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A number of problems in communication systems demand the distributed allocation of network resources in
order to provide better services, sampling, and distribution methods. The solution to these issues is becoming
more challenging due to the increasing size and complexity of communication networks. We report here on a
heuristic method to find near-optimal solutions to the covering problem in real communication networks,
demonstrating that whether a centralized or a distributed design is to be used relies upon the degree correlations
between connected vertices. We also show that the general belief that by targeting the hubs one can efficiently
solve most problems on networks with a power-law degree distribution is not valid for assortative networks.
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The allocation of network resources to satisfy a given
service with the least use of resources, is a frequent problem
in communication networks. For instance, a highly topical
problem is the development and deployment of a digital im-
mune system to prevent technological networks from spread-
ing viruses. In this case, it is worthwhile to characterize
whether a centralized organization or a distributed approach
is the best choicef1g. Clearly, this is the first decision, and
perhaps one of the fundamental ones, that must be taken
before proceeding with other technical issues. Another natu-
ral ground includes the placement of Web mirror servers. The
solution to such problems is becoming more challenging due
to the increasing size of social and technological networks.
Heuristic approaches that provide hints and pave the way for
more elaborated strategies would be welcome. For this pur-
pose we must identify which individuals are the ideal candi-
dates to transmit, collect, monitor, or prevent information
and virus spreading across the networkf1–6g.

The solution to this and similar problems may be compu-
tationally easy or hard depending on the topological proper-
ties of the underlying graphf7–11g. In particular, communi-
cation and many other real-world graphs are characterized by
wide fluctuations in the vertex degreesf12–14g, where the
degree of a vertex is the number of edges attached to it. This
means that, in addition to a high number of small degree
vertices, there are hubs connected to a large number of other
vertices. The existence of hubs has been exploited to develop
strategies aimed at enhancing network resilience to damage
f2g, virus spreadingf3,4,6g, and searching algorithmsf5g.
Additionally, real-world networks are characterized by de-
gree correlations between connected verticesf15,16g. These
degree correlations have been shown to affect the computa-
tional complexity of hard problems on graphs with wide
fluctuations in the vertex degreesf11g.

We report here on a heuristic method that allows us to find
near-optimal solutions to the covering problem in real-world
networks. Specifically, we are interested in the problem of
computing the minimum set of covered verticessreferred to
henceforth as serversd such that every vertex is covered or
has at least one covered vertex at a distance at most
d sdistance-d covering problemd, where the distance between

two vertices in the graph is the minimum number of hops
necessary to go from one vertex to the other. Each server will
then provide service to or monitor those vertices within a
distanced. Using a heuristic algorithm that targets high-
degree vertices, we compute an upper bound to the minimum
fraction of servers needed to cover these graphs. We find out
that the solution to the distance-d covering problem strongly
depends on the degree of similarity between the connected
vertices. As a consequence, we show that when designing
networked systems, whether a centralized or distributed de-
sign is to be used relies upon the network properties at a
local level. Our primary intent is not to develop an optimal
algorithm. Instead, our main focus is in assessing the impact
of correlations on the design of networked systems, and
hence provide motivations, or lack thereof, for moving to
more complex heuristics in the context of covering problems
in real nets.

The communication networks considered in this work are
the following: AS, autonomous system-level graph represen-
tations of the Internet as of April 16, 2001. Gnutella, snap-
shot of the Gnutella peer-to-peer network, provided by Clip2
Distributed Search Solutions. Router, router-level graph rep-
resentations of the Internet. All these graphs are sparse with
an average degree around 3, small worldsf17g with an aver-
age distance between vertices less than 10, and they are char-
acterized by a power-law degree distributionpk,k−g, with
g<2.2. A detailed characterization of these graphs is pre-
sented in Refs.f18g sGnutellad and f15,19,20g sAS and
Router graphsd. They differ, however, in their degree corre-
lations between nearest-neighbor vertices. The AS and Gnu-
tella graphs exhibit disassortative degree correlations, with a
tendency to have connections between vertices with dissimi-
lar degreesfFig. 1sadg. In contrast, the Router graph displays
assortative degree correlations, with a tendency to establish
connections between vertices with similar degreesfFig.
1sbdg. In this paper we are interested in covering problems
beyondd=1; therefore we also analyze the degree correla-
tions for d.1 f21g. For the disassortative graphs, the aver-
age degree of distance-d neighborskKsddlk, restricted to root
vertices with degreek, follows the same trend askKs1dlk,
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tending to be less correlated for largerd fFig. 1sadg. For the
assortative graph, however, the degree correlations are assor-
tative up to d=2, becoming disassortative ford.2 fFig.
1sbdg. Finally, for d.6 the degree correlations in the origi-
nally assortative graph show a similar trend than in the dis-
assortative graphs.

