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• Composed of many interacting elements

• They give rise to emergent collective behavior

• Emergence: Not directly related to individual 
properties 

• They are Ubiquitous, i.e., not related to any 
characteristic life/energy scale
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more than Congestion
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• Social Norms & Conventions

• Economic Crisis

• Viral Information 

• Unfolding of social movements

• …

Social Collective Behavior
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LANGUAGE USE

Mocanu D, Baronchelli A, Perra N, Gonçalves B, Zhang Q, et al. (2013)  
The Twitter of Babel: Mapping World Languages through Microblogging 
Platforms. PLoS ONE 8(4): e61981.
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LANGUAGE USE

IS TWITTER REPRESENTATIVE OF 
OUR SOCIETY?

Mocanu D, Baronchelli A, Perra N, Gonçalves B, Zhang Q, et al. (2013)  
The Twitter of Babel: Mapping World Languages through Microblogging 
Platforms. PLoS ONE 8(4): e61981.
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REPRESENTATIVENESS BY COUNTRY AND BY GDP

LANGUAGE USE
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REPRESENTATIVENESS BY COUNTRY AND BY GDP

It seems a very good sample for a sociology study 
(especially in Kuwait…)

LANGUAGE USE
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LANGUAGES

English overrepresented  

LANGUAGE USE
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English overrepresented  

LANGUAGE USE
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LANGUAGES POLARIZATION
Belgium

Montreal, CA

Catalonia, ES

LANGUAGE USE
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DIGITAL EPIDEMIOLOGY

Jeremy Ginsberg, Matthew H. Mohebbi, Rajan S. Patel, Lynnette 
Brammer, Mark S. Smolinski & Larry Brilliant. Detecting 
influenza epidemics using search engine query data
Nature 457, 1012-1014 (19 February 2009)
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The initial Google paper stated  
that  the Google Flu Trends  
predictions were 97% accurate  
comparing with CDC data.

@gomezgardenes



DIGITAL EPIDEMIOLOGY

Jeremy Ginsberg, Matthew H. Mohebbi, Rajan S. Patel, Lynnette 
Brammer, Mark S. Smolinski & Larry Brilliant. Detecting 
influenza epidemics using search engine query data
Nature 457, 1012-1014 (19 February 2009)

The initial Google paper stated  
that  the Google Flu Trends  
predictions were 97% accurate  
comparing with CDC data.

@gomezgardenes



DIGITAL EPIDEMIOLOGY

GOOGLE FLU TRENDS

The idea behind Google Flu Trends (GFT) is that, by monitoring 
millions of users’ health tracking behaviors online, the large 
number of Google search queries gathered can be analyzed to 
reveal if there is the presence of flu-like illness in a population.

• First launched in 2008 by Google.org  
to help predict outbreaks of flu.  

• More than 25 countries

• First example of “Big Data” for 
social/health use
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The infamous 2012-2013 season

WHAT HAPPENED  ?
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The infamous 2012-2013 season

WHAT HAPPENED  ?

Science 343, 6176, 1203-1205 (2014)

• Early Peak season

• Highly contagious strain  
(H3N2)

• Huge news coverage

www.sciencemag.org    SCIENCE    VOL 343    14 MARCH 2014 1203

POLICYFORUM

           In February 2013, Google Flu 
Trends (GFT) made headlines 
but not for a reason that Google 

executives or the creators of the fl u 
tracking system would have hoped. 
Nature reported that GFT was pre-
dicting more than double the pro-
portion of doctor visits for influ-
enza-like illness (ILI) than the Cen-
ters for Disease Control and Preven-
tion (CDC), which bases its esti-
mates on surveillance reports from 
laboratories across the United States 
( 1,  2). This happened despite the fact 
that GFT was built to predict CDC 
reports. Given that GFT is often held 
up as an exemplary use of big data 
( 3,  4), what lessons can we draw 
from this error?

The problems we identify are 
not limited to GFT. Research on 
whether search or social media can 
predict x has become common-
place ( 5– 7) and is often put in sharp contrast 
with traditional methods and hypotheses. 
Although these studies have shown the 
value of these data, we are far from a place 
where they can supplant more traditional 
methods or theories ( 8). We explore two 
issues that contributed to GFT’s mistakes—
big data hubris and algorithm dynamics—
and offer lessons for moving forward in the 
big data age.

Big Data Hubris
“Big data hubris” is the often implicit 
assumption that big data are a substitute 
for, rather than a supplement to, traditional 
data collection and analysis. Elsewhere, we 
have asserted that there are enormous scien-
tifi c possibilities in big data ( 9– 11). How-
ever, quantity of data does not mean that 
one can ignore foundational issues of mea-

surement and construct validity and reli-
ability and dependencies among data (12). 
The core challenge is that most big data that 
have received popular attention are not the 
output of instruments designed to produce 
valid and reliable data amenable for scien-
tifi c analysis.

