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We analyze the dynamics toward cultural consensus in the Axelrod model on scale-free networks. By
looking at the microscopic dynamics of the model, we are able to show how culture traits spread across
different cultural features. We compare the diffusion at the level of cultural features to the growth of cultural
consensus at the global level, finding important differences between these two processes. In particular, we
show that even when most of the cultural features have reached macroscopic consensus, there are still no
signals of globalization. Finally, we analyze the topology of consensus clusters both for global culture and at
the feature level of representation.
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I. INTRODUCTION

The study of social systems has attracted the interest of
statistical physics in the recent years. In particular, this inter-
est relies in the description of the global behaviors that
emerge in the social context via simple models incorporating
local interactions between individuals. Examples of these
global behaviors include culture dissemination, the emer-
gence of cooperation, and the formation of opinions �see �1�
for a recent review�. Although most social models developed
are usually casted as too simple from the point of view of the
interaction rules, the statistical physics approach has success-
fully captured the essential features of emerging social be-
haviors, showing that microscopic details of the local pro-
cesses are not relevant to explain the macroscopic emergent
phenomena.

Additionally, current approaches also incorporate the to-
pology of interactions as a key ingredient to describe social
dynamics. Although traditional statistical physics is usually
concerned with ordered and regular structures, such as lat-
tices, and mean-field approximations, large social systems
are better described by complex networks of interactions
�2–5�. Complex social networks show nontrivial topological
properties, such as power-law �scale-free� probability distri-
butions for the number of neighbors of individuals, high
clustering, and modularity among other properties. These
structural properties influence different dynamical behaviors
�6,7� and, in particular, they have been shown to play a key
role in the emergence of many social phenomena such as the
enhancement of cooperation in populations interacting
within an evolutionary context �8�.

Here we will focus on the dissemination of culture in
social networks. There are many different models that de-
scribe how individuals are culturally influenced by their local
neighborhood �1�; however, most of the models rely on the
principle that individuals tend to become more culturally

alike when they interact. In this context, the social phenom-
enon to be described is how globalization, i.e., the state in
which nearly all the system reaches a cultural consensus,
emerges, in contrast with a state of cultural fragmentation
where diverse cultural groups coexist. A famous model of
cultural dissemination was introduced by Axelrod �9,10�. In
this model the culture of each individual is represented by a
vector whose components are the cultural features. Each of
these features can take a limited number of values or cultural
traits. The Axelrod model assumes that the more similar are
two interacting individuals, the more similar they tend to
become �homophily�, and thus interactions favor the onset of
cultural consensus following the social principle stated
above. The Axelrod model has both global cultural consen-
sus and fragmentation into diverse cultural clusters as pos-
sible frozen equilibria. The Axelrod model was originally
implemented in a square lattice and it was shown how, de-
pending on the number of cultural features and traits, cultural
consensus or social fragmentation were obtained as final
states of the dynamics. The model was later analyzed in the
light of statistical mechanics to characterize the nonequilib-
rium order-disorder �consensus-fragmentation� phase transi-
tion �11�. From this perspective, several studies have consid-
ered the Axelrod model to study the influence of external
fields �12�, the role of dimensionality �13�, and the effects of
noise �14�, and mobility of agents �15�. In addition to this,
the mean-field description of the model has been analyzed in
Refs. �11,16,17�, while the Axelrod model in complex to-
pologies has been studied in Ref. �18�. On a complex net-
work, the transition between the ordered homogeneous state
and the disordered state is shown to be shifted by the hetero-
geneity of the underlying topology. Namely, the more hetero-
geneous the distribution of the number of contacts, the more
robust the cultural consensus phase.