We propose the following heuristic algorithm to obtain an
upper bound to the distance-d covering problem.

Local algorithm. For every vertex in the graph, cover the
highest-degree vertex at a distance at mostd from the vertex.
In case there is more than one vertex with the highest degree,
one of them is selected at random and covered. To test this
algorithm we first consider the cased=1, known as the
dominating set problemf7g. In this case we can use a leaf-
removal algorithm as a reference method, which yields a
nearly optimal solution together with an error estimatef22g.
The leaf-removal algorithm is defined as follows. To each
vertex i we assign two state variablesxi andyi, wherexi =0
sxi =1d if the vertex is uncoveredscoveredd and yi =0 syi

=1d if the vertex is undominatedsdominatedd. Here a vertex
is said to be dominated if it has at least one neighbor cov-
ered. Starting with all vertices uncovered and undominated
sxi =yi =0 for all id, iteratively,sid select a vertex with degree
one sleafd. If it is not dominated, cover its neighbor, set
dominated its second neighbors, and then remove the leaf, its

neighbor, and all their incident edges.sii d If no vertex with
degree one is found, then cover the vertex with the larger
degreeshubd, set dominated its neighbors, and then remove
the hub and all its incident edges. Finally, if some vertices
with degree zero remain, they are covered if they are not
dominated, and removed from the graph. Since Stepsid al-
ways provides an optimal solution, the error in computing
the average fraction of covered verticeskxl=oi=1

N xi /N is less
than or equal to the fraction of vertices covered applying
Stepsii d.

The comparison between the local and leaf-removal algo-
rithms is shown in Fig. 2. First, notice that the solutions
obtained with the leaf-removal algorithm are almost exact
for the networks considered here andd=1. The local algo-
rithm yields satisfactory, though nonoptimal, solutions to the
covering problem, with some differences depending on cor-
relations between connected vertices. For the AS and the
Gnutella graphs, which exhibit disassortative degree correla-
tions, the local algorithm gives a good estimate, quite close
to the optimal one for the AS graph. In contrast, for the
Router graph we observe a larger deviation from the optimal
solution. The origin of this difference is due to the fact that
the local algorithm exploits the degree fluctuations among
connected vertices. Indeed, these fluctuations are bigger in
disassortative graphs as connected vertices likely have differ-
ent degrees. In contrast, in assortative graphs, although there
may be high-degree fluctuations between two vertices se-
lected at random, connected vertices tend to have similar
degrees, resulting in poorer solutions. These results indicate
that the general belief that heuristic algorithms targeting the
hubs may be sufficient to solve computational problems on
graphs with wide degree fluctuations may not be the case for
assortative graphs.

The d=1 covering problem results in a distributed archi-
tecture because a finite fraction of the vertices is covered. Let

FIG. 1. Average degreekKsddlk of the distance-d neighbors of a
vertex with degreek, for d=1 scirclesd, d=2 ssquaresd, d=3 sdia-
mondsd, andd=4 strianglesd. Note that the average neighbor degree
introduced in Ref.f15g corresponds withkKs1dlk. sad kKsddlk vs k for
the AS graph. The inset shows the exponentnd obtained from the
best fit to the power lawkKsddlk=Aknd in the rangek.1. Similar
results are obtained for the Gnutella graph, but with more fluctua-
tions due to its small size.sbd kKsddlk vs k for the Router graph. The
inset shows the exponentnd obtained from the best fit to the power
law kKsddlk=Aknd in the range 10økø100.

FIG. 2. Average fraction of serverskxl needed to cover a graph
under the constraint that a vertex should have a server at most at a
distanced=1, using the leaf-removalscirclesd and localssquaresd
algorithms, as a function of the exponentn1 defined in Fig. 1, with
negative and positive values corresponding to disassortative and
assortative graphs, respectively.
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us now extend the method and discuss the results obtained
with the local algorithm for the more general and complex
problemd.1. In Fig. 3sad we show that, with increasingd,
the average fraction of servers decays exponentially fast, in-
dicating that if we allow the servers to be more distant, a
substantial decrease in the number of required servers is ob-
tained. This exponential decay is a consequence of the small-
world property of these networks, characterized by an aver-
age distance between vertices that grows as slow, or slower,
than the logarithm of the number of vertices. The decrease in
kxl is, however, achieved at the expense of an increase in the
average fraction of verticesknl covered by a serverfFig.
3sbdg. This is a key metric as it marks the trade-off between
the number of servers needed and their capacity.

