traffic conditions. On the other hand, for p� pc as-
sumption �i� does not hold for all the nodes. This is mani-
fested by the prediction of negative rejection rates, �i	0, in
Eq. �9� for those nodes with low connectivity. In practice, the
impossibility of displaying negative rejection rates fixes their
rejection rate to �i=0. However, those nodes with large
enough connectivity can still avoid congestion by means of
positive rejection rates as described in Eq. �9� �see Fig. 2�.
Following these arguments, we can estimate the exact value
of pc as the maximum value of p for which �i
0 for all the
nodes in the network. In particular, given that, for a given p,
the value of �i increases with ki we obtain pc imposing in Eq.
�9� that those nodes with the minimum connectivity, ki
=kmin, have �i=0. Since in our case kmin=2 and 	k
�4 we
obtain pc�0.1. Therefore, by externally fixing the rejection
rate of each node as dictated by Eq. �9� we can assure the
permanence in the free-flow phase up to pc�0.1.

IV. MYOPIC ADAPTABILITY

The minimal traffic model introduced in Sec. II shows
that system’s performance deteriorates as soon as rejection
rates are uniformly set in the system. However, in Sec. III we
have shown that a nonuniform configuration for the rejection
rates shifts the critical load to larger values. However, this
nonuniform configuration has been externally imposed and
derived analytically following different assumptions. A cor-
rect derivation of the optimal configuration would imply, on
one hand, a more sophisticated calculation and, on the other
hand, a complete knowledge of the architecture of the net-
work. This latter condition makes unfeasible the external
tuning of the individual rejection rates.

In order to overcome the need of global knowledge about
the topology of the network we now introduce an adaptive
scheme based solely on the local information available to

10 20 30 40 50 60
k

i

0

0.2

0.4

0.6

0.8

1

η i

p = 0.01
p = 0.05
p = 0.10
p = 0.25
p = 0.50
p = 0.70

FIG. 2. �Color online� Rejection rates of nodes as a function of
their degree �i�ki� as obtained from Eq. �9�. The curves correspond
to different values of the external load of information p.
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nodes. In this adaptive setting we will allow nodes to choose
their own rejection rate so that the dynamical state of a node
will be described by both qi

t and �i
t,

qi
t+1 = qi

t + p + �
j=1

N
��qj

t�Aji

kj
�1 − ���1 − �i

t�

− ��qi
t��

j=1

N
Aij

ki
�1 − � j

t� . �10�

The individual choice of each instant value �i
t aims at oper-

ating at the optimal regime as given by the external param-
eters p and �. To this aim, each node chooses its own rejec-
tion rate for the following time-step attempting to reach an
optimal queue length, qopt= p /�, so that traffic is homoge-
neously distributed across the network. To this end, a node
raises or decreases its own rejection rate depending on the
deviation of its instant queue length from the optimal queue,
�i

t=qi
t−qopt. This rationale mimics a myopic behavior by

which, regardless of the congestion state of the system,
nodes are allowed to close the door to new packets while
decreasing their respective queues. To incorporate this adap-
tive behavior we couple Eqs. �10� with the following evolu-
tion equations for the set ��i

t�:

�i
t+1 =

1

1 + exp�− ��i
t�

. �11�

This evolution rule takes the form of the saturated Fermi
function so that congested nodes, qi�qopt, will tend to total
rejection, �i

t+1→1, whereas those undercongested will open
the door to new packets, �i

t+1→0. The velocity of the tran-
sition from these two regimes is controlled by � since it
accounts for the reactivity of nodes to congestion. Note, that
�i

t+1=0.5 will be adopted whenever qi
t=qopt.

The adaptive Eqs. �11� allow for abrupt changes in the
rejection rates between two consecutive time steps. Thus, we
also explore a different formulation,

�i
t+1 = �i

t + ��i
t, �12�

in which the rejection rates evolve smoothly. Rule �Eq. �12��
is completed by assuring that �i remains bounded so that 0
��i�1. In the above Eq. �12�, � acts as the inverse of the

time between two consecutive time steps of the adaptive dy-
namics. Therefore, in the continuous time approximation of
Eq. �12�, the derivative of the rejection rate is equal to the
difference between the instant queue length and its optimal
value, i.e., �i

t=qi
t−qopt. Note that in this setting when qi

t

=qopt a router will adopt �i
t+1=0.