In this work we study the Axelrod model in complex net-
works from a different perspective. We will focus on the
dynamics toward the equilibrium configurations rather than
on the statistical characterization of the order-disorder phase
transition. In particular, we will study how the system self-
organizes to reach global consensus or cultural fragmentation*gardenes@gmail.com
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and the microscopic origin of the time-costly reorganization
processes that take place before the dynamics gets trapped in
a frozen equilibrium. Instead of characterizing, as usual, the
state of the system by the number of culturally identical in-
dividuals, we will consider how cultural traits propagates
across cultural features. By looking at these internal pro-
cesses we will show how cultural clusters are formed inside
each cultural feature and characterize their dynamics and to-
pology. Our results show that the dynamics inside the cul-
tural features differs drastically from that observed looking at
the global culture level since most of the cultural features can
achieve macroscopic consensus by their own in a fast way
while in the whole system no signals of cultural consensus
are yet observed. This fast time scale for the organization of
most cultural features becomes screened when looking at the
formation of global consensus. Additionally, our results point
out that the time-costly reorganization processes that delay
the final cultural equilibrium are localized in few cultural
features rather than taking place at all the feature levels.

II. AXELROD MODEL IN COMPLEX NETWORKS

The Axelrod model is implemented on a complex topol-
ogy by considering that each individual is placed at a differ-
ent node of the network. In this way, a network of N vertices
represents a system of N interacting individuals. The links of
the network account for the interactions pattern of the social
system, so that the agents interacting with an individual i are
its first neighbors in the graph. In particular we consider
scale-free �SF� networks, i.e., graphs having a power-law
degree distribution, P�k�=k−�. This kind of graphs, with an
exponent 2���3, are usually observed in different com-
plex systems, including social ones. This finding implies that
social systems are highly heterogeneous: in a social network
many individuals have a small number of acquaintances,
while a few agents are largely connected with the rest of the
population. Mathematically the heterogeneity is clear in the
thermodynamic limit, N→�, where the second moment of
the degree distribution, �k2�, diverges. In this work we will
focus the study on SF networks with �=3 as obtained from
the Barabási-Albert model �19�.

As introduced above, in the Axelrod model each agent
is represented by a vector vi= �vi

1 ,vi
2 , . . . ,vi

F�T, with i
=1, . . . ,N of F components, the so-called cultural features.
Each of these components can take only Q integers values,
the cultural traits. We assume, as usual, that the value Q is
the same for the F components. Initially, we assign random
values �with equal probability 1 /Q� to each of the cultural
features of the N agents in the system. At each time step, we
randomly choose one node i and pick randomly one of its
neighbors, say, j �i.e., we select a pair of connected agents�.
Then we check the similarity between the agents i and j. The
similarity or overlap between i and j is defined as

Sij =
1

F
�
l=1

F

��vi
l − v j

l� , �1�

where ��x�=1 if x=0 and ��x�=0 otherwise. If the individu-
als are totally different �Sij =0� or they share identical cul-

tural traits �Sij =1� nothing happens and we consider the link
between them as blocked. On the other hand, when Sij
� �0,1�, the link between them is active and we consider the
similarity value Sij as the probability that agents i and j de-
cide to interact becoming culturally closer in the next gen-
eration. In this way, if the agents are culturally far, the prob-
ability that they decide sharing the same trait for one cultural
feature is very low, whereas individuals sharing many com-
mon cultural features are very likely to become culturally
identical after few interactions. In case of interaction, we
choose randomly a cultural trait f such that vi

f �v j
f and we

set vi
f =v j

f; i.e., i copies the culture trait v j
f of j.

Iterating the above discrete-time dynamics for a number
of time steps the system reaches a state in which all the links
are blocked. In other words, the dynamics ends up in an
absorbing state in which each pair of neighboring agents
have cultures that are either identical or completely different.
In general, in these absorbing states the network is frag-
mented into cultural clusters of identical individuals sepa-
rated by borders composed of links having Sij =0. The im-
portant situation in which all the nodes of the network are
culturally identical is thus a subset of the total number, qF, of
absorbing states. In order to characterize the final state of the
system, it is useful to measure the disorder of the corre-
sponding absorbing state. A useful order parameter �11� is
the relative size of the largest cultural cluster, Smax. In one
extreme case of global cultural consensus, this quantity takes
the value Smax=1. In the other extreme situation in which all
individuals are totally different from their neighbors, we
have Smax=1 /N.