The initial version of GFT was a par-
ticularly problematic marriage of big and 
small data. Essentially, the methodology 
was to fi nd the best matches among 50 mil-
lion search terms to fit 1152 data points 
( 13). The odds of fi nding search terms that 
match the propensity of the fl u but are struc-
turally unrelated, and so do not predict the 
future, were quite high. GFT developers, 
in fact, report weeding out seasonal search 
terms unrelated to the fl u but strongly corre-
lated to the CDC data, such as those regard-
ing high school basketball ( 13). This should 
have been a warning that the big data were 
overfi tting the small number of cases—a 
standard concern in data analysis. This ad 
hoc method of throwing out peculiar search 
terms failed when GFT completely missed 
the nonseasonal 2009 infl uenza A–H1N1 
pandemic ( 2,  14). In short, the initial ver-
sion of GFT was part flu detector, part 
winter detector. GFT engineers updated 

the algorithm in 2009, and this 
model has run ever since, with a 
few changes announced in October 
2013 ( 10,  15).

Although not widely reported 
until 2013, the new GFT has been 
persistently overestimating flu 
prevalence for a much longer time. 
GFT also missed by a very large 
margin in the 2011–2012 fl u sea-
son and has missed high for 100 out 
of 108 weeks starting with August 
2011 (see the graph ). These errors 
are not randomly distributed. For 
example, last week’s errors predict 
this week’s errors (temporal auto-
correlation), and the direction and 
magnitude of error varies with the 
time of year (seasonality). These 
patterns mean that GFT overlooks 
considerable information that 
could be extracted by traditional 
statistical methods. 

Even after GFT was updated in 2009, 
the comparative value of the algorithm as a 
stand-alone fl u monitor is questionable. A 
study in 2010 demonstrated that GFT accu-
racy was not much better than a fairly sim-
ple projection forward using already avail-
able (typically on a 2-week lag) CDC data 
( 4). The comparison has become even worse 
since that time, with lagged models signifi -
cantly outperforming GFT (see the graph). 
Even 3-week-old CDC data do a better job 
of projecting current flu prevalence than 
GFT [see supplementary materials (SM)].

Considering the large number of 
approaches that provide inference on infl u-
enza activity ( 16– 19), does this mean that 
the current version of GFT is not useful? 
No, greater value can be obtained by com-
bining GFT with other near–real-time 
health data ( 2,  20). For example, by com-
bining GFT and lagged CDC data, as well 
as dynamically recalibrating GFT, we can 
substantially improve on the performance 
of GFT or the CDC alone (see the chart). 
This is no substitute for ongoing evaluation 
and improvement, but, by incorporating this 
information, GFT could have largely healed 
itself and would have likely remained out of 
the headlines.

The Parable of Google Flu: 
Traps in Big Data Analysis

BIG DATA

David Lazer,  1, 2 * Ryan Kennedy,  1, 3, 4 Gary King,  3 Alessandro Vespignani 3,5,6    

Large errors in fl u prediction were largely 
avoidable, which offers lessons for the use 
of big data.

C
RE

D
IT

: A
D

A
PT

ED
 F

RO
M

 A
X

EL
 K

O
RE

S/
D

ES
IG

N
 &

 A
RT

 D
IR

EC
TI

O
N

/I
ST

O
C

K
PH

O
TO

.C
O

M

1Lazer Laboratory, Northeastern University, Boston, MA 
02115, USA. 2Harvard Kennedy School, Harvard University, 
Cambridge, MA 02138, USA. 3Institute for Quantitative Social 
Science, Harvard University, Cambridge, MA 02138, USA. 
4University of Houston, Houston, TX 77204, USA. 5Laboratory 
for the Modeling of Biological and Sociotechnical Systems, 
Northeastern University, Boston, MA 02115, USA. 6Institute 
for Scientifi c Interchange Foundation, Turin, Italy.

FINAL FINALFINAL FINAL

*Corresponding author. E-mail: d.lazer@neu.edu.

@gomezgardenes



DIGITAL EPIDEMIOLOGY

The infamous 2012-2013 season

WHAT HAPPENED  ?