In the following we will use the two formulations for the
myopic adaptive model and show that the results are quali-
tatively the same. Namely, we will call model A to Eqs. �10�
and �11�, and model B to the formulation using Eqs. �10� and
�12�. Note that in both models the parameter � controls the
reaction speed of nodes to congestion. In this direction, our
numerics have shown that by changing � one basically con-
trols the duration of the transient time before the stationary
distribution of the rejection rates is reached. In the following,
we set �=10 and �=10−2 in models A and B, respectively.

In the top panel of Fig. 3 we show the phase diagram,
��p�, of the myopic adaptive model with the two formula-
tions. As observed, in both formulations the myopic model
displays an abrupt, first-order-like, transition from the free-
flow to the congested state. Moreover, in Fig. 3 we have also
plotted the phase diagram of the minimal model when �=0,
i.e., its most congestion-resilient version, to show the im-
provement of myopic adaptability by shifting the jamming
transition from pc=0.02 to pc�0.1. This value for the criti-
cal load is exactly the same as the one predicted in Sec. III
by means of the analytical approximation using global
knowledge. Thus, the myopic adaptive model, equals the de-
lay of the congestion onset obtained by minimizing conges-
tion globally.

To analyze the roots of the resilience of the myopic adap-
tive routing to congestion we have plotted in the bottom
panel of Fig. 3 the mean value of the rejection rate, 	�

=�i=1

N �i. In this case we observe that models A and B display
the same pattern after the sharp transition to congestion, i.e.,
the sudden closing of all the doors in the network thus caus-
ing the abrupt transition to ��1 as soon as p� pc. On the
other hand, the configurations adopted by both models before
the onset of congestion, p	 pc, are quite different: while in
model B 	�
�0, for model A a significant part of the popu-
lation adopts �i�0. Surprisingly, in this latter setting the
average rejection rate decreases as we approach the critical
point, pc.
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FIG. 3. �Color online� �Left� Phase diagram ��p� for the myopic routing models A �squares� and B �diamonds� and for the minimal
routing model �circles�. �Right� Average rejection rate 	�
 as a function of p of the former three routing schemes.
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To have a deeper insight about the microscopic configu-
rations that allow to delay the onset of congestion we show
in Fig. 4 the set of individual rejection rates of nodes ��i�
ranked according to their degrees. In both models A and B,
the correlation between �i and ki is clear since all the routers
within the same degree-class display similar rejection rates.
First, in model A we observe that for p=0.01 the system
self-organizes homogeneously around ��0.4. However,
when p increases the rejection rates of low-degree classes
decreases while hubs start to close their doors progressively
as p increases. For model B the microscopic configurations
adopted as p increases are similar regarding the behavior of
high-degree nodes. However, in this latter scenario low-
degree nodes remain accepting incoming packets up to the
congested state. These two figures show that the two differ-
ent internal dynamics �showing different microscopic orga-
nizations� lead to the same macroscopic result: the delay of
the onset of congestion.

Let us highlight that the delay of the congestion onset in
this myopic adaptive setting again contradicts the results ob-
tained for the minimal routing model in which, even a small
�homogeneously distributed across routers� rejection rate
leads to an increase of the congestion in the system. Quite on
the contrary, the myopic adaptive model points out the same
idea concluded from the global minimization of congestion:
a hierarchical �degree-based� organization of the rejection
rates by the system is strongly beneficial to avoid the con-
gestion of the system. However, from Fig. 4 it becomes evi-
dent that the strategies self-adopted in the myopic adaptive
settings are clearly different than the ones obtained in Sec.
III from Eq. �9� when congestion was minimized using glo-
bal knowledge. Although in Eq. �9� the value of the rejection
rate increases with the degree of the node �as in the myopic
setting�, the evolution with p is quite different. Thus, al-
though the critical load has been shifted to the same value as
the one found in Sec. III, the self-organized patterns of the
rejection rates in the myopic settings reveal a clearly differ-
ent scenario.