According to previous studies on square lattices, when
F�2, a nonequilibrium first-order phase transition from or-
der to disorder is observed as a function of the number of
traits Q �the control parameter of the phase transition� �11�.
In particular, the system always ends up in an ordered ab-
sorbing state �Smax�1� when Q�Qc whereas for Q�Qc
fragmented or disordered absorbing states �Smax�1� trap the
dynamics of the system. In finite complex networks, the pic-
ture is similar to the case of square lattices, although the
observed value of Qc is larger �18�. This finding points out
that network shortcuts favor ordered states. To show the im-
portance of the degree of heterogeneity of the substrate
graph, we have used the model introduced in �20� to con-
struct heterogeneous SF networks with �=3, and homoge-
neous Erdös-Rényi �ER� graphs �i.e., networks with P�k� fol-
lowing a Poisson distribution �21�� with the same average
connectivity �k�. In Fig. 1 we plot the curve Smax�Q� for both
ER and SF networks of N=103 nodes and �k�=6. In both
cases we have fixed the number of cultural features to F
=10 and the results are averaged over 100 different realiza-
tions of initial conditions and networks realizations. From
the plots it is clear that in both cases the cultural consensus
decreases as the number of possible traits increases. How-
ever, the order-disorder transition is seen to occur more
sharply in the case of ER networks where the fluctuations
around the transition region are remarkably higher than in
the SF case as shown by the error bars. Besides, it is worth
remarking that it has been found that in SF networks
Qc�N��N0.39, and thus in the thermodynamic limit the order-
disorder transition disappears and only cultural consensus
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can be reached �18�. Surprisingly, for what concerns the dy-
namical organization toward cultural consensus, we have not
observed any qualitative difference between homogeneous
and heterogeneous architectures. For this reason, in what fol-
lows, we will focus on the study of SF networks.

III. DYNAMICAL ANALYSIS AT THE FEATURE LEVEL

Besides its critical behavior, the Axelrod model in regular
lattices shows another remarkable feature: a nonmonotonic
dynamics toward any of its frozen equilibria �11,17�. This
nonmonotonicity refers to the time evolution of the number
of active links and is related to the fact that one interaction
leading to consensus between two agents may simulta-
neously destroy a higher local consensus among one of these
agents and the rest of its neighborhood �1�. This competition,
due to the one-to-one nature of the interaction, leads to ex-
tremely large time scales to reach the final equilibrium in
which all the links are blocked. Therefore, it is interesting to
study in detail how this dynamical organization takes place
in the case the model is implemented on a complex network
G. To this end, we analyze the formation of cultural clusters
by looking at this process as the growth, link by link, of a
network of dynamical links. We name G�t� such a dynamical
network at time t. We assume that a dynamical link i− j

between two connected �in G� individuals i and j is present
in G�t� if the two connected individuals are culturally iden-
tical at time t. The dynamical network G�t� allows to char-
acterize the transient dynamics of the Axelrod model toward
the absorbing final state by means of the time evolution of
network measures such as the number of cultural clusters in
G�t�, the size of the largest cultural component, or the degree
distributions of G�t�. In addition to this, we will also analyze
the dynamical graph G�t� as composed of F different dy-
namical subnetworks, Gf�t�, f =1, . . . ,F, one dynamical sub-
network for each cultural feature. For a given feature f , the
graph Gf�t� is defined by considering two neighboring nodes
i and j linked in graph Gf�t� if they share at time t the same
cultural trait: vi

f =v j
f. Obviously, two neighbors can share a

maximum of F links, one for each feature, meaning that the
two nodes have become culturally identical, Sij =1.

