Available online at www.sciencedirect.com

SGIENGE@DIREGT°
PHYSICS LETTERS A

ELSEVIER Physics Letters A 332 (2004) 213-219

www.elsevier.com/locate/pla

Mobile localization in nonlinear Schrodinger lattices

J. GOmez-GardeneésF. Falo, L.M. Floria

Departamento de Fisica de la Materia Condensada and Instituto de Biocomputacion y Fisica de los Sstemas Complejos (BIFI),
Universidad de Zaragoza, 50009 Zaragoza, Spain
Departamento de Teoria y Smulacion de Sstemas Complejos, Instituto de Ciencia de Materiales de Aragon (ICMA),
CYC-Universidad de Zaragoza, 50009 Zaragoza, Spain

Received 30 March 2004; accepted 23 September 2004
Available online 7 October 2004
Communicated by A.R. Bishop

Abstract

Using continuation methods from the intagte Ablowitz—Ladik lattice, we havesiied the structure of numerically exact
mobile discrete breathers in the standard discrete nonlinear Schrédinger equation. We show that, away from that integrable
limit, the mobile pulse is dressed by a background of resonant plane waves with wavevectors given by a certain selection rule.
This background is seen to be essential for supporting molilifation in the absence aftegrability. We show how the
variations of the localized pulse energy during its motion are balanced by the interaction with this background, allowing the
localization mobility along the lattice.
0 2004 Elsevier B.V. All rights reserved.
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1. Introduction several areas like nonlinear optii¥, Bose—Einstein
condensate array4—6], polaronic effects in biomole-
cular processes, and local (stretching) modes in mole-
cules and molecular crystals (s¢&7,8] and refer-
ences therein). Discrete nonlinear Schrddinger equa-
tions (NLS lattices for short) provide the theoretical
description of these systems, where pulse-like (self-
localized) states are observed.

The standard discrete nonlinear Schrédinger

* Corresponding author. (DNLS) equation is the (simplest) discretization of

E-mail address: gardenes@unizar.¢3. Gémez-Gardefies). the one-dimensional continuous Schrddinger equation

The phenomenon of intrinsic localization (collapse
to self-localized states) due to nonlinearity in discrete
systems governed by Schrédinger equations is of fun-
damental interest in nonlinear physifs2], and is
the subject of current active experimental research in
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with cubic nonlinearity in the interaction term, i.e., tion 3. They are found to be the exact superposition
L 2 of a travelling exponentially localized oscillation (the
\®p == (P11 + Pn-1) = Y [Pnl"Pn, @ core), and an extended “background” built up of fi-
where®, (r) is a complex function of time. The first  nite amplitude plane waves$ exfi(kn — wt)]. These
term on the right takes account of the dispersion and resonant plane waves fit well simple (thermodynamic

the second of the nonlinearity, the parametds the limit) predictions based on discrete symmetry require-
ratio between them. For the Bose—Einstein conden- ments. Finally in Sectiod we show how the reso-
sate lattices dealt with ifd—6] one can think of®,, nant background is seen to be an indispensable part of
as the boson condensate wave function irvitie(op- the solution. In this regard we present the mechanism
tical) potential well, ands would thus be related to  through which the interaction core-background com-
the so-calleds-wave scattering lengtf@]. The self- pensates the variations of the core energy (no longer

focussing effect of local ndimearity balanced by the  an invariant of motion away from the integrable limit),
opposite effect of the dispersive coupling makes pos- during the translational motion.
sible the existence of localized boson states in the
Schrédinger representatiof the condensate lattice
(Gross—Pitaevskii equation). In a localized state (dis- 2. Salerno model and continuation method
crete breather) of the boson lattice the profileédf|?
decays exponentially away fiothe localization cen- The method used here makes use of the following
ter. These solutions have an internal frequedgy—= NLS lattice, originally introduced by Salerjd7],
|D, | expliwpt), SO that the discreteness is essential to . . 2
avoid resonances with the phonon band and keeping'(p” =—(Puy1+ ¢"—1)[1+ 1| Pnl ]
localized the energy. Pinned (immobile) localized so- — 20D, |P, |2 (2)
lutions of Eq.(1) have been rigorously characterized
[10] and extensively studied by highly accurate nu-
merical[11] and analytical approximations. However,
for exactmaobile discrete breathers no rigorous for-
mal proof of existence in standard DNLS is available
nowadays although lot of works have studied these
kind of solutions (see, e.d12-15).