Science 343, 6176, 1203-1205 (2014)

• Early Peak season

• Highly contagious strain  
(H3N2)

• Huge news coverage

www.sciencemag.org    SCIENCE    VOL 343    14 MARCH 2014 1203

POLICYFORUM

           In February 2013, Google Flu 
Trends (GFT) made headlines 
but not for a reason that Google 

executives or the creators of the fl u 
tracking system would have hoped. 
Nature reported that GFT was pre-
dicting more than double the pro-
portion of doctor visits for influ-
enza-like illness (ILI) than the Cen-
ters for Disease Control and Preven-
tion (CDC), which bases its esti-
mates on surveillance reports from 
laboratories across the United States 
( 1,  2). This happened despite the fact 
that GFT was built to predict CDC 
reports. Given that GFT is often held 
up as an exemplary use of big data 
( 3,  4), what lessons can we draw 
from this error?

The problems we identify are 
not limited to GFT. Research on 
whether search or social media can 
predict x has become common-
place ( 5– 7) and is often put in sharp contrast 
with traditional methods and hypotheses. 
Although these studies have shown the 
value of these data, we are far from a place 
where they can supplant more traditional 
methods or theories ( 8). We explore two 
issues that contributed to GFT’s mistakes—
big data hubris and algorithm dynamics—
and offer lessons for moving forward in the 
big data age.

Big Data Hubris
“Big data hubris” is the often implicit 
assumption that big data are a substitute 
for, rather than a supplement to, traditional 
data collection and analysis. Elsewhere, we 
have asserted that there are enormous scien-
tifi c possibilities in big data ( 9– 11). How-
ever, quantity of data does not mean that 
one can ignore foundational issues of mea-

surement and construct validity and reli-
ability and dependencies among data (12). 
The core challenge is that most big data that 
have received popular attention are not the 
output of instruments designed to produce 
valid and reliable data amenable for scien-
tifi c analysis.

The initial version of GFT was a par-
ticularly problematic marriage of big and 
small data. Essentially, the methodology 
was to fi nd the best matches among 50 mil-
lion search terms to fit 1152 data points 
( 13). The odds of fi nding search terms that 
match the propensity of the fl u but are struc-
turally unrelated, and so do not predict the 
future, were quite high. GFT developers, 
in fact, report weeding out seasonal search 
terms unrelated to the fl u but strongly corre-
lated to the CDC data, such as those regard-
ing high school basketball ( 13). This should 
have been a warning that the big data were 
overfi tting the small number of cases—a 
standard concern in data analysis. This ad 
hoc method of throwing out peculiar search 
terms failed when GFT completely missed 
the nonseasonal 2009 infl uenza A–H1N1 
pandemic ( 2,  14). In short, the initial ver-
sion of GFT was part flu detector, part 
winter detector. GFT engineers updated 

the algorithm in 2009, and this 
model has run ever since, with a 
few changes announced in October 
2013 ( 10,  15).

Although not widely reported 
until 2013, the new GFT has been 
persistently overestimating flu 
prevalence for a much longer time. 
GFT also missed by a very large 
margin in the 2011–2012 fl u sea-
son and has missed high for 100 out 
of 108 weeks starting with August 
2011 (see the graph ). These errors 
are not randomly distributed. For 
example, last week’s errors predict 
this week’s errors (temporal auto-
correlation), and the direction and 
magnitude of error varies with the 
time of year (seasonality). These 
patterns mean that GFT overlooks 
considerable information that 
could be extracted by traditional 
statistical methods. 

Even after GFT was updated in 2009, 
the comparative value of the algorithm as a 
stand-alone fl u monitor is questionable. A 
study in 2010 demonstrated that GFT accu-
racy was not much better than a fairly sim-
ple projection forward using already avail-
able (typically on a 2-week lag) CDC data 
( 4). The comparison has become even worse 
since that time, with lagged models signifi -
cantly outperforming GFT (see the graph). 
Even 3-week-old CDC data do a better job 
of projecting current flu prevalence than 
GFT [see supplementary materials (SM)].

Considering the large number of 
approaches that provide inference on infl u-
enza activity ( 16– 19), does this mean that 
the current version of GFT is not useful? 
No, greater value can be obtained by com-
bining GFT with other near–real-time 
health data ( 2,  20). For example, by com-
bining GFT and lagged CDC data, as well 
as dynamically recalibrating GFT, we can 
substantially improve on the performance 
of GFT or the CDC alone (see the chart). 
This is no substitute for ongoing evaluation 
and improvement, but, by incorporating this 
information, GFT could have largely healed 
itself and would have likely remained out of 
the headlines.

The Parable of Google Flu: 
Traps in Big Data Analysis

BIG DATA

David Lazer,  1, 2 * Ryan Kennedy,  1, 3, 4 Gary King,  3 Alessandro Vespignani 3,5,6    

Large errors in fl u prediction were largely 
avoidable, which offers lessons for the use 
of big data.