In Fig. 2 we show how the graphs G�t� and Gf�t� are
constructed in the case of a small graph G. We consider the
network G with N=4 nodes shown in Fig. 2�a�, and the Ax-
elrod model with F=3 cultural features and with Q=4 pos-
sible cultural traits. Suppose, at a given time t, the nodes of
the network take the cultural configuration shown in Fig.
2�b�. Then, the dynamical graph G�t� has no links, while the
three graphs Gf�t�, with f =1,2 ,3, are shown in �Fig. 2�c��.
Note that no couple of nodes in the system is culturally iden-
tical from the point of view of the order parameter Smax.
Conversely, Fig. 2�c� show that a certain internal consensus
is observed at the level of each of the three features. In fact,
connected components of size 3 appear in each of the F=3
subnetworks. Summing up, the analysis we propose allows
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FIG. 1. �Color online� Relative size of the largest cultural com-
ponent Smax of the final absorbing state as a function of the number
Q of cultural traits per feature. The diagrams are shown for SF �top�
and ER �bottom� networks for comparison. In both cases we use
N=103, �k�=6, and F=10. The statistic is performed over 100 re-
alizations for each value of Q.

FIG. 2. Scheme of the feature level analysis. Starting from a
network of N=4 nodes �a� and an Axelrod dynamics with F=3 and
Q=4 we stop the dynamics at some time t in which the cultural
configuration is described in �b�. For each of the F=3 cultural fea-
tures we link those nodes that share the same trait. Finally, we
obtain F=3 subnetworks �c� showing the consensus patterns for
each cultural feature.
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to observe the internal dynamical organization of the system
by separating the processes that occur at each single cultural
feature level, instead of integrating all the information into
one single observable.

IV. RESULTS

The dynamics of the Axelrod model always ends up in a
frozen state, a state in which no more changes are observed.
As shown in Fig. 1, it depends on the value of Q whether or
not such a frozen state corresponds to a monocultural re-
gime. In this section we focus our attention on the dynamical
evolution toward the frozen state. In order to properly ana-
lyze the time evolution of a generic quantity X �such as the
number of clusters, the average size of the largest compo-
nent, etc.�, we need to average the results over a large num-
ber R of trajectories. In particular, we have used at least R
=50 different realizations for each value of Q. Since each
initial condition can take a different time Tr�r=1, . . . ,R� to
converge to the frozen state, the averaged evolution is ob-
tained by mapping the time t for each realization to a com-
mon normalized time �= t /Tr. Therefore, the corresponding
averaged time evolution for the quantity X is obtained as

X��� =
1

R	 �
r=1; t/Tr=�

r=R

Xr�t�
 . �2�

Obviously, the averaged time evolution starts at �=0 and
ends at �=1. For each initial realization we have stored the
instant configurations of the network states so that we can
easily measure the evolution of different topological quanti-
ties both at the global and at the feature level. For each
realization r, the instant value of the quantity X at the feature
level is denoted as Xr

f�t� and corresponds to averaging over
the values of X for each of the F features,

Xr
f�t� =

1

F
�
j=1

F

Xr,j
f �t� , �3�

where Xr,j
f �t� is the value of X at time t, for the realization r,

and at the level corresponding to feature j. Finally, in order
to obtain the averaged time evolution Xf���, we average over
the R different realizations by using the normalized time �, as
shown above in Eq. �2�.

The first measure we consider is the size of the largest
component linking culturally identical individuals, both at
the global, Smax���, and at the feature level, Smax

f ���. Obvi-
ously, to compute Smax

f we take, for each feature, the largest
component connecting individuals sharing the same cultural
trait of the corresponding cultural feature. In Fig. 3 we show
the time evolution of Smax and Smax

f for several values of Q.
The results point out that the largest component measured at
the feature level grows very fast and that it reaches high
values even when Smax is still close to zero. In other words,
when the largest component measured at the global scale
starts growing, there are already a number of features in
which consensus has been reached, and therefore a large
number of nodes �if not all� are connected across these fea-
tures. This behavior indicates that, despite the fact that there

is no signal of global consensus, a macroscopic consensus
already exist at the level of single features.

