Introduction to Complex Networks

Jesús Gómez Gardeñes

Departamento de Física de la Materia Condensada Instituto de Biocomputación y Física de Sistemas Complejos (BIFI) Universidad de Zaragoza

Complex Networks in a Nutshell

y Física de Sistemas Complejos (BIFI)

Universidad de Zaragoza

Complex Systems

Composed of many *interacting* elements

They give rise to <u>emergent</u> collective behavior

Complex Systems

Composed of many *interacting* elements

They give rise to <u>emergent</u> collective behavior

Emergence: Not directly related to individual properties

They are **Ubiquitous**, *i.e.*, not related to any characteristic life/energy scale

Synchronization

TELECKO

Epidemics

Cooperation

more than Congestion

Social Collective Behavior

- Social Norms & Conventions
- Economic Crisis
- Viral Information

@gomezgardenes

Unfolding of social movements

BIG DATA Opportunities

@gomezgardenes

OPEN CACCESS Freely available online

PLOS ONE

The Twitter of Babel: Mapping World Languages through Microblogging Platforms

Delia Mocanu¹, Andrea Baronchelli¹, Nicola Perra¹, Bruno Gonçalves², Qian Zhang¹, Alessandro Vespignani^{1,3,4}*

1 Laboratory for the Modeling of Biological and Socio-technical Systems. Northeastern University, Boston, Massachusetts, United States of America, 2 Aix Marseille Université, CNRS, CPT, UMR 7332, Marseille, France, 3 Institute for Quantitative Social Sciences at Harvard University, Cambridge, Massachusetts, United States of America, 4 Institute for Scientific Interchange Foundation, Turin, Italy

Abstract

Large scale analysis and statistics of socio-technical systems that just a few short years ago would have required the use of consistent economic and human resources can nowadays be conveniently performed by mining the enormous amount of digital data produced by human activities. Although a characterization of several aspects of our societies is emerging from the data revolution, a number of questions concerning the reliability and the blases inherent to the big data "proxies" of social life are still open. Here, we survey worldwide linguistic indicators and trends through the analysis of a large-scale dataset of microblogging posts. We show that available data allow for the study of language geography at scales ranging from country-level aggregation to specific city neighborhoods. The high resolution and coverage of the data allows us to investigate different indicators such as the linguistic homogeneity of different countries, the touristic seasonal patterns within countries and the geographical distribution of different languages in multilingual regions. This work highlights the potential of geolocalized studies of open data sources to improve current analysis and develop indicators for major social phenomena in specific communities.

Citation: Mocanu D, Baronchelli A, Perra N, Gonçalves B, Zhang Q, et al. (2013) The Twitter of Babel: Mapping World Languages through Microblogging Platforms. PLoS ONE 8(4): e61981. doi:10.1371/journal.pone.0061981

Editor: Yamir Moreno, University of Zaragoza, Spain

Received January 5, 2013; Accepted March 18, 2013; Published April 18, 2013

Copyright: © 2013 Mocanu et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: The authors acknowledge the support by the National Science Foundation ICES award CCF-1101743. For the analysis of data data outside of the United States of America the authors acknowledge the Intelligence Advanced Research Projects Activity (IABPA) via Department of Interior National Business Center (IDol/ NBC) contract number D12PC00285. The views and conclusions contained herein are those of the authors and should not be interpreted as necessarily representing the official policies or endorsements, either expressed or implied, of IABPA, Dol/NBE, or the United States Government. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

E-mail: alexves@gmail.com

Mocanu D, Baronchelli A, Perra N, Gonçalves B, Zhang Q, et al. (2013) The Twitter of Babel: Mapping World Languages through Microblogging Platforms. PLoS ONE 8(4): e61981.

IS TWITTER REPRESENTATIVE OF OUR SOCIETY?

OPEN CACCESS Freely available online

PLOS ONE

The Twitter of Babel: Mapping World Languages through Microblogging Platforms

Delia Mocanu¹, Andrea Baronchelli¹, Nicola Perra¹, Bruno Gonçalves², Qian Zhang¹, Alessandro Vespignani^{1,3,4}*

1 Laboratory for the Modeling of Biological and Socio-technical Systems. Northeastern University, Boston, Massachusetts, United States of America, 2 Aix Marseille Université, CNRS, CPT, UMR 7332, Marseille, France, 3 Institute for Quantitative Social Sciences at Harvard University, Cambridge, Massachusetts, United States of America, 4 Institute for Scientific Interchange Foundation, Turin, Italy

Abstract

Large scale analysis and statistics of socio-technical systems that just a few short years ago would have required the use of consistent economic and human resources can nowadays be conveniently performed by mining the enormous amount of digital data produced by human activities. Although a characterization of several aspects of our societies is emerging from the data revolution, a number of questions concerning the reliability and the blases inherent to the big data "proxies" of social life are still open. Here, we survey worldwide linguistic indicators and trends through the analysis of a large-scale dataset of microblogging posts. We show that available data allow for the study of language geography at scales ranging from country-level aggregation to specific city neighborhoods. The high resolution and coverage of the data allows us to investigate different indicators such as the linguistic homogeneity of different countries, the touristic seasonal patterns within countries and the geographical distribution of different languages in multilingual regions. This work highlights the potential of geolocalized studies of open data sources to improve current analysis and develop indicators for major social phenomena in specific communities.

Citation: Mocanu D, Baronchelli A, Perra N, Gonçalves B, Zhang Q, et al. (2013) The Twitter of Babel: Mapping World Languages through Microbiogging Platforms. PLoS ONE 8(4): e61981. doi:10.1371/journal.pone.0061981

Editor: Yamir Moreno, University of Zaragoza, Spain

Received January 5, 2013; Accepted March 18, 2013; Published April 18, 2013

Copyright: © 2013 Mocanu et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: The authors acknowledge the support by the National Science Foundation ICES award CCF-1101743. For the analysis of data data outside of the United States of America the authors acknowledge the Intelligence Advanced Research Projects Activity (IABPA) via Department of Interior National Business Center (IDol/ NBC) contract number D12PC00285. The views and conclusions contained herein are those of the authors and should not be interpreted as necessarily representing the official policies or endorsements, either expressed or implied, of IABPA, Dol/NBE, or the United States Government. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

E-mail: alexves@gmail.com

Mocanu D, Baronchelli A, Perra N, Gonçalves B, Zhang Q, et al. (2013) The Twitter of Babel: Mapping World Languages through Microblogging Platforms. PLoS ONE 8(4): e61981.

REPRESENTATIVENESS BY COUNTRY

AND BY GDP

REPRESENTATIVENESS BY COUNTRY

AND BY GDP

It seems a very good sample for a sociology study (especially in Kuwait...)

LANGUAGES

LANGUAGES

English overrepresented

LANGUAGES

English overrepresented

LANGUAGES POLARIZATION

Belgium

Catalonia, ES

Montreal, CA

nature

Vol 457 19 February 2009 doi:10.1038/nature07634

LETTERS

Detecting influenza epidemics using search engine query data

Jeremy Ginsberg¹, Matthew H. Mohebbi¹, Rajan S. Patel¹, Lynnette Brammer², Mark S. Smolinski¹ & Larry Brilliant¹

Seasonal influenza epidemics are a major public health concern, causing tens of millions of respiratory illnesses and 250,000 to 500,000 deaths worldwide each year1. In addition to seasonal influenza, a new strain of influenza virus against which no previous immunity exists and that demonstrates human-to-human transmission could result in a pandemic with millions of fatalities2. Early detection of disease activity, when followed by a rapid response, can reduce the impact of both seasonal and pandemic influenza³⁴. One way to improve early detection is to monitor health-seeking behaviour in the form of queries to online search engines, which are submitted by millions of users around the world each day. Here we present a method of analysing large numbers of Google search queries to track influenza-like illness in a population. Because the relative frequency of certain queries is highly correlated with the percentage of physician visits in which a patient presents with influenza-like symptoms, we can accurately estimate the current level of weekly influenza activity in each region of the United States, with a reporting lag of about one day. This approach may make it possible to use search queries to detect influenza epidemics in areas with a large population of web search users.