The translational motion of discrete breathers in-
troduces a new time scale (the inverse velocity) into 2
play, so generically a moving breather should excite ®n(7) = \/isinhﬂ sech(n — xo(1))]
resonances with the plane wave band expectra. In a 4
Hamiltonian system, these radiative losses would tend x expli(a(n —xo0()) + 2(1))], ()
to delocalize energy and some compensating mech-,e 1wo parameters);, and v, are the breather fre-
anism is needed in order. to susta_ln exact stationary quency and velocity
states of breather translational motion. To address the
problem we use unbiased (i.e., not based on ansatzew, = £2(t) = 2 coshB cosa + avy,
on the expected functional form of the exact solution)
and precise numerical methods which allow obser-
vations of numerically exact nonintegrable mobility,
paving the way to further physical (and mathematical)
insights.

In this Letter, after explaining in Sectidhthe ba-
sis of the numerical method (fixed point continuation g = — Z((I)n Bt + BpPri1) — 22 Z |®, |2
from the integrable Ablowitz—Ladik limi{16]) and 7 L
its relevant technical details briefly, we will discuss n 2% Zln(lJrMICDnIZ), (5)

n

This lattice, though nonintegrable far £ 0, pro-
vides a Hamiltonian interpolation between the stan-
dard DNLS equatior(1), for u = 0 andv = y/2,
and the integrable Ablowitz—Ladik latti¢&6], AL for
short, whenu = /2 andv = 0. The AL model is a
remarkable integrable lattice possessing a family of
exact moving breather solutions:

2
vp = xo(t) = E sinhg sina, (4)
where—7 < o < 7 and O< 8 < co. EQ.(2) has the

following conserved quantities, namely, the Hamil-
tonianH and the normv:

the structure of the discrete NLS breathers in Sec-
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V== S In(L+ i), ®)

where @, denotes the complex conjugate @f,. In
what follows we will fix the valuey =2 in Eq. (1)
andu + v =1in Eq.(2), as usual.

Perturbative inverse scattering transfofh8], as
well as collective coordinate methofs19,20] have

been used to study moving breathers of the Salerno

equation(2) near the integrable AL limity >~ 0). The
numerical procedure that we explain below has the ad-
vantage of being unbiased and not restricted to small
values of the nonintegrability parameterat the ex-
pense of restricting attention to those solutiq33
which areresonant, meaning that the two breather
time scales are commensuratewg/wp, = p/q (ra-
tional time scales ratio). A resonanp/g) moving
breatherd, (1) is numerically represented as a fixed
point of the mapM = LPTY, whereL is the lattice
translation operatol ({®, (1)}) = {®,4+1(¢)}, and T

is the Tp-evolution map (, = 27 /wp), T ({P,(1)}) =
{®,(t + Tp)}, explicitly

(1) = Ppip(t +qTp) foralln. (7

Let us briefly present the numerical method. The
implicit function theoren{21] ensures a unique con-
tinuation of a fixed point solution oM for parame-
ter (v) variations, provided the Jacobian matux=
D(M — 1) is invertible: with this proviso the Newton
method22] is an efficient numerical algorithm to find
the uniquely continued fixed point. In other words,
continuation from a resonant AL breather along the
Salerno model is possible if one restricts the Jacobian
matrix J to the subspace orthogonal to its center (null)

subspace. The center subspace turns out to be spanneﬁ1

by two continuous symmetries of the Salerno model,
namely, time trandation and gauge (uniform phase
rotation) invariances. Using singular value decompo-
sition (SVD) techniquef23], one then obtains numer-
ically accurate continuedesonant moving breathers
along the Salerno model until conditions for contin-
uation cease to hold. A (SV)Bregularized Newton al-
gorithm was already used by Cretegny and Aubry in
[12] to refine moving breathers of Klein—Gordon lat-
tices with Morse potentials obtained by other means.
From the methodological side what is novel here is
the systematic use of it in order to obtain the family of
moving Schrddinger breathers of the NLS latt{@3,
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for different values of Zv,/wp, =0,1/2,3/4,1, ...
and a fine grid of frequency values, and the non-
integrability parameter.