Figure 3 shows the average size of the largest cultural
clusters at the feature level by averaging across the different
F features and realizations. From this figure it becomes evi-
dent that most of the features reach intracultural consensus in
a time scale much faster than that observed for the global
consensus. On the other hand, the long transient dynamics
toward global consensus of each realization of the Axelrod
dynamics has its roots in the reorganization processes that
occur inside each of the feature levels. Then, how does the
fast organization of the averaged feature dynamics fit with
the long transient observed at the global level? To answer
this question it is convenient to look at the evolution of each
cultural feature in a single realization of the Axelrod dynam-
ics. In Fig. 4 we show a scatter plot made up with the simul-
taneous values of the size of the global consensus cluster and
that for the consensus cluster inside single features at differ-
ent stages of the transient dynamics. In particular, we have
plotted those couples of values ��Smax�r , �Smax

f �r,j� �where r
=1, . . . ,R and j=1, . . . ,F� observed at different time steps of
the dynamics on SF networks for two different Q values �20
and 150�. From the plot, it is clear that at the feature level
there is a separation into fast and slow cultural features. The
former features are identified, on the one hand, by the accu-
mulation of dots close to �Smax

f �r,j =1�Q=20� and �Smax
f �r,j
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FIG. 3. �Color online� Time evolution of the size of the largest
cultural component, Smax, at the feature �top� and at the global �bot-
tom� levels. We have considered SF networks with N=103 and
�k�=6 and F=10. The statistics is performed over 50 different
realizations.
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=0.9�Q=150� and, on the other hand, by the large values of
the solid �blue� curve, Smax

f �Smax�, constructed by averaging
over the values �Smax

f �r,j corresponding to the same value of
Smax. In addition, the slow features have their fingerprint in
the accumulation of dots along the line Smax

f =Smax for high
values of Smax. The separation into fast and slow features is
not symmetric since, for each realization, most of the fea-
tures belong to the fast group �as pointed out by the curve
Smax

f �Smax�� whereas few of them �typically 1 as observed
from the simulations� correspond to the slow group.

As for the number of monocultural clusters, we have ob-
served that the behavior at the feature and global levels are
also distinct. Figure 5 shows the results obtained for the
number of clusters in the SF network as a function of time
for different values of the parameter Q. At the feature level,
except for short times, the dynamics of the model leads to a
monotonously decreasing number of clusters for those values
of Q leading to a final equilibrium where macroscopic con-
sensus is reached. Conversely, no monotonous behavior for
the number of clusters is observed at the macroscopic level.
As a matter of fact, the initial evolution of Nc is close to that

observed for Nc
f : it starts growing for low values of �, reaches

a maximum, and starts to decrease. However, in the case of
Nc, around the transition time from the nonconsensus regime
to a globally visible consensus �see Fig. 3�, the number of
clusters starts to grow again, yielding a new maximum, to
finally fall down very fast. This trend of the global dynamics
points out again the reorganization taking place before reach-
ing the final equilibrium. Once again, this reorganization
seems not to affect the equilibria at the feature level. How-
ever, these differences between feature and global levels are
again understood when following the growth of the largest
components for each feature in single realizations of the Ax-
elrod dynamics. The typical evolution shows that those fast
features reach consensus in short times, ��1, while those
slow features remain fragmented for a number of time steps
before reaching consensus together with the global system.
Therefore, the clear separation of time-scales at the feature
level implies that, although most of the agents reach consen-
sus for most of their features in a fast way, the existence of
few bottleneck features is responsible for the long transient
of the global dynamics. It is inside these slow features where
the processes of reorganization occur while the remaining

FIG. 4. �Color online� The panels show the values �dots� of
the largest cultural component of a single feature as a function
of the size of the largest global consensus at the same time
�Smax

f �r,j�t���Smax�r�t�� found during the dynamical evolution of the
Axelrod model in SF networks with F=10. We represent the evo-
lution of the different features �j=1, . . . ,F� for different realizations
�r=1, . . . ,100�. The top and bottom panels correspond to Q=20 and
Q=150, respectively. Both plots show that although most of the
features have reached their own cultural consensus in a fast way
there are few features �typically one for each realization� that con-
siderably delay the global consensus of the system. Finally the solid
�blue� line represents the average size of the largest cultural com-
ponent at the feature level Smax