By aggregating historical logs of online web search queries submitted between 2003 and 2008, we computed a time series of weekly counts for 50 million of the most common search queries in the United States. Separate aggregate weekly counts were kept for every query in each state. No information about the identity of any user was retained. Each time series was normalized by dividing the count for each query in a particular week by the total number of online search queries submitted in that location during the week, resulting in a query fraction (Supplementary Fig. 1).

We sought to develop a simple model that estimates the probability that a random physician visit in a particular region is related to an ILI; this is equivalent to the percentage of ILI-related physician visits. A single explanatory variable was used: the probability that a random search query submitted from the same region is ILI-related, as determined by an automated method described below. We fit a linear model using the log-odds of an ILI physician visit and the log-odds of an ILI-related search query: logit(l(t)) = α logit(Q(t)) + ε , where l(t) is the percentage of ILI physician visits, Q(t) is the ILI-related query fraction at time t, α is the multiplicative coefficient, and ε is the error term. logit(p) is simply $\ln(p/(1 - p))$.

Publicly available historical data from the CDC's US Influenza

Jeremy Ginsberg, Matthew H. Mohebbi, Rajan S. Patel, Lynnette Brammer, Mark S. Smolinski & Larry Brilliant. Detecting influenza epidemics using search engine query data Nature 457, 1012-1014 (19 February 2009)

Google

The initial Google paper stated that the Google Flu Trends predictions were 97% accurate comparing with CDC data.

@gomezgardenes

nature

Vol 457 19 February 2009 doi:10.1038/nature07634

LETTERS

Detecting influenza epidemics using search engine query data

Jeremy Ginsberg¹, Matthew H. Mohebbi¹, Rajan S. Patel¹, Lynnette Brammer², Mark S. Smolinski¹ & Larry Brilliant¹

Seasonal influenza epidemics are a major public health concern, causing tens of millions of respiratory illnesses and 250,000 to 500,000 deaths worldwide each year1. In addition to seasonal influenza, a new strain of influenza virus against which no previous immunity exists and that demonstrates human-to-human transmission could result in a pandemic with millions of fatalities2. Early detection of disease activity, when followed by a rapid response, can reduce the impact of both seasonal and pandemic influenza34. One way to improve early detection is to monitor health-seeking behaviour in the form of queries to online search engines, which are submitted by millions of users around the world each day. Here we present a method of analysing large numbers of Google search queries to track influenza-like illness in a population. Because the relative frequency of certain queries is highly correlated with the percentage of physician visits in which a patient presents with influenza-like symptoms, we can accurately estimate the current level of weekly influenza activity in each region of the United States, with a reporting lag of about one day. This approach may make it possible to use search queries to detect influenza epidemics in areas with a large population of web search users.

By aggregating historical logs of online web search queries submitted between 2003 and 2008, we computed a time series of weekly counts for 50 million of the most common search queries in the United States. Separate aggregate weekly counts were kept for every query in each state. No information about the identity of any user was retained. Each time series was normalized by dividing the count for each query in a particular week by the total number of online search queries submitted in that location during the week, resulting in a query fraction (Supplementary Fig. 1).

We sought to develop a simple model that estimates the probability that a random physician visit in a particular region is related to an ILI; this is equivalent to the percentage of ILI-related physician visits. A single explanatory variable was used: the probability that a random search query submitted from the same region is ILI-related, as determined by an automated method described below. We fit a linear model using the log-odds of an ILI physician visit and the log-odds of an ILI-related search query: logit(l(t)) = α logit(Q(t)) + ε , where l(t) is the percentage of ILI physician visits, Q(t) is the ILI-related query fraction at time t, α is the multiplicative coefficient, and ε is the error term. logit(p) is simply $\ln(p/(1 - p))$.

Publicly available historical data from the CDC's US Influenza

Jeremy Ginsberg, Matthew H. Mohebbi, Rajan S. Patel, Lynnette Brammer, Mark S. Smolinski & Larry Brilliant. Detecting influenza epidemics using search engine query data Nature 457, 1012-1014 (19 February 2009)

Google

The initial Google paper stated that the Google Flu Trends predictions were 97% accurate comparing with CDC data.

@gomezgardenes

nature

Vol 457 19 February 2009 doi:10.1038/nature07634

LETTERS

Detecting influenza epidemics using search engine query data

Jeremy Ginsberg¹, Matthew H. Mohebbi¹, Rajan S. Patel¹, Lynnette Brammer², Mark S. Smolinski¹ & Larry Brilliant¹

Seasonal influenza epidemics are a major public health concern, causing tens of millions of respiratory illnesses and 250,000 to 500,000 deaths worldwide each year1. In addition to seasonal influenza, a new strain of influenza virus against which no previous immunity exists and that demonstrates human-to-human transmission could result in a pandemic with millions of fatalities2. Early detection of disease activity, when followed by a rapid response, can reduce the impact of both seasonal and pandemic influenza34. One way to improve early detection is to monitor health-seeking behaviour in the form of queries to online search engines, which are submitted by millions of users around the world each day. Here we present a method of analysing large numbers of Google search queries to track influenza-like illness in a population. Because the relative frequency of certain queries is highly correlated with the percentage of physician visits in which a patient presents with influenza-like symptoms, we can accurately estimate the current level of weekly influenza activity in each region of the United States, with a reporting lag of about one day. This approach may make it possible to use search queries to detect influenza epidemics in areas with a large population of web search users.

By aggregating historical logs of online web search queries submitted between 2003 and 2008, we computed a time series of weekly counts for 50 million of the most common search queries in the United States. Separate aggregate weekly counts were kept for every query in each state. No information about the identity of any user was retained. Each time series was normalized by dividing the count for each query in a particular week by the total number of online search queries submitted in that location during the week, resulting in a query fraction (Supplementary Fig. 1).

We sought to develop a simple model that estimates the probability that a random physician visit in a particular region is related to an ILI; this is equivalent to the percentage of ILI-related physician visits. A single explanatory variable was used: the probability that a random search query submitted from the same region is ILI-related, as determined by an automated method described below. We fit a linear model using the log-odds of an ILI physician visit and the log-odds of an ILI-related search query: logit(l(t)) = α logit(Q(t)) + ε , where l(t) is the percentage of ILI physician visits, Q(t) is the ILI-related query fraction at time t, α is the multiplicative coefficient, and ε is the error term. logit(p) is simply $\ln(p/(1 - p))$.

Publicly available historical data from the CDC's US Influenza

Jeremy Ginsberg, Matthew H. Mohebbi, Rajan S. Patel, Lynnette Brammer, Mark S. Smolinski & Larry Brilliant. Detecting influenza epidemics using search engine query data Nature 457, 1012-1014 (19 February 2009)

GOOGLE FLU TRENDS

- First launched in 2008 by Google.org to help predict outbreaks of flu.
- More than 25 countries

@gomezgardenes

• First example of "Big Data" for social/health use

The idea behind Google Flu Trends (GFT) is that, by monitoring millions of users' health tracking behaviors online, the large number of Google search queries gathered can be analyzed to reveal if there is the presence of flu-like illness in a population.

The infamous 2012-2013 season

WHAT HAPPENED ?

The infamous 2012-2013 season

10

WHAT HAPPENED

- Early Peak season
- Highly contagious strain (H3N2)
- Huge news coverage

BIG DATA

The Parable of Google Flu: **Traps in Big Data Analysis**

David Lazer,^{1,2*} Ryan Kennedy,^{1,3,4} Gary King,³ Alessandro Vespignani^{3,5,6}

Science 343, 6176, 12

The infamous 2012-2013 season

WHAT HAPPENED ?

- Early Peak season
- Highly contagious strain (H3N2)
- Huge news coverage

BIG DATA

The Parable of Google Flu: Traps in Big Data Analysis

David Lazer, ^{1,2*} Ryan Kennedy, ^{1,3,4} Gary King,³ Alessandro Vespignani^{3,5,6}

Science 343, 6176, 12

Complex Networks

Common language for complex systems of diverse nature

Common language for complex systems of diverse nature

Common language for complex systems of diverse nature

Goal: To reveal Similar (Universal) organizational principles of Complex Systems

Goal: To reveal Similar (Universal) organizational principles of Complex Systems

A growing field...