V. EMPATHETIC ADAPTABILITY

The myopic adaptive setting has improved remarkably the
resilience to congestion without the need of tuning any ex-

ternal parameters. However, the existence of an abrupt phase
transition, again as found in �39,42,43,48�, demands for fur-
ther improvements. The main goal in order to soften such
abrupt transition is to avoid that all the nodes close their
doors due to its own congestion by incorporating an empa-
thetic behavior based on the local knowledge about the dy-
namical state of their neighbors. This empathetic behavior
should motivate congested nodes to open their doors when
detecting a hypercongested state in its surroundings. To this
aim we take model B �55� and reformulate its equations as
follows:

�i
t+1 = �i

t + ���1 − 
��i
t − 
	� j

t
�i
� . �13�

In the above equations we introduce a new term accounting
for the average level of congestion in the neighborhood, �i,
of a node i,

	� j
t
�i

= �
j=1

N
Aij

ki
� j

t . �14�

The relative importance that nodes assign to the local level
of congestion in their neighborhoods with respect to their
own state is controlled by the parameter 
. In particular,
when 
=0 we recover the myopic setting whereas for 
=1
routers behave “altruistically” and their decisions are based
solely on their neighbor’s state of congestion. Thus, the pa-
rameter 
 measures the degree of empathy between con-
nected routers.

In the top panel of Fig. 5 we plot the phase diagrams for
several values of 
 together with that of the minimal non-
adaptive routing model. We observe that for 
	0.5 the
phase transition is similar to that of the myopic adaptive
model �
=0�, i.e., showing a critical load of pc�0.1 fol-
lowed by a first-order transition to full congestion. However,
from the figure we observe that when 
�0.5 the transition
to congestion occurs smoothly, thus recovering the behavior
of the minimal model. On the other hand, the value of pc also
decreases with 
 �thus anticipating the onset of congestion�
although it remains close to the original value p�0.1 until

�0.63. Moreover, for p� pc, the curves corresponding to

=0.63 and 
=0.75 reach levels of congestion similar to
those observed in the minimal model.
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FIG. 4. �Color online� Distribution of the individual rejection rates �i across degree-classes for several values of p in the myopic routing
models A �left� and B �right�.
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In order to gain more insight about the strategy adopted in
the empathetic setting we have computed the average level
of rejection rate as a function of p for the relevant values of

. In the bottom panel of Fig. 5 we observe that those curves
corresponding to 
�0.5 are quite different from those ob-
tained in Fig. 3 for the myopic adaptive setting. In particular,
when p� pc the empathetic adaptability shows a large
amount of rejection. However, as p increases the average
rejection rate decreases monotonously. This high-rejecting
behavior for p	 pc, was not observed in the myopic scheme.
Quite on the contrary, it was shown that nearly all the doors
were open in the subcritical regime. However, the high rate
of rejection observed in Fig. 5 is due to the large degree of
empathy �
�0.5� and the existence of a number of under-
congested nodes, �i	0, in the subcritical regime. Under
these low traffic conditions, most nodes will close partially
their doors when detecting undercongested neighborhoods,
	� j

t
�i
	0, in order to benefit from the availability of neigh-

bors to handle their packets. This situation is highly dynami-
cal and most of the nodes experiment large fluctuations in
their rejection rates until the system equilibrium is reached.
This microscopic scenario, although clearly different from
that of the myopic setting, enables to delay the onset of con-

gestion in an efficient way. On the other hand, as p ap-
proaches pc and for p� pc we observe that �for 
�0.5� the
value of 	�
 decreases to 0 as p increases. This is due to both
the large number of overcongested neighborhoods, 	� j

t
�i
�0, surrounding routers in the super-critical regime and
their large degree of empathy. As expected, empathy pre-
vents from the sudden door closing when p� pc, thus favor-
ing a smooth phase transition displaying congestion levels
similar to those observed in the minimal routing model in the
supercritical regime.

