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Abstract

Using continuation methods from the integrable Ablowitz–Ladik lattice, we have studied the structure of numerically exa
mobile discrete breathers in the standard discrete nonlinear Schrödinger equation. We show that, away from that
limit, the mobile pulse is dressed by a background of resonant plane waves with wavevectors given by a certain selec
This background is seen to be essential for supporting mobile localization in the absence of integrability. We show how the
variations of the localized pulse energy during its motion are balanced by the interaction with this background, allow
localization mobility along the lattice.
 2004 Elsevier B.V. All rights reserved.
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1. Introduction

The phenomenon of intrinsic localization (collap
to self-localized states) due to nonlinearity in discr
systems governed by Schrödinger equations is of
damental interest in nonlinear physics[1,2], and is
the subject of current active experimental researc
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several areas like nonlinear optics[3], Bose–Einstein
condensate arrays[4–6], polaronic effects in biomole
cular processes, and local (stretching) modes in m
cules and molecular crystals (see[1,7,8] and refer-
ences therein). Discrete nonlinear Schrödinger eq
tions (NLS lattices for short) provide the theoretic
description of these systems, where pulse-like (s
localized) states are observed.

The standard discrete nonlinear Schrödin
(DNLS) equation is the (simplest) discretization
the one-dimensional continuous Schrödinger equa
.
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with cubic nonlinearity in the interaction term, i.e.,

(1)iΦ̇n = −(Φn+1 + Φn−1) − γ |Φn|2Φn,

whereΦn(t) is a complex function of time. The firs
term on the right takes account of the dispersion
the second of the nonlinearity, the parameterγ is the
ratio between them. For the Bose–Einstein cond
sate lattices dealt with in[4–6] one can think ofΦn

as the boson condensate wave function in thenth (op-
tical) potential well, andγ would thus be related t
the so-calleds-wave scattering length[9]. The self-
focussing effect of local nonlinearity balanced by the
opposite effect of the dispersive coupling makes p
sible the existence of localized boson states in
Schrödinger representation of the condensate lattic
(Gross–Pitaevskii equation). In a localized state (d
crete breather) of the boson lattice the profile of|Φn|2
decays exponentially away from the localization cen
ter. These solutions have an internal frequency,Φn =
|Φn|exp(iωbt), so that the discreteness is essentia
avoid resonances with the phonon band and kee
localized the energy. Pinned (immobile) localized
lutions of Eq.(1) have been rigorously characteriz
[10] and extensively studied by highly accurate n
merical[11] and analytical approximations. Howeve
for exact mobile discrete breathers no rigorous fo
mal proof of existence in standard DNLS is availa
nowadays although lot of works have studied th
kind of solutions (see, e.g.,[12–15]).

The translational motion of discrete breathers
troduces a new time scale (the inverse velocity) i
play, so generically a moving breather should ex
resonances with the plane wave band expectra.
Hamiltonian system, these radiative losses would t
to delocalize energy and some compensating m
anism is needed in order to sustain exact station
states of breather translational motion. To address
problem we use unbiased (i.e., not based on ans
on the expected functional form of the exact solutio
and precise numerical methods which allow obs
vations of numerically exact nonintegrable mobili
paving the way to further physical (and mathematic
insights.

In this Letter, after explaining in Section2 the ba-
sis of the numerical method (fixed point continuati
from the integrable Ablowitz–Ladik limit[16]) and
its relevant technical details briefly, we will discu
the structure of the discrete NLS breathers in S
tion 3. They are found to be the exact superposit
of a travelling exponentially localized oscillation (th
core), and an extended “background” built up of
nite amplitude plane wavesAexp[i(kn − ωt)]. These
resonant plane waves fit well simple (thermodyna
limit) predictions based on discrete symmetry requ
ments. Finally in Section4 we show how the reso
nant background is seen to be an indispensable pa
the solution. In this regard we present the mechan
through which the interaction core-background co
pensates the variations of the core energy (no lon
an invariant of motion away from the integrable limi
during the translational motion.

2. Salerno model and continuation method

The method used here makes use of the follow
NLS lattice, originally introduced by Salerno[17],

iΦ̇n = −(Φn+1 + Φn−1)
[
1+ µ|Φn|2

]
(2)− 2νΦn|Φn|2.