Books

Books

2003

Books

Books

Books

Books

Specific Journals

2013

2013

Goal: To reveal Similar (Universal) organizational principles of Complex Systems

Structure Complex Networks

Encoding a Network

Encoding a Network

Network Laplacian

$$\mathcal{L} = \begin{pmatrix} k_1 & 0 & . & 0 & 0 \\ 0 & k_2 & . & 0 & 0 \\ . & . & . & . \\ 0 & 0 & . & k_{N-1} & 0 \\ 0 & 0 & . & 0 & k_N \end{pmatrix} - A$$

Encoding a Network

$$\mathcal{L} = \begin{pmatrix} k_1 & 0 & . & 0 & 0 \\ 0 & k_2 & . & 0 & 0 \\ . & . & . & . \\ 0 & 0 & . & k_{N-1} & 0 \\ 0 & 0 & . & 0 & k_N \end{pmatrix} - A = \begin{pmatrix} 1 & -1 & 0 & 0 & 0 \\ -1 & 3 & -1 & -1 & 0 \\ 0 & -1 & 3 & -1 & -1 \\ 0 & -1 & -1 & 3 & -1 \\ 0 & 0 & -1 & -1 & 2 \end{pmatrix}$$

Main Global Descriptors

- Degree Distribution
- Clustering Coefficient
- Distances
- Correlations
- Centrality
- K-Cores
- Motifs

@gomezgardenes

• Communities

Main Global Descriptors

- Degree Distribution
- Clustering Coefficient
- Distances
- Correlations
- Centrality
- K-Cores
- Motifs
- Communities

Scale-free phenomenon

II Clustering Coefficient

Clustering of a node:

Clustering of the Network:

II Clustering Coefficient

Distance between two nodes d_{ij} :

Minimum number of links to be crossed between them

Distance between two nodes d_{ij} :

Minimum number of links to be crossed between them

Distance between two nodes d_{ij} :

Minimum number of links to be crossed between them

Shortest Path:

The sequence of links to be crossed

Distance between two nodes d_{ij} :

Minimum number of links to be crossed between them

Shortest Path:

The sequence of links to be crossed

Average Path Length:

$$L = \frac{1}{N(N-1)} \sum_{i,j=1}^{N} d_{ij}$$

Diameter: $D = \max\{d_{ij}\}$

Small-World Phenomenon (Six Degrees of Separation)

Everybody is connected to everybody else by no more than six degrees of separation by sociologist Stanley Milgram (1967)

Small-World Phenomenon (Six Degrees of Separation)

Everybody is connected to everybody else by no more than six degrees of separation by sociologist Stanley Milgram (1967)

Small-World Phenomenon (Six Degrees of Separation)

Everybody is connected to everybody else by no more than six degrees of separation by sociologist Stanley Milgram (1967)

Small-World Phenomenon (Six Degrees of Separation)

Everybody is connected to everybody else by no more than six degrees of separation by sociologist Stanley Milgram (1967)

The number of nodes at distance *l* from node *i* is:

 $\langle k \rangle^l$

The number of nodes at distance *l* from node *i* is:

 $\langle k \rangle^l$

To reach all the nodes:

$$\mathbf{V} = \sum_{l=0}^{L_{\max}} \langle k \rangle^l$$

The number of nodes at distance *l* from node *i* is:

 $\langle k \rangle^l$

To reach all the nodes:

 L_{\max} $N = \sum_{k \in \mathbb{Z}} \langle k \rangle^l \ge \langle k \rangle^{L_{\max}}$ l=0

The number of nodes at distance *l* from node *i* is:

 $\langle k \rangle^l$

To reach all the nodes:

 L_{\max} $N = \sum \langle k \rangle^l \ge \langle k \rangle^{L_{\max}} \ge \langle k \rangle^L$ l=0

The number of nodes at distance *l* from node *i* is:

 $\langle k \rangle^l$

To reach all the nodes:

$$N = \sum_{l=0}^{L_{\max}} \langle k \rangle^l \ge \langle k \rangle^{L_{\max}} \ge \langle k \rangle^L$$

 $\log(N) \ge L \log(\langle k \rangle)$

The number of nodes at distance *l* from node *i* is:

 $\langle k \rangle^l$

To reach all the nodes: $N = \sum_{l=0}^{L_{\max}} \langle k \rangle^l \ge \langle k \rangle^{L_{\max}} \ge \langle k \rangle^L$

 $\log(N) \ge L \log(\langle k \rangle)$

 $L \le \frac{\log(N)}{\log(\langle k \rangle)}$

P(k',k): Probability that two nodes of degree k and k' are linked

Detailed balance Equation for Networks

$$P(k',k) = kP(k)P(k'|k) = k'P(k')P(k|k')$$

P(k',k): Probability that two nodes of degree k and k' are linked

Detailed balance Equation for Networks

$$P(k',k) = kP(k)P(k'|k) = k'P(k')P(k|k')$$

Two ways of measuring

$$k_{nn} = \sum_{k'} k' P(k'|k) = f(k) \qquad r = \frac{\langle k_i k_j \rangle - \langle k \rangle^2}{\langle k^2 \rangle - \langle k \rangle^2}$$

Networks' Taxonomy

Network		Туре	Nodes	Links	<k></k>	L	Clustering		ering	Corr. (r)
Social	film actors	undirected	449 913	25516482	113.43	3.48	2.3	0.20	0.78	0.208
	company directors	undirected	7 673	55392	14.44	4.60	-	0.59	0.88	0.276
	math coauthorship	undirected	253 339	496489	3.92	7.57	_	0.15	0.34	0.120
	physics coauthorship	undirected	52 909	245300	9.27	6.19	_	0.45	0.56	0.363
	biology coauthorship	undirected	1520251	11803064	15.53	4.92	_	0.088	0.60	0.127
	telephone call graph	undirected	47000000	80 000 000	3.16		2.1			
	email messages	directed	59912	86 300	1.44	4.95	1.5/2.0		0.16	
	email address books	directed	16881	57029	3.38	5.22	-	0.17	0.13	0.092
	student relationships	undirected	573	477	1.66	16.01	_	0.005	0.001	-0.029
	sexual contacts	undirected	2810				3.2			
Information	WWW nd.edu	directed	269504	1497135	5.55	11.27	2.1/2.4	0.11	0.29	-0.067
	WWW Altavista	directed	203549046	2130000000	10.46	16.18	2.1/2.7			
	citation network	directed	783 339	6716198	8.57		3.0/-			
	Roget's Thesaurus	directed	1022	5 103	4.99	4.87	-	0.13	0.15	0.157
	word co-occurrence	undirected	460902	17000000	70.13		2.7		0.44	
	Internet	undirected	10697	31 992	5.98	3.31	2.5	0.035	0.39	-0.189
[a]	power grid	undirected	4941	6594	2.67	18.99	_	0.10	0.080	-0.003
Technologi	train routes	undirected	587	19603	66.79	2.16	_		0.69	-0.033
	software packages	directed	1439	1723	1.20	2.42	1.6/1.4	0.070	0.082	-0.016
	software classes	directed	1377	2 213	1.61	1.51	-	0.033	0.012	-0.119
	electronic circuits	undirected	24097	53248	4.34	11.05	3.0	0.010	0.030	-0.154
	peer-to-peer network	undirected	880	1 296	1.47	4.28	2.1	0.012	0.011	-0.366
Biological	metabolic network	undirected	765	3 686	9.64	2.56	2.2	0.090	0.67	-0.240
	protein interactions	undirected	2115	2240	2.12	6.80	2.4	0.072	0.071	-0.156
	marine food web	directed	135	598	4.43	2.05	_	0.16	0.23	-0.263
	freshwater food web	directed	92	997	10.84	1.90	_	0.40	0.48	-0.326
	neural network	directed	307	2359	7.68	3.97	_	0.18	0.28	-0.226