Interestingly, the monotonous decrease of 	�
�p� from
	�
=1 at p=0 shown in Fig. 5, points out a similar behavior
to that obtained by means of global minimization of conges-
tion. As shown in the bottom panel of Fig. 5 the theoretical
estimation of 	�
�p� �circles� follows the same trend as the
self-adopted patterns for 
�0.5. To analyze in detail the
similarity between the empathetic setting and the micro-
scopic patterns predicted by global minimization of conges-
tion we plot in Fig. 6 the average value of the rejection rate
as a function of the degree k of the nodes, 	�
�k�, for several
values of p and 
. The panels correspond to �a� p=0.02
�free-flow regime�, �b� p=0.1 �critical point�, �c� p=0.3 and
�d� p=0.6 �congested state�. The shape of each curve 	�
�k�
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FIG. 5. �Color online� �Left� Phase diagram ��p� of the empathetic routing model for several values of the empathy parameter 
. The
phase diagram of the minimal routing model �circles� is also plotted for the sake of comparison. �Right� For the same empathy parameters
we show the average rejection rate as 	�
 a function of p. The function 	�
�p� obtained analytically from global minimization and computed
from Eq. �9� is also shown.
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FIG. 6. �Color online� Distribution of the
mean rejection rates 	�
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the empathetic adaptive model for several values
of the empathy parameter 
 compared with the
global minimization prediction �dashed line�. Dif-
ferent traffic values p are presented: �a� p=0.02
�free-flow regime�, �b� p=0.1 �critical point�, �c�
p=0.3, and �d� p=0.6 �congested state�
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behaves similarly to the theoretical one as predicted from Eq.
�9�. More importantly, for each value of p there is one value
of 
, 
opt, for which the curve 	�
�k� fits perfectly the pre-
diction made by global minimization of congestion. The pre-
cise value of 
opt depends on p. In particular, for p=0.02 we
find 
opt�0.63, for p=0.1 we obtain 
opt�0.55, for p=0.3
we have 
opt�0.68 and, finally, for p=0.6 the value found is

opt�0.75. Moreover, from the top panel of Fig. 5, we ob-
serve that the values found for 
opt are those for which con-
gestion, ��p�, is minimum. This result points out that empa-
thetic adaptability is able to avoid congestion by means of
only local information as much as global minimization does.

VI. CONCLUSIONS

We have studied a mechanism that allows routers to adapt
their individual strategies based on their local knowledge
about congestion. Although in our approach nodes can only
decide either to refuse or to accept incoming packets from
their first neighbors, we obtain a variety of dynamical behav-
iors. First, we have analyzed the situation when no individual
adaptability is allowed. This allows us to show that whenever
a small level of rejection is applied indistinctly to all the
nodes, one obtains a worse overall behavior than when all
incoming flows are accepted by the routers. Then, we have
considered that routers can have different rejection rates and
derived analytically their patterns to minimize congestion,
considering global knowledge of the network topology. With
these globally optimized patterns the resilience to congestion
of the system can be enhanced significantly. Besides, these
patterns reveal a dependence of the rejection rate and the
degree of the router while its mean value decays with the
incoming load of packets.

After deriving global minimization of congestion we have
studied the situation in which nodes self-adjust their own
rejection rates dynamically depending on their instant level
of congestion �myopic setting�. In this case we have shown
that the critical load of the network is shifted to a value
similar to that found analytically by means of global mini-
mization of congestion. This improvement is again achieved
by a proper distribution of the rejection rates according to the
degrees of the routers. However, in the adaptive case, such

degree-correlated configuration is self-tuned by the system
and differs from that obtained analytically. As usual in
congestion-aware routing schemes, such delay in the conges-
tion onset comes together with an abrupt transition from the
free-flow phase to the congested one that prevents from hav-
ing any warnings of the approach to the onset of congestion.
For this reason, we have finally explored the situation in
which routers also consider the congestion state of their first
neighbors to adapt their rejection rates. We have shown that
when nodes empathize with the congestion state of their
neighbors, thus not rejecting packets from them when they
detect an overcongested neighborhood, the shift in the criti-
cal load �obtained through global minimization and the myo-
pic adaptability� is preserved and followed by a smooth con-
gestion transition. Moreover, the analysis of the microscopic
patterns of rejection rates when empathy is the mechanism at
work points out a similar organization to that obtained from
global minimization. In particular, it is possible to find the
degree of empathy that perfectly agrees with the analytical
estimation of the rejection pattern that minimize congestion
for a given load of information.

In summary, we have shown that allowing routers to adapt
their own strategies together with a certain degree of local
empathy is strongly beneficial to the behavior of complex
communication systems. Moreover, the improvement shown
when local empathy is at work is similar to that obtained by
minimizing congestion by means of a global knowledge of
the network topology. Thus, the empathetic setting represents
a remarkable example of how local rules can achieve levels
of functioning as optimal as those obtained with global
knowledge of the system. Besides, our results open the rel-
evant question about how local empathy can be naturally
tuned as a function of the external inputs.
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