f as a function of the size of the
largest global consensus component Smax.
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FIG. 5. �Color online� Number of monocultural clusters in SF
networks as a function of time at the feature, Nc

f , �top� and global,
Nc, �bottom� levels. The time has been normalized as in Fig. 3. At
the macroscopic level, the evolution of Nc is not monotonous while
at the feature level, and for those values of Q for which final con-
sensus is possible, the evolution of Nc

f is dominated by a decreasing
pattern. The networks have N=103 nodes, with �k�=6 and F=10.
For the Nc figure, every point shown is the average over 50 different
realizations, while for the Nc

f one, yet an additional average over the
F features has been made.
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�large� fraction of fast features remain unaltered in the state
of internal cultural consensus.

We can extract additional topological information using
the approach adopted here. Usually, consensus models define
a cultural pattern when the individuals that make up such
pattern share all cultural traits. However, it is also possible
that individuals relate to each other not because they share
all the cultural features, but because they have one or several
of these traits in common. Obviously, if we “look” at the
system at a global level, we would be unable to detect cul-
tural clusters unless the overlap between different individuals
is one. As seen before, however, structures also emerge at the
feature level. These “hidden” patterns can also be character-
ized topologically.

First we study the effective degree distribution of the gi-
ant consensus clusters, P�kef�. The effective degree, ki

ef, of a
node i belonging to a consensus cluster at the feature level is
defined as the number of its physical neighbors that share the
same cultural trait for the corresponding feature. For the glo-
bal cluster we consider only those links that join culturally
identical nodes. The effective degree distributions are nor-
malized to the number of nodes in the corresponding consen-
sus components. In Fig. 6 it is shown the effective degree

distributions for different values of Smax and Smax
f , respec-

tively. The number of possible traits is set to Q=10 so that
cultural consensus is always the final frozen state. From the
evolution of P�kef� as Smax and Smax

f grow, and taking as
reference the cases when Smax=Smax

f =1, one notices that
highly connected nodes are the latest to reach consensus with
its neighbors. In particular, hubs appear overpopulating the
intermediate effective degree classes for low values of Smax
and Smax

f . As the consensus components increase so do the
effective degrees of hubs and finally they reach their physical
connectivity. Interestingly, there are no significant differ-
ences in the degree distributions measured if one follows a
feature or the system as a whole. Note, however, that the
values of Smax are realized at different times—one at the
beginning �features� and the other �global� at the end of the
Axelrod dynamics.

Finally, in Fig. 7 we show the variation in the average
path length with the size of the giant component at the fea-
ture and global levels. The behavior of this quantity supports
the phenomenological picture previously described and al-
lows to understand how the largest cluster grows. For small
values of Smax and Smax

f , just a few nodes distributed in many
clusters have reached consensus and thus �l��1. As Smax and
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FIG. 6. �Color online� Evolution with respect to the size of the
largest component of the effective degree distributions as measured
in the largest monocultural clusters at both feature �top� and global
�bottom� levels of description in SF networks. The results corre-
spond to Q=10 and indicate that hubs are always the latest to reach
consensus. The networks we used have N=103 nodes, with �k�=6
and F=10. For the P�k� figure, every point shown is the average
over 100 different realizations, while for the Pf�k� one, yet an ad-
ditional average over the F features has been made. See the main
text for further details.
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FIG. 7. �Color online� Variation in the average path length of
both representations with respect to the size of the corresponding
giant components, Smax

f �top� and Smax �bottom�, in SF networks and
for different values of Q. The networks are made up of N=103

nodes, with �k�=6 and F=10. For �l� the statistic is performed over
50 different realizations, while for the �lf�, yet an additional average
over the F features has been made. The inset in the bottom plot
shows in detail the region where the curve �l��Smax� is multivalued.
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Smax
f grow, so do �l� and �lf�, which implies that more nodes