NEWMAN, SIAM REVIEWS 45, 167 (2003)

Networks' Taxonomy

Network		Туре	Nodes	Links	<k></k>	L	Clustering		ering	Corr. (r)	1
Social	film actors	undirected	449 913	25516482	113.43	3.48	2.3	0.20	0.78	0.208	1
	company directors	undirected	7673	55392	14.44	4.60	_	0.59	0.88	0.276	1
	math coauthorship	undirected	253 339	496489	3.92	7.57	_	0.15	0.34	0.120	1
	physics coauthorship	undirected	52909	245300	9.27	6.19	-	0.45	0.56	0.363	
	biology coauthorship	undirected	1520251	11803064	15.53	4.92	-	0.088	0.60	0.127	ì
	telephone call graph	undirected	47000000	80 000 000	3.16		2.1				
	email messages	directed	59912	86 300	1.44	4.95	1.5/2.0		0.16		
	email address books	directed	16881	57 029	3.38	5.22	-	0.17	0.13	0.092	
	student relationships	undirected	573	477	1.66	16.01	_	0.005	0.001	-0.029	1
	sexual contacts	undirected	2810				3.2				
Information	WWW nd.edu	directed	269504	1497135	5.55	11.27	2.1/2.4	0.11	0.29	-0.067	1
	WWW Altavista	directed	203549046	2130000000	10.46	16.18	2.1/2.7				
	citation network	directed	783 339	6716198	8.57		3.0/-				
	Roget's Thesaurus	directed	1022	5 103	4.99	4.87	-	0.13	0.15	0.157	
	word co-occurrence	undirected	460902	17000000	70.13		2.7		0.44		
Technological	Internet	undirected	10697	31 992	5.98	3.31	2.5	0.035	0.39	-0.189	1
	power grid	undirected	4941	6594	2.67	18.99	_	0.10	0.080	-0.003	
	train routes	undirected	587	19603	66.79	2.16	_		0.69	-0.033	1
	software packages	directed	1 439	1723	1.20	2.42	1.6/1.4	0.070	0.082	-0.016	
	software classes	directed	1377	2 213	1.61	1.51	-	0.033	0.012	-0.119	
	electronic circuits	undirected	24097	53248	4.34	11.05	3.0	0.010	0.030	-0.154	
	peer-to-peer network	undirected	880	1 296	1.47	4.28	2.1	0.012	0.011	-0.366	
Biological	metabolic network	undirected	765	3 686	9.64	2.56	2.2	0.090	0.67	-0.240	-
	protein interactions	undirected	2115	2240	2.12	6.80	2.4	0.072	0.071	-0.156	
	marine food web	directed	135	598	4.43	2.05	_	0.16	0.23	-0.263	
	freshwater food web	directed	92	997	10.84	1.90	_	0.40	0.48	-0.326	
	neural network	directed	307	2359	7.68	3.97	_	0.18	0.28	-0.226	

NEWMAN, SIAM REVIEWS 45, 167 (2003)

Why Complex?

• Not regular/ordered

Not completely random

Why Complex?

• Not regular/ordered

@gomezgardenes

• Not completely random

What are those important actors?

"Two sides of the same node"

VS

Ideal targets for attacks

Good places to allocate controllers Good candidates for being vaccinated

Main Centrality measures

• Degree

- Eigenvector Centrality
- Closeness
- Betweenness

Main Centrality measures

- Degree
- Eigenvector Centrality
- Closeness
- Betweenness

Centrality measure of a node that takes (also) into account the importance of its neighbors

Recursive definition:

$$x_i^* = \alpha \sum_{j=1}^N A_{ij} x_j^*$$

P. BONACICH, JOURNAL OF MATHEMATICAL SOCIOLOGY 2, 113 (1972)

Centrality measure of a node that takes (also) into account the importance of its neighbors

Recursive definition:

High value when being important and/or connected to important (high degree) nodes

P. BONACICH, JOURNAL OF MATHEMATICAL SOCIOLOGY 2, 113 (1972)

Centrality measure of a node that takes (also) into account the importance of its neighbors

High value when being important and/or connected to important (high degree) nodes

P. BONACICH, JOURNAL OF MATHEMATICAL SOCIOLOGY 2, 113 (1972)

Centrality measure of a node that takes (also) into account the importance of its neighbors

High value when being important and/or connected to important (high degree) nodes

P. BONACICH, JOURNAL OF MATHEMATICAL SOCIOLOGY 2, 113 (1972)

Centrality measure of a node that takes (also) into account the importance of its neighbors

II Closeness

Considers the distances between a node and the rest of the network

M.A. BEAUCHAMP, SYSTEMS RESEARCH AND BEHAVIORAL SCIENCE 10, 161 (1965)

II Closeness

Considers the distances between a node and the rest of the network

Closeness Centrality Comparison

M.A. BEAUCHAMP, SYSTEMS RESEARCH AND BEHAVIORAL SCIENCE 10, 161 (1965)

III Betweenness

Centrality measure of a node that counts the number of shortest paths that traverse it

III Betweenness

Centrality measure of a node that counts the number of shortest paths that traverse it

Lets test!

Attack Robustness and Centrality of Complex Networks

Swami Iyer¹, Timothy Killingback²*, Bala Sundaram³, Zhen Wang⁴

1 Computer Science Department, University of Massachusetts, Boston, Massachusetts, United States of America, 2 Mathematics Department, University of Massachusetts, Boston, Massachusetts, United States of America, 3 Physics Department, University of Massachusetts, Boston, Massachusetts, United States of America, 4 Physics Department, University of Massachusetts, Boston, Massachusetts, United States of America

Attack Robustness and Centrality of Complex Networks

Swami Iyer¹, Timothy Killingback²*, Bala Sundaram³, Zhen Wang⁴

1 Computer Science Department, University of Massachusetts, Boston, Massachusetts, United States of America, 2 Mathematics Department, University of Massachusetts, Boston, Massachusetts, United States of America, 3 Physics Department, University of Massachusetts, Boston, Massachusetts, United States of America, 4 Physics Department, University of Massachusetts, Boston, Massachusetts, United States of America

Synthetic Models

Complex Networks

Two frameworks

- Equilibrium Random Networks
- Non-equilibrium Random Networks

PERCOLATION MODELS

Number of nodes N fixed

PERCOLATION MODELS

• Number of nodes N fixed

Statistical Sense

A particular network is a member (realization) of a statistical ensemble of networks.

P. ERDÖS & A. RÈNYI, PUB. MATHEMA<mark>T</mark>ICAE 6, 290 (1959)

- Start with N isolated nodes
- For each pair connect them with probability p
- The total number of links created is a random variable

@gomezgardenes

Erdös-Rènyi graphs

P. ERDÖS & A. RÈNYI, PUB. MATHEMA<mark>T</mark>ICAE 6, 290 (1959)

- Start with N isolated nodes
- For each pair connect them with probability p
- The total number of links created is a random variable

$$E(L) = p \frac{N(N-1)}{2}$$

P. ERDÖS & A. RÈNYI, PUB. MATHEMA<mark>T</mark>ICAE 6, 290 (1959)

- Start with N isolated nodes
- For each pair connect them with probability p
- The total number of links created is a random variable

$$E(L) = p \frac{N(N-1)}{2}$$

• The probability of finding graphs with L links is

$$P(N,L) = \begin{pmatrix} N(N-1)/2 \\ L \end{pmatrix} p^{L}(1-p)^{\frac{N(N-1)}{2}-L}$$

P. ERDÖS & A. RÈNYI, PUB. MATHEMATICAE 6, 290 (1959)

• Average connectivity of the nodes

@gomezgardenes

Erdös-Rènyi graphs

P. ERDÖS & A. RÈNYI, PUB. MATHEMATICAE 6, 290 (1959)

• Average connectivity of the nodes

 $\langle k \rangle = p(N-1)$

P. ERDÖS & A. RÈNYI, PUB. MATHEMATICAE 6, 290 (1959)

• Average connectivity of the nodes

 $\langle k \rangle = p(N-1)$

• Percolation Transition:

For <*k*> < 1:

Isolated clusters

For <*k*>>1:

Giant Connected Component appears

P. ERDÖS & A. RÈNYI, PUB. MATHEMATICAE 6, 290 (1959)

Poisson Degree distribution

P. ERDÖS & A. RÈNYI, PUB. MATHEMATICAE 6, 290 (1959)

Clustering Coefficient

Probability that two nodes j and l are connected, provided they are both connected to a third one i, is: p

$$C = p = \frac{\langle k \rangle}{N}$$

Clustering tends to 0 **as** *N* **increases**!!!