This lattice, though nonintegrable forν �= 0, pro-
vides a Hamiltonian interpolation between the st
dard DNLS equation(1), for µ = 0 and ν = γ /2,
and the integrable Ablowitz–Ladik lattice[16], AL for
short, whenµ = γ /2 andν = 0. The AL model is a
remarkable integrable lattice possessing a family
exact moving breather solutions:

Φn(t) =
√

2

γ
sinhβ sech

[
β
(
n − x0(t)

)]
(3)× exp

[
i
(
α
(
n − x0(t)

) + Ω(t)
)]

,

the two parametersωb and vb are the breather fre
quency and velocity

ωb ≡ Ω̇(t) = 2 coshβ cosα + αvb,

(4)vb ≡ ẋ0(t) = 2

β
sinhβ sinα,

where−π � α � π and 0< β < ∞. Eq. (2) has the
following conserved quantities, namely, the Ham
tonianH and the normN :

(5)

H = −
∑
n

(ΦnΦ̄n+1 + Φ̄nΦn+1) − 2
ν

µ

∑
n

|Φn|2

+ 2
ν

µ2

∑
ln

(
1+ µ|Φn|2

)
,

n
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(6)N = 1

µ

∑
n

ln
(
1+ µ|Φn|2

)
,

where Φ̄n denotes the complex conjugate ofΦn. In
what follows we will fix the valueγ = 2 in Eq. (1)
andµ + ν = 1 in Eq.(2), as usual.

Perturbative inverse scattering transform[18], as
well as collective coordinate methods[2,19,20], have
been used to study moving breathers of the Sale
equation(2) near the integrable AL limit (ν � 0). The
numerical procedure that we explain below has the
vantage of being unbiased and not restricted to sm
values of the nonintegrability parameterν, at the ex-
pense of restricting attention to those solutions(3)
which are resonant, meaning that the two breath
time scales are commensurate 2πvb/ωb = p/q (ra-
tional time scales ratio). A resonant (p/q) moving
breatherΦ̂n(t) is numerically represented as a fix
point of the mapM = LpT q , whereL is the lattice
translation operatorL({Φn(t)}) = {Φn+1(t)}, and T

is theTb-evolution map (Tb = 2π/ωb), T ({Φn(t)}) =
{Φn(t + Tb)}, explicitly

(7)Φ̂n(t) = Φ̂n+p(t + qTb) for all n.

Let us briefly present the numerical method. T
implicit function theorem[21] ensures a unique con
tinuation of a fixed point solution ofM for parame-
ter (ν) variations, provided the Jacobian matrixJ =
D(M − I) is invertible: with this proviso the Newto
method[22] is an efficient numerical algorithm to fin
the uniquely continued fixed point. In other word
continuation from a resonant AL breather along
Salerno model is possible if one restricts the Jacob
matrixJ to the subspace orthogonal to its center (n
subspace. The center subspace turns out to be spa
by two continuous symmetries of the Salerno mod
namely, time translation and gauge (uniform phase
rotation) invariances. Using singular value decom
sition (SVD) techniques[23], one then obtains nume
ically accurate continued resonant moving breathe
along the Salerno model until conditions for cont
uation cease to hold. A (SVD)-regularized Newton al
gorithm was already used by Cretegny and Aubry
[12] to refine moving breathers of Klein–Gordon la
tices with Morse potentials obtained by other mea
From the methodological side what is novel here
the systematic use of it in order to obtain the family
moving Schrödinger breathers of the NLS lattice(2),
d

for different values of 2πvb/ωb = 0,1/2,3/4,1, . . .

and a fine grid of frequency valuesωb and the non-
integrability parameterν.