are added to the consensus clusters, but that a significant
number of newcomers are only connected to one member of
the consensus component. In other words, when Smax is
small, the consensus clusters �either global or at single fea-
tures� grow in a treelike manner thus not having many loops
and consequently showing large paths connecting different
nodes in these clusters. Remarkably, for small sizes of the
global consensus component, Smax, the curve �l� presents
three branches. The branch corresponding to the largest val-
ues of �l� has its roots in the first frustrated growth of the
global consensus discussed in Fig. 5. The middle branch sub-
sequent corresponds to the decrease of Smax for intermediate
values of � �pointed out by the increase in the number of
global clusters, Nc, in Fig. 5�. Finally, the third and lowest
branch of �l� is due to the second and final growth of Smax.
The large slope of the first branch of �l� points out that the
frustrated growth of the global consensus occurs in a more
treelike way than the final one. Further increase of Smax and
Smax

f finally leads to an increase of the probability of incor-
porating nodes sharing more than one connection with the
consensus component. Therefore, at this stage, the addition
of new nodes to the consensus components implies that a
large number of links are also incorporated into the giant
consensus component and thus at this second stage the
growth is dominated by the addition of new links. As for
both levels of description, the difference relies on the relative
sizes of the giant consensus component at which the maxima
of �l� and �lf� are attained and the dependence with Q. In
particular, for those values of Q leading to a final macro-
scopic consensus, the values of Smax

f corresponding to these
maxima of �lf� increase with Q whereas for global consensus
the trend is the opposite. Obviously, as Q grows the curves
for both �l� and �lf� show the same two maxima.

This different behavior for low values of Q comes again
from the existence of fast growing consensus clusters at the
feature level: while the evolution of �l� is ruled by the �few�
bottleneck features, �lf� is mostly contributed by those fast
growing features. As a consequence, the treelike growth
stage of the development of feature consensus clusters is
replaced by the link-dominated growth much earlier than ob-
served at the global level. This result points out again that the
dynamical organization depends strongly on the level of rep-
resentation of the dynamics.

V. CONCLUSIONS

In this paper we have studied the microscopic dynamics
toward cultural consensus in the Axelrod model on SF net-
works. In particular, we analyzed how single traits spread

across cultural features. Comparing such microscopic dy-
namics with that observed at the global level, i.e., integrating
all the features into one cultural observable, we have shown
that feature consensus is achieved remarkably faster than
global consensus. In particular, while at the global level there
are no signals of cultural consensus, most of the cultural
features have already reached a macroscopic agreement. We
have also observed important differences in the dynamic or-
ganization toward cultural consensus. In fact, at the global
level there is a clear reorganization before cultural consensus
is reached, this being evident from the nonmonotonicity in
the time evolution of the number of consensus clusters. Con-
versely, such reorganization processes are localized in a few
cultural features rather than taking place in all the feature
levels. Such localization points out the existence of a fast
time scale for most of the cultural features which becomes
screened when looking at the time evolution of the global
consensus.

We have also analyzed the time evolution of the patterns
of consensus clusters. In clusters defined both at single fea-
ture and at global scale, high degree, although present when
macroscopic consensus is observed, show a misrepresented
effective connectivity, since not all node neighbors are cul-
turally identical. Additionally, the growth of a giant consen-
sus components has two well-differentiated stages. In the
first stage, the growth takes place in a treelike manner, while
in the second stage the nodes attracted come along with a
large amount of links, reducing considerably the distances
within these consensus clusters. Remarkably, at the feature
level the treelike growth is much shorter than the one domi-
nated by the addition of links. This points out that the devel-
opment of feature consensus clusters is more compact than
its global counterpart.

Finally, it is worth stressing that we have not found any
significant difference when applying the same analysis to
homogeneous ER networks and lattice geometries, in con-
trast to other dynamical process where noticeable differences
in the organization of the dynamical equilibria are observed
�22–25�. This result poses an open question on the influence
of network structure on the dynamical organization of the
Axelrod model. For future work, it would be also interesting
to design strategies that favor global consensus based on the
existence of a fast time scale for the development of consen-
sus at the feature level of representation.
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