PERCOLATION MODELS

• Number of nodes N fixed

REWIRING MODELS

Number of <u>nodes and links</u> fixed

REWIRING MODELS

Number of <u>nodes and links</u> fixed

REWIRING MODELS

Number of <u>nodes and links</u> fixed

Reconnect randomly chosen pairs of nodes

entire ring, with duplicate edges forbidden. Otherwise, we leave the edge in place.

Watts-Strogatz Model

D. WATTS & S.H. STROGATZ, NATURE 393, 440 (1998)

Watts-Strogatz Model

D. WATTS & S.H. STROGATZ, NATURE 393, 440 (1998)

Watts-Strogatz Model

D. WATTS & S.H. STROGATZ, NATURE 393, 440 (1998)

Degree distribution?

... but Complex Networks evolve!

Non-Equilibrium Networks

- Number of nodes N(t) grows with time
- At each time step new nodes are incorporated
- New links are also created at each time step

A.L. BARABÀSI & R. ALBERT, S<mark>CIENCE 286, 509 (1999</mark>)

- At each time step 1 new node is incorporated
- The new node launches *m* new links to the already existing nodes

A.L. BARABÀSI & R. ALBERT, S<mark>CIENCE 286, 509 (1999</mark>)

The probability that a node *i* receives a link from the newcomer is:

$$\Pi_i(t) = \frac{k_i(t)}{\sum_{j=1}^{t+m_0-1} k_j(t)}$$

(Preferential attachment rule)

A.L. BARABÀSI & R. ALBERT, S<mark>C</mark>IENCE 286, 509 (1999)

- The time evolution of the degree of a node is given by: $\frac{\partial k_i}{\partial t} = m \frac{k_i(t)}{\sum_{i=1}^{t+m_0-1} k_j(t)} \quad \text{with} \quad k_i(t = t_i) = m$
 - ...whose solution is:

@gomezgardenes

Barabàsi-Albert Model

A.L. BARABÀSI & R. ALBERT, S<mark>C</mark>IENCE 286, 509 (1999)

- The time evolution of the degree of a node is given by: $\frac{\partial k_i}{\partial t} = m \frac{k_i(t)}{\sum_{i=1}^{t+m_0-1} k_j(t)} \quad \text{with} \quad k_i(t = t_i) = m$
 - ...whose solution is:

$$k_i(t) = 0 \qquad t < t_i$$
$$k_i(t) = m \left(\frac{t}{t_i}\right)^{1/2} \qquad t > t_i$$

A.L. BARABÀSI & R. ALBERT, S<mark>CIENCE 286</mark>, 509 (1999)

…that finally yields:

@gomezgardenes

Barabàsi-Albert Model

A.L. BARABÀSI & R. ALBERT, SCIENCE 286, 509 (1999)

Clustering Coefficient

 $C_{BA} \sim N^{-0.75}$ $C_{ER} \sim N^{-1}$

A.L. BARABÀSI & R. ALBERT, S<mark>CIENCE 286, 509 (1999</mark>)

Clustering Coefficient

 $C_{BA} \sim N^{-0.75}$ $C_{ER} \sim N^{-1}$

Average Path length

$$L_{BA} \sim \frac{\ln N}{\ln \ln N}$$
$$L_{ER} \sim \ln N$$

Overview

A number of variations of the former network models available

Scale-free with tunable γ

$$\Pi_{i}(t) = \frac{k_{i} + \alpha}{\sum_{j=1}^{m_{0}+t-1} (k_{j}(t) + \alpha)}$$

$$\alpha \in (-m,\infty)$$

DOROGOVTSEV-MENDES-SAMUKHIN PHYS. REV. LETT. 85, 4633 (2000)

• First link: follow usual PA rule

- For each of the m-1 links:
 - (i) With probability (1-q): usual PA
 - (ii) With probability *q*: Attach to one neighbor of the first chosen node

Dynamical Processes on Networks

Dynamical Processes on Networks

nature

Vol 457 19 February 2009 doi:10.1038/nature07634

LETTERS

Detecting influenza epidemics using search engine query data

Jeremy Ginsberg¹, Matthew H. Mohebbi¹, Rajan S. Patel¹, Lynnette Brammer², Mark S. Smolinski¹ & Larry Brilliant¹

Seasonal influenza epidemics are a major public health concern, causing tens of millions of respiratory illnesses and 250,000 to 500,000 deaths worldwide each year¹. In addition to seasonal influenza, a new strain of influenza virus against which no previous immunity exists and that demonstrates human-to-human transmission could result in a pandemic with millions of fatalities². Early detection of disease activity, when followed by a rapid response, can reduce the impact of both seasonal and pandemic influenza³⁴. One way to improve early detection is to monitor health-seeking behaviour in the form of queries to online search engines, which are submitted by millions of users around the world each day. Here we present a method of analysing large numbers of Google search queries to track influenza-like illness in a population. Because the relative frequency of certain queries is highly correlated with the percentage of physician visits in which a patient presents with influenza-like symptoms, we can accurately estimate the current level of weekly influenza activity in each region of the United States, with a reporting lag of about one day. This approach may make it possible to use search queries to detect influenza epidemics in areas with a large population of web search users.

By aggregating historical logs of online web search queries submitted between 2003 and 2008, we computed a time series of weekly counts for 50 million of the most common search queries in the United States. Separate aggregate weekly counts were kept for every query in each state. No information about the identity of any user was retained. Each time series was normalized by dividing the count for each query in a particular week by the total number of online search queries submitted in that location during the week, resulting in a query fraction (Supplementary Fig. 1).

We sought to develop a simple model that estimates the probability that a random physician visit in a particular region is related to an ILI; this is equivalent to the percentage of ILI-related physician visits. A single explanatory variable was used: the probability that a random search query submitted from the same region is ILI-related, as determined by an automated method described below. We fit a linear model using the log-odds of an ILI physician visit and the log-odds of an ILI-related search query: logit(l(t)) = alogit(Q(t)) + ε , where l(t) is the percentage of ILI physician visits, Q(t) is the ILI-related query fraction at time t, α is the multiplicative coefficient, and ε is the error term. logit(p) is simply $\ln(p/(1 - p))$.

Publicly available historical data from the CDC's US Influenza

OPEN CACCESS Freely available online

The Twitter of Babel: Mapping World Languages through Microblogging Platforms

Delia Mocanu¹, Andrea Baronchelli¹, Nicola Perra¹, Bruno Gonçalves², Qian Zhang¹, Alessandro Vespignani^{1,3,4}*

1 Laboratory for the Modeling of Biological and Socio-technical Systems, Northeastern University, Boston, Massachusetts, United States of America, 2 Aix Marseille Université, CNRS, CPT, UMR 7332, Marseille, France, 3 institute for Quantitative Social Sciences at Harvard University, Cambridge, Massachusetts, United States of America, 4 institute for Scientific Interchange Foundation, Turin, Italy

Abstract

Large scale analysis and statistics of socio-technical systems that just a few short years ago would have required the use of consistent economic and human resources can nowadays be conveniently performed by mining the enormous amount of digital data produced by human activities. Although a characterization of several aspects of our societies is emerging from the data revolution, a number of questions concerning the reliability and the biases inherent to the big data "proxies" of social life are still open. Here, we survey worldwide linguistic indicators and trends through the analysis of a large-scale dataset of microblogging posts. We show that available data allow for the study of language geography at scales ranging from country-level aggregation to specific city neighborhoods. The high resolution and coverage of the data allows us to investigate different indicators such as the linguistic homogeneity of different countries, the touristic seasonal patterns within countries and the geographical distribution of different languages in multilingual regions. This work highlights the potential of geolocalized studies of open data sources to improve current analysis and develop indicators for major social phenomena in specific communities.