3. Mobile discrete breathers

Let first start with a few remarks on immobi
breathers (p = 0). Some nonintegrable issues, that
fect mobile solutions, can be shown continuing the
mobile ones along the Salerno model (ν = 0, . . . ,1).
First we remark that the uniquely continued solut
of standard DNLS (ν = 1) is equal to the pinned dis
crete breather uniquely continued from the antic
tinuous limit (γ → ∞) [10]. Second, only inmobile
breathers which are centered either at a site (n) or at a
bond (n ± 1/2) persist; this is due to the emergen
of Peierls–Nabarro barriers away from integrabil
(ν �= 0), a well-known result of collective variable th
ory [2,20]. The breather centered at a site is sta
while the one centered at a bond is unstable[2];1 its
energy difference is the Peierls–Nabarro barrier. T
energy difference acts as a barrier to mobile breat
for travelling along the lattice; the numerical comp
tations of this barrier nicely fit with collective variab
predictions.

Our main interest, however, focusses on mobile
lutions, i.e.,p �= 0. How are Peierls–Nabarro barrie
to mobility overcome by the fixed point solution? O
results show clearly that the uniquely continuedp/q-
resonant fixed point forν �= 0 is spatially asymptotic
to anextended background, whose amplitude increase
from zero (atν = 0) with increasing nonintegrabilit
ν, superposed to the moving (AL)-like core, seeFig. 1.
In order to reveal the structure of this extended ba
ground, we have to pay attention to spatially exten
solutions of the Salerno model.

The Salerno equation(2) admits extended solution
of the plane wave form,Φn(t) = Aexp[i(kn − ωt)],
provided the following (nonlinear) dispersion relati
holds:

(8)ω = −2
[
1+ (1− ν)|A|2]cosk − 2ν|A|2.

1 That is the case for unstaggered (α = 0)-continued stationary
breathers from AL. The staggered breathers (α = π ) have its stabil-
ity reversed, as shown in[2].
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(d).
(a) (b)

(c) (d)

Fig. 1. Instantaneous profile of a 1/1 breather withωb = 4.909 andvb = 0.7813. Real part (a), imaginary part (b), modulus (c) and phase
The nonintegrability parameter in(2) is ν = 0.05.
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A p/q-resonant plane wave satisfiesΦn(t) =
Φn+p(t + qTb), and therefore, for ap/q-resonant
plane wave the following condition also holds:

(9)
ω

ωb

= 1

q

(
p

2π
k − m

)
,

m being any integer. Eqs.(8) and (9)can be solved fo
k and one obtains a finite number of brancheskj (|A|)
of p/q-resonant wave numbers in the first Brillou
zone,−π � kj � π . The simplest case of a uniqu
branch for fixedν (as well asωb and p/q) and A

small, is represented in (a) and (b) ofFig. 2. For exam-
ple, forA small andωb > 4, for any value of 0< ν < 1
and A, there is a unique 1/1-resonant wavenumbe
branchk0(ν,A).

For the general situation where several branchekj

(j = 0, . . . , s − 1) of resonant plane waves solve(8)
and (9), the power spectrum of a background siten,
S(ω) = | ∫ ∞

−∞ �(Φn(t))exp[iωt]dt|2, revealss peaks
at the valuesωj corresponding to the resonant wa
vector branches. The background is, up to numer
accuracy, a linear superposition ofp/q-resonant plane
waves, namely,

s−1∑
j=0

Aj exp
[
i(kjn − ωj t)

]
.

The amplitudesAj differ typically orders of magni-
tude, i.e.,|A0| � |A1| � |A2| � · · · , so that only a
few frequencies are dominant, for most practical p
poses. One would speak of localization ink-space to
describe the extended background of thep/q-resonant
fixed point. Once the values ofωb, vb andν are given,
the “selection rule” provided by Eqs.(8) and (9), does
not determine directly the resonant wave numberskj ,
but only brancheskj (A). This reflects the inheren
nonlinearity of the NLS lattice, where from the fr
quency of the plane wave depends on both wave n
ber and amplitude in Eq.(8). Along the parametric
continuation path the fixed point “adjusts” the pla
wave content (kj ) of the background, so that it remai
p/q-resonant under the changes in the amplitude
the background plane waves (Aj ).