Again, a remarkable difference depending on the graph
assortativities is appreciated. For the Gnutella and AS
graphs, with disassortative correlations,knl increases signifi-
cantly from d=1 to d=2. Indeed, a finite-size study for the
AS graph, with a growing tendency from 1997 to 2002f15g,

reveals thatknl decreases to zero with increasing the graph
size for d=1, while it remains almost constant ford=2 or
larger fsee the inset of Fig. 3sbdg. On the other hand, in the
Router graph, with assortative correlations,knl increases
much slower with increasingd, being almost zero up tod
=3 fFig. 3sbdg. These results are the signature of a phase
transition. There is a threshold distancedc such that the av-
erage fraction of vertices served by a covered vertex is very
small for dødc, going to zero with increasingN, while it is
finite for d.dc. For disassortative graphs,dc=1, while for
assortative ones,dc.1. Note that the valuedc<3 for the
Router graph coincides with the distance where the degree
correlations become disassortative, indicating that the phase
transition is determined by the change in the degree correla-
tions. Furthermore, this transition gives a practical measure
to get the desired trade-off betweenkxl and knl.

Since the graphs considered here are characterized by
wide fluctuations in the vertex degrees, we have also com-
puted the average number of covered verticesknlk, restricted
to vertices with the same degreek. In all cases we observe an
increasing tendency ofknlk with k, as it is expected from the
definition of the local algorithm, which targets high-degree
vertices. Two distinct behaviors are once again observed de-
pending on the degree correlations. In the disassortative
graphs,knlk is already as large as 10% of the vertices ford
=2 and k.10 fFig. 4sadg. In contrast, in the assortative
graphs, only beyondd=4, one observes that large value of
knlk.

The striking differences between disassortative and assor-

FIG. 3. sad Average fraction of serverskxl covering the graph for
different values ofd. The continuous lines are the best fits to an
exponential decay.sbd Average fraction of verticesknl served by a
server for different values ofd. The inset shows the graph size
dependence ofknl for the AS graph andd=1,2.

FIG. 4. Average number of covered verticessserversd knlk re-
stricted to vertices with the same degreek for several values ofd.
The figures show that for disassortative graphssad, the servers
should have a large capacity to serve a finite fraction of the graph
even for small to moderate values ofd. On the contrary, for assor-
tative graphssbd, the fraction of servers is a negligible fraction ofN
up to large values ofd.
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tative correlations have important consequences regarding
how resources are allocated. For disassortative graphs, ex-
cept for the cased=1, one would need servers with a vast
capacity, covering a large fraction of vertices. The most ef-
ficient strategy is, therefore, the allocation of resources in a
few servers with a large capacity. The scalability of the
server system would, in this case, be determined by the
single server capacities, which should be increased as the
graph size grows. In the assortative case, we have a different
scenario. The decrease of the number of servers with increas-
ing d is not as dramatic as for the disassortative graphs. In
compensation, each server covers a small fraction of vertices.
Hence, the most efficient strategy is to allocate the resources
in a large number of servers with a limited capacity. The
scalability of the system would be driven by the number of
required servers, which augments with increasing the graph
size. In turn, regarding the design of communication net-
works, we can decide between disassortative or assortative
topologies depending on the available resources. A disassor-
tative topology will be more appropriate for a centralized
design, with a few servers having a large capacity, while an
assortative network will be best suited for a distributed de-
sign, when a large number of servers have a limited capacity.

It is worth stressing that the heuristic proposed is based on

a local knowledge of the networksonly requiring informa-
tion about the graph topology up to a distancedd, a key
property of utmost importance for most real applications.
Indeed, all the graphs considered here are incomplete repre-
sentations of the systems they are aim to representf23g, as it
generally happens in graph representations of large systems.

Finally, the present study shows that the general belief
that by targeting the hubs one can efficiently solve most
problems on networks with a power-law degree distribution
spercolation, spreading, searching, covering, etc.d is not valid
if the degree correlations are assortative. This conclusion is
of special relevance in the analysis of social systems where
assortative networks are the general rule. Furthermore, we
have shown that whether the degree correlations are assorta-
tive or disassortative may depend on the distance between
the connected vertices, indicating that different strategies
may be used depending on the characteristic distance of the
covering problem.
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