Citation: Mocanu D, Baronchelli A, Perra N, Gonçalves B, Zhang Q, et al. (2013) The Twitter of Babel: Mapping World Languages through Microblogging Platforms. PLoS ONE 8(4): e61981. doi:10.1371/journal.pone.0061981

Editor: Yamir Moreno, University of Zaragoza, Spain

Received January 5, 2013; Accepted March 18, 2013; Published April 18, 2013

Copyright: © 2013 Mocanu et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: The authors acknowledge the support by the National Science Foundation ICES award CCF-1101743. For the analysis of data data outside of the United States of America the authors acknowledge the Intelligence Advanced Research Projects Activity (IARPA) via Department of Interior National Business Center (Dol/ NBC) contract number D12PC00285. The views and conclusions contained herein are those of the authors and should not be interpreted as necessarily representing the official policies or endorsements, either expressed or implied, of IARPA, Dol/NBE, or the United States Government. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

nature

Vol 457 19 February 2009 doi:10.1038/nature07634

LETTERS

Detecting influenza epidemics using search engine query data

Jeremy Ginsberg¹, Matthew H. Mohebbi¹, Rajan S. Patel¹, Lynnette Brammer², Mark S. Smolinski¹ & Larry Brilliant¹

Seasonal influenza epidemics are a major public health concern, causing tens of millions of respiratory illnesses and 250,000 to 500,000 deaths worldwide each year1. In addition to seasonal influenza, a new strain of influenza virus against which no previous immunity exists and that demonstrates human-to-human transmission could result in a pandemic with millions of fatalities². Early detection of disease activity, when followed by a rapid response, can reduce the impact of both seasonal and pandemic influenza³⁴. One way to improve early detection is to monitor health-seeking behaviour in the form of queries to online search engines, which are submitted by millions of users around the world each day. Here we present a method of analysing large numbers of Google search queries to track influenza-like illness in a population. Because the relative frequency of certain queries is highly correlated with the percentage of physician visits in which a patient presents with influenza-like symptoms, we can accurately estimate the current level of weekly influenza activity in each region of the United States, with a reporting lag of about one day. This approach may make it possible to use search queries to detect influenza epidemics in areas with a large population of web search users.

By aggregating historical logs of online web search queries submitted between 2003 and 2008, we computed a time series of weekly counts for 50 million of the most common search queries in the United States. Separate aggregate weekly counts were kept for every query in each state. No information about the identity of any user was retained. Each time series was normalized by dividing the count for each query in a particular week by the total number of online search queries submitted in that location during the week, resulting in a query fraction (Supplementary Fig. 1).

We sought to develop a simple model that estimates the probability that a random physician visit in a particular region is related to an ILI; this is equivalent to the percentage of ILI-related physician visits. A single explanatory variable was used: the probability that a random search query submitted from the same region is ILI-related, as determined by an automated method described below. We fit a linear model using the log-odds of an ILI physician visit and the log-odds of an ILI-related search query: logit(l(t)) = α logit(Q(t)) + ε , where l(t) is the percentage of ILI physician visits, Q(t) is the ILI-related query fraction at time t, α is the multiplicative coefficient, and ε is the error term. logit(p) is simply $\ln(p/(1 - p))$.

Publicly available historical data from the CDC's US Influenza

OPEN CACCESS Freely available online

The Twitter of Babel: Mapping World Languages through Microblogging Platforms

Delia Mocanu¹, Andrea Baronchelli¹, Nicola Perra¹, Bruno Gonçalves², Qian Zhang¹, Alessandro Vespignani^{1,3,4}*

1 Laboratory for the Modeling of Biological and Socio-technical Systems, Northeastern University, Boston, Massachusetts, United States of America, 2 Aix Marseille Université, CNRS, CPT, UMR 7332, Marseille, France, 3 Institute for Quantitative Social Sciences at Harvard University, Cambridge, Massachusetts, United States of America, 4 Institute for Scientific Interchange Foundation, Turin, Italy

Abstract

Large scale analysis and statistics of socio-technical systems that just a few short years ago would have required the use of consistent economic and human resources can nowadays be conveniently performed by mining the enormous amount of digital data produced by human activities. Although a characterization of several aspects of our societies is emerging from the data revolution, a number of questions concerning the reliability and the biases inherent to the big data "proxies" of social life are still open. Here, we survey worldwide linguistic indicators and trends through the analysis of a large-scale dataset of microblogging posts. We show that available data allow for the study of language geography at scales ranging from country-level aggregation to specific city neighborhoods. The high resolution and coverage of the data allows us to investigate different indicators such as the linguistic homogeneity of different countries, the touristic seasonal patterns within countries and the geographical distribution of different languages in multilingual regions. This work highlights the potential of geolocalized studies of open data sources to improve current analysis and develop indicators for major social phenomena in specific communities.

Citation: Mocanu D, Baronchelli A, Perra N, Gonçalves B, Zhang Q, et al. (2013) The Twitter of Babel: Mapping World Languages through Microblogging Platforms. PLoS ONE 8(4): e61981. doi:10.1371/journal.pone.0061981

Editor: Yamir Moreno, University of Zaragoza, Spain

Received January 5, 2013; Accepted March 18, 2013; Published April 18, 2013

Copyright: © 2013 Mocanu et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: The authors acknowledge the support by the National Science Foundation ICES award CCF-1101743. For the analysis of data data outside of the United States of America the authors acknowledge the Intelligence Advanced Research Projects Activity (IARPA) via Department of Interior National Business Center (Dol/ NBC) contract number D12PC00285. The views and conclusions contained herein are those of the authors and should not be interpreted as necessarily representing the official policies or endorsements, either expressed or implied, of IARPA, Dol/NBE, or the United States Government. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

nature

Vol 457 19 February 2009 doi:10.1038/nature07634

LETTERS

Detecting influenza epidemics using search engine query data

Jeremy Ginsberg¹, Matthew H. Mohebbi¹, Rajan S. Patel¹, Lynnette Brammer², Mark S. Smolinski¹ & Larry Brilliant¹

Seasonal influenza epidemics are a major public health concern, causing tens of millions of respiratory illnesses and 250,000 to 500,000 deaths worldwide each year¹. In addition to seasonal influenza, a new strain of influenza virus against which no previous immunity exists and that demonstrates human-to-human transmission could result in a pandemic with millions of fatalities². Early detection of disease activity, when followed by a rapid response, can reduce the impact of both seasonal and pandemic influenza^{3,4}. One way to improve early detection is to monitor health-seeking behaviour in the form of queries to online search engines, which are submitted by millions of users around the world each day. Here we present a method of analysing large numbers of Google search queries to track influenza-like illness in a population. Because the relative frequency of certain queries is highly correlated with the percentage of physician visits in which a patient presents with influenza-like symptoms, we can accurately estimate the current level of weekly influenza activity in each region of the United States, with a reporting lag of about one day. This approach may make it possible to use search queries to detect influenza epidemics in areas with a large population of web search users.

By aggregating historical logs of online web search queries submitted between 2003 and 2008, we computed a time series of weekly counts for 50 million of the most common search queries in the United States. Separate aggregate weekly counts were kept for every query in each state. No information about the identity of any user was retained. Each time series was normalized by dividing the count for each query in a particular week by the total number of online search queries submitted in that location during the week, resulting in a query fraction (Supplementary Fig. 1).