3. Mobilediscretebreathers

Let first start with a few remarks on immobile
breathers # = 0). Some nonintegrable issues, that af-
fect mobile solutions, can be shown continuing the im-
mobile ones along the Salerno model=£ 0, ..., 1).
First we remark that the uniquely continued solution
of standard DNLS = 1) is equal to the pinned dis-
crete breather uniquely continued from the anticon-
tinuous limit (y — o) [10]. Second, only inmobile
breathers which are centered either at a sijeo( at a
bond @ £ 1/2) persist; this is due to the emergence
of Peierls—Nabarro barriers away from integrability
(v # 0), a well-known result of collective variable the-
ory [2,20]. The breather centered at a site is stable
while the one centered at a bond is unstgBle® its
energy difference is the Peierls—Nabarro barrier. This
energy difference acts as a barrier to mobile breathers
for travelling along the lattice; the numerical compu-
tations of this barrier nicely fit with collective variable
predictions.

Our main interest, however, focusses on mobile so-
lutions, i.e.,p # 0. How are Peierls—Nabarro barriers
to mobility overcome by the fixed point solution? Our
results show clearly that the uniquely continyet -
resonant fixed point for # 0 is spatially asymptotic
to anextended background, whose amplitude increases
from zero (atv = 0) with increasing nonintegrability
v, superposed to the moving (AL)-like core, $&g. 1
order to reveal the structure of this extended back-
ground, we have to pay attention to spatially extended
solutions of the Salerno model.

The Salerno equatigi2) admits extended solutions
of the plane wave formg, (1) = A exfi(kn — wt)],
provided the following (nonlinear) dispersion relation
holds:

w=—2[1+ (1—v)|A[*] cosk — 2v|A[%. (8)

1 That is the case for unstaggered=£ 0)-continued stationary
breathers from AL. The staggered breathers=(7) have its stabil-
ity reversed, as shown 2].
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Fig. 1. Instantaneous profile of a1l breather withw;, = 4.909 andv;, = 0.7813. Real part (a), imaginary part (b), modulus (c) and phase (d).

The nonintegrability parameter {@) is v = 0.05.

A p/q-resonant plane wave satisfie®,(r) =
D4, + qTp), and therefore, for g/g-resonant
plane wave the following condition also holds:

ﬂzl(ﬁk_m), )
wp g \27r

m being any integer. Eq$8) and (9)can be solved for
k and one obtains a finite number of branchegA|)

of p/q-resonant wave numbers in the first Brillouin
zone,—n < k;j < . The simplest case of a unique
branch for fixedv (as well asw, and p/g) and A
small, is represented in (a) and (b)F§. 2. For exam-
ple, for A small andw, > 4, foranyvalueof < v <1
and A, there is a unique /lL-resonant wavenumber
branchkg(v, A).

For the general situation where several branéhes
(j=0,...,5s — 1) of resonant plane waves sol{@)
and (9), the power spectrum of a background site
S(w) = |ff°oo N(P, (1)) exdiot] dt|?, revealss peaks

at the valuesv; corresponding to the resonant wave
vector branches. The background is, up to numerical

accuracy, a linear superpositionpfg-resonant plane
waves, namely,

s—1
Z Ajexditkjn — w;1)].
j=0

The amplitudesA ; differ typically orders of magni-
tude, i.e.,|Ag| > |A1] > |A2] > ---, soO that only a
few frequencies are dominant, for most practical pur-
poses. One would speak of localizationkitspace to
describe the extended background of phie-resonant
fixed point. Once the values af,, v, andv are given,

the “selection rule” provided by Eq€8) and (9) does

not determine directly the resonant wave numligrs
but only branches;(A). This reflects the inherent
nonlinearity of the NLS lattice, where from the fre-
guency of the plane wave depends on both wave num-
ber and amplitude in Eq8). Along the parametric
continuation path the fixed point “adjusts” the plane
wave content;) of the background, so that it remains
p/q-resonant under the changes in the amplitudes of
the background plane waves ().