4. Background relevance to mobility

Along the Newton continuation path to the sta
dard DNLS equation the background amplitudes h
a monotone increasing behavior withν, seeFig. 3(a).
High frequency solutions cannot be continued up
that limit, and the continuation stops for values



J. Gómez-Gardeñes et al. / Physics Letters A 332 (2004) 213–219 217

L
lot
(a) (b)

(c) (d)

Fig. 2. Power spectrum. (a)S(ω) for the background of a 1/1 breather withωb = 5.057 atν = 0.05. In (b) formula(9) gives the contribution of a
unique phonon (j = 0) with which agrees (Eq.(8)) with results given byS(ω). (c) S(ω) for the background of a 1/2 breather withωb = 2.3842
at ν = 1.00. In (d) formula(9) gives the contribution of seven phonons (j = 0, . . . ,6), but only five of them (0–4) are visible onS(ω). Note that
the amplitudes|Aj | differ by orders of magnitude.

(a) (b)

Fig. 3. (a) Background amplitude of different 1/1 resonant breathers as a function of the nonintegrabilityν. The amplitudes are zero in the A
integrable limit (ν = 0) and have a monotone increasing behavior withν. The valueν = 1 corresponds to the standard DNLS equation. (b) P
of H coreof a 1/1 resonant breather withωb = 5.056 as a function of the localization centerx0 for different values ofν (0.04, 0.08, 0.12, 0.16,
0.20, 0.24, 0.25 and 0.2512 (end of the continuation)). The amplitude of the oscillation ofH coregrows withν. (The minimum value ofH core

has been set to zero in order to compare the differents functions.)
c-
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ν < 1. This result correlates well with the colle
tive variable (particle perspective) predictions[19,24]
where the nonpersistence of travelling solutions is
lated to the growth of the Peierls–Nabarro barrier
this respect, one observes a sudden increase in
background amplitude near the continuation bor
This result reinforces the interpretation of the ba
ground as an energy support to the core for surpas
the (nonintegrable) Peierls–Nabarro barriers to m
bility, and so its unavoidable presence for the ex
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tence of mobile breathers in the absence of inte
bility.

The role of the background in the localized co
mobility can be analysed as follows. As the soluti
is unambiguously found to bêΦ = Φ̂core+ Φ̂bckg, the
energyH , Eq.(5), of a mobile breather can be writte
as

(10)H = H
[
Φ̂core] + H

[
Φ̂bckg] + H int,

whereH int is the interaction energy, i.e., the cross
terms ofΦ̂core and Φ̂bckg in the Hamiltonian. In the
simplest case in which the background has a sin
resonant plane wave, its energy is a constant of
tion (along with the total energy), so one obtains

(11)
∂H [Φ̂core]

∂t
= −∂H int

∂t
,

i.e., the variations of the core energy along the mot
are balanced by the variations in the core–backgro
interaction energy. Eq.(11) dictates the dynamics o
any (eventual) effective (collective) variables intend
to describe the mobile core in a particle-like descr
tion of the breather.

One can compute the core energy variations
rectly from the numerical integration of a solution
substracting (at each time step) the background f
it. In Fig. 3(b) we plot the evolution of the core en
ergy as a function of the core localization center,x0,
defined by using the normN (Eq. (6)) of the Salerno
model(2) as

(12)x0 =
∑

n n ln(1+ µ|Φcore
n |2)

µN
.

One observes that the core has extracted the maxim
energy from the interaction term when the core pas
overx0 = n± 1/2 (maxima of the PN barrier) and ha
given it back to the interaction term atx0 = n (min-
ima of the PN barrier). The bigger the PN barri
the larger the interaction term (directly proportion
to background amplitude) is.This result illustrate the
role of the resonant background on the core mobility
and the interpretation of its amplitude increase withν.
The increase of nonintegrability, and the subsequen
growth of the PN barrier, demands additional supp
of energy from the interaction term, which is achiev
by an increase of the background amplitude.
5. Conclusions

We have used a (SVD)-regularized Newton alg
rithm to continue mobile discrete breathers in
Salerno model from the integrable Ablowitz–Lad
limit. Our results indicate that, away from integr
bility, a description of these solutions based exc
sively on localized (collective) variables is incomple
The solutions are composed by a localized core a
linear superposition of plane waves, the backgrou
whose amplitudes differ orders of magnitude. T
background plays an important role in the translatio
motion of the localized core. Exact mobile localizati
only exist over finely tuned extended states of the n
linear lattice. Mobile “pure” (i.e., zero backgroun
localization must be regarded as very exceptional
tegrability).
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