We sought to develop a simple model that estimates the probability that a random physician visit in a particular region is related to an ILI; this is equivalent to the percentage of ILI-related physician visits. A single explanatory variable was used: the probability that a random search query submitted from the same region is ILI-related, as determined by an automated method described below. We fit a linear model using the log-odds of an ILI physician visit and the log-odds of an ILI-related search query: logit(l(t)) = α logit(Q(t)) + ε , where l(t) is the percentage of ILI physician visits, Q(t) is the ILI-related query fraction at time t, α is the multiplicative coefficient, and ε is the error term. logit(p) is simply $\ln(p/(1 - p))$.

Publicly available historical data from the CDC's US Influenza

OPEN CACCESS Freely available online

The Twitter of Babel: Mapping World Languages through Microblogging Platforms

Delia Mocanu¹, Andrea Baronchelli¹, Nicola Perra¹, Bruno Gonçalves², Qian Zhang¹, Alessandro Vespignani^{1,3,4}*

1 Laboratory for the Modeling of Biological and Socio-technical Systems, Northeastern University, Boston, Massachusetts, United States of America, 2 Aix Marseille Université, CNRS, CPT, UMR 7332, Marseille, France, 3 institute for Quantitative Social Sciences at Harvard University, Cambridge, Massachusetts, United States of America, 4 institute for Scientific Interchange Foundation, Turin, Italy

Abstract

Large scale analysis and statistics of socio-technical systems that just a few short years ago would have required the use of consistent economic and human resources can nowadays be conveniently performed by mining the enormous amount of digital data produced by human activities. Although a characterization of several aspects of our societies is emerging from the data revolution, a number of questions concerning the reliability and the biases inherent to the big data "proxies" of social life are still open. Here, we survey worldwide linguistic indicators and trends through the analysis of a large-scale dataset of microblogging posts. We show that available data allow for the study of language geography at scales ranging from country-level aggregation to specific city neighborhoods. The high resolution and coverage of the data allows us to investigate different indicators such as the linguistic homogeneity of different countries, the touristic seasonal patterns within countries and the geographical distribution of different languages in multilingual regions. This work highlights the potential of geolocalized studies of open data sources to improve current analysis and develop indicators for major social phenomena in specific communities.

Citation: Mocanu D, Baronchelli A, Perra N, Gonçalves B, Zhang Q, et al. (2013) The Twitter of Babel: Mapping World Languages through Microblogging Platforms. PLoS ONE 8(4): e61981. doi:10.1371/journal.pone.0061981

Editor: Yamir Moreno, University of Zaragoza, Spain

Received January 5, 2013; Accepted March 18, 2013; Published April 18, 2013

Copyright: © 2013 Mocanu et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: The authors acknowledge the support by the National Science Foundation ICES award CCF-1101743. For the analysis of data data outside of the United States of America the authors acknowledge the Intelligence Advanced Research Projects Activity (IAIRPA) via Department of Interior National Business Center (Dol/ NBC) contract number D12PC00285. The views and conclusions contained herein are those of the authors and should not be interpreted as necessarily representing the official policies or endorsements, either expressed or implied, of IAIRPA, Dol/NBE, or the United States Government. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

SO WHAT?

Main Dynamical Processes

- Simple diffusion processes
- Cascades (Failures and Attacks)
- Contagion processes
- Diffusion with queues
- Synchronization
- Evolutionary games
- Chaotic dynamics

Critical phenomena in complex networks

S. N. Dorogovtsev* and A. V. Goltsev*

Departamento de Física, Universidade de Aveiro, 3810-193 Aveiro, Portugal and A. F. loffe Physico-Technical Institute, 194021 St. Petersburg, Russia

J. F. F. Mendes[‡]

@gomezgardenes

Departamento de Física, Universidade de Aveiro, 3810-193 Aveiro, Portugal

Critical phenomena in complex networks

S. N. Dorogovtsev* and A. V. Goltsev[†]

Departamento de Física, Universidade de Aveiro, 3810-193 Aveiro, Portugal and A. F. loffe Physico-Technical Institute, 194021 St. Petersburg, Russia

J. F. F. Mendes[‡]

Departamento de Física, Universidade de Aveiro, 3810-193 Aveiro, Portugal

REVIEWS OF MODERN PHYSICS, VOLUME 81, APRIL-JUNE 2009

Statistical physics of social dynamics

Claudio Castellano*

SMC, INFM-CNR and Dipartimento di Fisica, "Sapienza" Università di Roma, Piazzale A. Moro 2, 00185 Roma, Italy

Santo Fortunato[†]

Complex Networks Lagrange Laboratory, ISI Foundation, Viale S. Severo 65, 10133 Torino, Italy

Vittorio Loreto[‡]

Dipartimento di Fisica, "Sapienza" Università di Roma and SMC, INFM-CNR, Piazzale A. Moro 2, 00185 Roma, Italy and Complex Networks Lagrange Laboratory, ISI Foundation, Viale S. Severo 65, 10133 Torino, Italy

Critical phenomena in complex networks

S. N. Dorogovtsev* and A. V. Goltsev*

Departamento de Física, Universidade de Aveiro, 3810-193 Aveiro, Portugal and A. F. loffe Physico-Technical Institute, 194021 St. Petersburg, Russia

J. F. F. Mendes[‡]

Departamento de Física, Universidade de Aveiro, 3810-193 Aveiro, Portugal

REVIEWS OF MODERN PHYSICS, VOLUME 81, APRIL-JUNE 2009

Statistical physics of social dynamics

Claudio Castellano*

SMC, INFM-CNR and Dipartimento di Fisica, "Sapienza" Università di Roma, Piazzale A. Moro 2, 00185 Roma, Italy

Santo Fortunato[†]

Complex Networks Lagrange Lat 10133 Torino, Italy

Vittorio Loreto[‡]

Dipartimento di Fisica, "Sapienza Piazzale A. Moro 2, 00185 Roma and Complex Networks Lagrange 10133 Torino, Italy

Available online at www.sciencedirect.com

ScienceDirect

PHYSICS REPORTS

Physics Reports 446 (2007) 97-216

www.elsevier.com/locate/physrep

Evolutionary games on graphs

György Szabóa,*, Gábor Fáthb

Critical phenomena in complex networks

S. N. Dorogovtsev* and A. V. Goltsev[†]

Departamento de Física, Universidade de Aveiro, 3 and A. F. loffe Physico-Technical Institute, 194021

J. F. F. Mendes[‡]

Departamento de Física, Universidade de Aveiro, 3

Contents lists available at ScienceDirect	PHYSICS
Physics Reports	
journal homepage: www.elsevier.com/locate/physrep	

Synchronization in complex networks

Alex Arenas^{a,b}, Albert Díaz-Guilera^{c,b}, Jurgen Kurths^{d,e}, Yamir Moreno^{b,f,*}, Changsong Z

Physics Reports 469 (2008) 93-153

REVIEWS OF MODERN PHYSICS, VOLUME 81, APRIL-JUNE 2009

Statistical physics of social dynamics

Critical phenomena in complex networks

S. N. Dorogovtsev* and A. V. Goltsev[†]

Departamento de Física, Universidade de Aveiro, 3 and A. F. loffe Physico-Technical Institute, 194021

J. F. F. Mendes[‡]

Departamento de Física, Universidade de Aveiro, 3

Physics Reports 469 (2008) 93-153

REVIEWS OF MODERN PHYSICS, VOLUME 87, JULY-SEPTEMBER 2015

Epidemic processes in complex networks

Romualdo Pastor-Satorras

Departament de Física i Enginyeria Nuclear, Universitat Politècnica de Catalunya, Campus Nord B4, 08034 Barcelona, Spain

Statistical pl

Claudio Castellano Claudio C Istituto dei Sistemi Complessi (ISC-CNR), via dei Taurini 19, I-00185 Roma, Italy and Dipartimento di Fisica, "Sapienza" Università di Roma, P.le A. Moro 2, I-00185 Roma, Italy SMC, INFN Piazzale A. Piet Van Mieghem Santo For Delft University of Technology, Mekelweg 4, 2628 CD Delft, The Netherlands Complex N 10133 Torii Alessandro Vespignani Laboratory for the Modeling of Biological and Socio-technical Systems, Vittorio Lo Northeastern University, Boston Massachusetts 02115, USA and Institute for Scientific Interchange Foundation, Turin 10133, Italy Dipartimen