4. Background relevance to mobility

Along the Newton continuation path to the stan-
dard DNLS equation the background amplitudes have
a monotone increasing behavior withseeFig. 3a).
High frequency solutions cannot be continued up to
that limit, and the continuation stops for values of
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Fig. 2. Power spectrum. (&) w) for the background of a/IL breather witho;, = 5.057 atv = 0.05. In (b) formula(9) gives the contribution of a
unique phonon { = 0) with which agrees (Eq8)) with results given bys(w). (c) S(w) for the background of a/2 breather withw;, = 2.3842
atv = 1.00. In (d) formula(9) gives the contribution of seven phonons£0, ..., 6), but only five of them (0—4) are visible d{w). Note that
the amplitudesA ;| differ by orders of magnitude.
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Fig. 3. (a) Background amplitude of differentIlresonant breathers as a function of the nonintegrabilifyhe amplitudes are zero in the AL
integrable limit ¢ = 0) and have a monotone increasing behavior witfihe valuev = 1 corresponds to the standard DNLS equation. (b) Plot
of HCO"®of a 1/1 resonant breather with;, = 5.056 as a function of the localization centgyfor different values of (0.04, 008, 012, 016,
0.20, 024, 025 and 02512 (end of the continuation)). The amplitude of the oscillatio®/6¢" grows withv. (The minimum value of7¢°™®

has been set to zero in order to compare the differents functions.)

v < 1. This result correlates well with the collec- background amplitude near the continuation border.
tive variable (particle perspective) predictidi®,24] This result reinforces the interpretation of the back-
where the nonpersistence of travelling solutions is re- ground as an energy support to the core for surpassing
lated to the growth of the Peierls—Nabarro barrier. In the (nonintegrable) Peierls—Nabarro barriers to mo-
this respect, one observes a sudden increase in thebility, and so its unavoidable presence for the exis-
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tence of mobile breathers in the absence of integra- 5. Conclusions
bility.

The role of the background in the localized core We have used a (SVD)-regularized Newton algo-
mobility can be analysed as follows. As the solution rithm to continue mobile discrete breathers in the
is unambiguously found to b = $°"€4 P%KI the  Salerno model from the integrable Ablowitz—Ladik
energyH, Eq.(5), of a mobile breather can be written limit. Our results indicate that, away from integra-
as bility, a description of these solutions based exclu-
sively on localized (collective) variables is incomplete.
The solutions are composed by a localized core and a
_ linear superposition of plane waves, the background,
where H'"" is the interaction energy, i.e., the crossed whose amplitudes differ orders of magnitude. The
terms of #°°"® and #°°9 in the Hamiltonian. In the  packground plays an important role in the translational
simplest case in which the background has a single motion of the localized core. Exact mobile localization
resonant plane wave, its energy is a constant of mo- only exist over finely tuned extended states of the non-

H = H[écore] + H[ébckg] + Hint’ (10)

tion (along with the total energy), so one obtains

8H[43core] B 8Hint
ot T

: 11)

i.e., the variations of the core energy along the motion
are balanced by the variations in the core—backgroun

interaction energy. Eq11) dictates the dynamics of

any (eventual) effective (collective) variables intended
to describe the mobile core in a particle-like descrip-

tion of the breather.

One can compute the core energy variations di-

rectly from the numerical integration of a solution by

linear lattice. Mobile “pure” (i.e., zero background)
localization must be regarded as very exceptional (in-
tegrability).
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