Piazzale A. Moro 2, 00185 Roma and Complex Networks Lagrange 10133 Torino, Italy

Evolutionary games on graphs

György Szabóa,*, Gábor Fáthb

mir Moreno^{b,f,*}, Changsong 2

PHYSICS REPORTS

www.elsevier.com/locate/physrep

Well mixed / Mean field

Compartmental models

Aimed at capturing the global (population-level) dynamics from the microscopic contagion processes

Each individual can be in one of *n* states at time *t*

S - Susceptible (Healty) @gomezgardenes

 Infected (and infectious) (From Petter Holme's blog)

R - Recovered (immune/dead)

Compartmental models

The transitions (e.g. S \rightarrow I) are mediated by some rates: λ and μ

S - Susceptible (Healty) @gomezgardenes

I - Infected (and infectious) (From Petter Holme's blog) **R** - Recovered (immune/dead)

Compartmental models

The transitions (e.g. S \rightarrow I) are mediated by some rates: λ and μ

The final impact of an SIR epidemic is given by the fraction of affected (Recovered) individuals

(From Petter Holme's blog)

Some examples

Some examples

S

Ε

SIS

S

SIR

S

 λ

 α

μ

R

μ

R

QUESTION: What is the minimum value of λ for the epidemic outbreak to take place?

@gomezgardenes

SEIR

Epidemic Threshold

Well mixed / Mean field

JOLUME 86, NUMBER 14

PHYSICAL REVIEW LETTERS

2 April 2001

Epidemic Spreading in Scale-Free Networks

Romualdo Pastor-Satorras¹ and Alessandro Vespignani² ¹Departament de Física i Enginyeria Nuclear, Universitat Politècnica de Catalunya, Campus Nord, Mòdul B4, 08034 Barcelona, Spain ²The Abdus Salam International Centre for Theoretical Physics (ICTP), P.O. Box 586, 34100 Trieste, Italy (Received 20 October 2000)

The Internet has a very complex connectivity recently modeled by the class of scale-free networks. This feature, which appears to be very efficient for a communications network, favors at the same time the strending of computer viruses. We analyze real data from computer virus infections.

Google scholar More than 3900 citations

JOLUME 86, NUMBER 14

PHYSICAL REVIEW LETTERS

2 April 2001

Epidemic Spreading in Scale-Free Networks

Romualdo Pastor-Satorras¹ and Alessandro Vespignani² ¹Departament de Física i Enginyeria Nuclear, Universitat Politècnica de Catalunya, Campus Nord, Mòdul B4, 08034 Barcelona, Spain ²The Abdus Salam International Centre for Theoretical Physics (ICTP), P.O. Box 586, 34100 Trieste, Italy (Received 20 October 2000)

The Internet has a very complex connectivity recently modeled by the class of scale-free networks. This feature, which appears to be very efficient for a communications network, favors at the same time the strending of computer viruses. We analyze real data from computer virus infections.

Google scholar More than 3900 citations

Scale-free phenomenon

In heterogeneous networks the approximation $k\sim \langle k\rangle$ doesn't hold

Solution: Degree Block approximation

All the nodes are statistically equivalent

k = 2

k = 3

k = 4

All the nodes with the same degree are statistically equivalent

k = 2

k = 3

= 4

In heterogeneous networks the approximation $k\sim \langle k\rangle$ doesn't hold

Solution: Degree Block approximation

All the nodes are statistically equivalent All the nodes with the same degree are statistically equivalent

$$\begin{split} i_k &= \frac{I_k}{N_k} \qquad \qquad s_k = \frac{S_k}{N_k} \\ i &= \sum_k P(k) i_k \qquad \qquad s = \sum_k P(k) s_k \end{split} \label{eq:sk}$$

$$\lambda_c \sim \frac{\langle k \rangle}{\langle k^2 \rangle}$$

1

 λ

• in **Well-mixed** populations:

$$\langle k^2 \rangle = \langle k \rangle^2 \longrightarrow \lambda_c \sim \frac{1}{\langle k \rangle}$$

• in Scale-Free networks $P(k) \sim k^{-\gamma}$

if
$$2<\gamma<3$$
 then $\langle k^2\rangle \rightarrow \infty$

$$\lambda_c o 0$$

$$\lambda_c \sim \frac{\langle k \rangle}{\langle k^2 \rangle}$$

 λ_c

.......

 λ

• in **Well-mixed** populations:

$$\langle k^2 \rangle = \langle k \rangle^2 \longrightarrow \lambda_c \sim \frac{1}{\langle k \rangle}$$

• in Scale-Free networks $P(k) \sim k^{-\gamma} i$

if
$$2<\gamma<3$$
 then $\langle k^2\rangle \rightarrow \infty$

$$\lambda_c \to 0$$

Metapopulation Models

Metapopulation Models

Different levels of description:

- Urban Areas
- Cities
- Regions
- Countries

Basic Metapopulation Model

N S

<

- Different populations connected by a mobility network (encoded in matrix W).
- Each individual moves with probability pfrom one population i to a neighboring one j, according to W_{ij}

- Inside each subpopulation, and at each time step, epidemic dynamics takes place (λ and μ).

• Then, each individual comes back to its original subpopulation (node).

Real mobility patterns

Basic Metapopulation Model

N S

<

- Different populations connected by a mobility network (encoded in matrix W).
- Each individual moves with probability pfrom one population i to a neighboring one j, according to W_{ij}

- Inside each subpopulation, and at each time step, epidemic dynamics takes place (λ and μ).

• Then, each individual comes back to its original subpopulation (node).

Basic Metapopulation Model

N N

<

- Different populations connected by a mobility network (encoded in matrix W).
- Each individual more probability p from one point i to a neighboring one j and i to W_{ij}
 - Inside each subpopulation, and at each time step, epidemic dynamics takes place (λ and μ).
 - Then, each individual comes back to its original subpopulation (node).

A case study: SARS Pandemic 2003

A case study: SARS Pandemic 2003

ABOU

MAY 5, 2003

BMC Medicine

Research article

Open Access

BioMed Central

Predictability and epidemic pathways in global outbreaks of infectious diseases: the SARS case study Vittoria Colizza^{*1}, Alain Barrat^{1,2}, Marc Barthélemy³ and Alessandro Vespignani^{4,5}

Figure 2

Worldwide map representation of the outbreak likelihood as predicted by the stochastic model. Countries are represented according to the color code, ranging from gray for low outbreak probability to red for high outbreak probability.

BMC Medicine

Research article

Open Access

BioMed Central

Predictability and epidemic pathways in global outbreaks of infectious diseases: the SARS case study Vittoria Colizza^{*1}, Alain Barrat^{1,2}, Marc Barthélemy³ and Alessandro Vespignani^{4,5}

Figure 4

Map representation of the comparison between numerical results and WHO reported cases. Countries are considered at risk if the probability of reporting an outbreak – computed on $n = 10^3$ different realizations of the stochastic noise – is larger than 20%. In red we represent countries for which model forecasts are in agreement with WHO official reports, distinguishing between correct predictions of outbreak (filled red) and correct predictions of no outbreak (striped red). Forecasts that deviate from observed data are represented in green. Results shown refer to the date of 11 July 2003.

BMC Medicine

Research article

Open Access

BioMed Central

Predictability and epidemic pathways in global outbreaks of infectious diseases: the SARS case study Vittoria Colizza^{*1}, Alain Barrat^{1,2}, Marc Barthélemy³ and Alessandro Vespignani^{4,5}

BMC Medicine

BioMed Central

Open Access

Research article

Predictability and epidemic pathways in global outbreaks of infectious diseases: the SARS case study Vittoria Colizza^{*1}, Alain Barrat^{1,2}, Marc Barthélemy³ and Alessandro Vespignani^{4,5}

EPIDEMIC FORECAST?

Ginestra's Lecture: Multilayer Networks
Thanks for your attention

The lecture is available at my website:

http://complex.unizar.es/~jesus/