C
RE

D
IT

: A
D

A
PT

ED
 F

RO
M

 A
X

EL
 K

O
RE

S/
D

ES
IG

N
 &

 A
RT

 D
IR

EC
TI

O
N

/I
ST

O
C

K
PH

O
TO

.C
O

M

1Lazer Laboratory, Northeastern University, Boston, MA 
02115, USA. 2Harvard Kennedy School, Harvard University, 
Cambridge, MA 02138, USA. 3Institute for Quantitative Social 
Science, Harvard University, Cambridge, MA 02138, USA. 
4University of Houston, Houston, TX 77204, USA. 5Laboratory 
for the Modeling of Biological and Sociotechnical Systems, 
Northeastern University, Boston, MA 02115, USA. 6Institute 
for Scientifi c Interchange Foundation, Turin, Italy.

FINAL FINALFINAL FINAL

*Corresponding author. E-mail: d.lazer@neu.edu.

@gomezgardenes



@gomezgardenes



+ Complexity

+ Realism

+ Realism

+ Complexity + Realism

+ Realism

@gomezgardenes



+ Complexity

+ Realism

+ Complexity
+ Realism

@gomezgardenes



Complex Networks

@gomezgardenes



Common language for complex systems of diverse nature
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Goal: To reveal Similar (Universal) organizational  
principles of Complex Systems
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Abstract

Coupled biological and chemical systems, neural networks, social interacting species, the Internet and the World Wide Web,
are only a few examples of systems composed by a large number of highly interconnected dynamical units. The first approach to
capture the global properties of such systems is to model them as graphs whose nodes represent the dynamical units, and whose
links stand for the interactions between them. On the one hand, scientists have to cope with structural issues, such as characterizing
the topology of a complex wiring architecture, revealing the unifying principles that are at the basis of real networks, and developing
models to mimic the growth of a network and reproduce its structural properties. On the other hand, many relevant questions arise
when studying complex networks’ dynamics, such as learning how a large ensemble of dynamical systems that interact through a
complex wiring topology can behave collectively. We review the major concepts and results recently achieved in the study of the
structure and dynamics of complex networks, and summarize the relevant applications of these ideas in many different disciplines,
ranging from nonlinear science to biology, from statistical mechanics to medicine and engineering.
© 2005 Elsevier B.V. All rights reserved.
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The Structure and Function of
Complex Networks∗
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Abstract. Inspired by empirical studies of networked systems such as the Internet, social networks,
and biological networks, researchers have in recent years developed a variety of techniques
and models to help us understand or predict the behavior of these systems. Here we
review developments in this field, including such concepts as the small-world effect, degree
distributions, clustering, network correlations, random graph models, models of network
growth and preferential attachment, and dynamical processes taking place on networks.
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Statistical mechanics of complex networks

Réka Albert* and Albert-László Barabási
Department of Physics, University of Notre Dame, Notre Dame, Indiana 46556

(Published 30 January 2002)

Complex networks describe a wide range of systems in nature and society. Frequently cited examples
include the cell, a network of chemicals linked by chemical reactions, and the Internet, a network of
routers and computers connected by physical links. While traditionally these systems have been
modeled as random graphs, it is increasingly recognized that the topology and evolution of real
networks are governed by robust organizing principles. This article reviews the recent advances in the
field of complex networks, focusing on the statistical mechanics of network topology and dynamics.
After reviewing the empirical data that motivated the recent interest in networks, the authors discuss
the main models and analytical tools, covering random graphs, small-world and scale-free networks,
the emerging theory of evolving networks, and the interplay between topology and the network’s
robustness against failures and attacks.
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We review the recent fast progress in statistical physics of evolving networks. Interest has focused
mainly on the structural properties of random complex networks in communications, biology, social
sciences and economics. A number of giant artificial networks of such a kind came into existence
recently. This opens a wide field for the study of their topology, evolution, and complex processes
occurring in them. Such networks possess a rich set of scaling properties. A number of them are
scale-free and show striking resilience against random breakdowns. In spite of large sizes of these
networks, the distances between most their vertices are short — a feature known as the “small-
world” effect. We discuss how growing networks self-organize into scale-free structures and the role
of the mechanism of preferential linking. We consider the topological and structural properties of
evolving networks, and percolation in these networks. We present a number of models demonstrating
the main features of evolving networks and discuss current approaches for their simulation and
analytical study. Applications of the general results to particular networks in Nature are discussed.
We demonstrate the generic connections of the network growth processes with the general problems
of non-equilibrium physics, econophysics, evolutionary biology, etc.
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Abstract

Coupled biological and chemical systems, neural networks, social interacting species, the Internet and the World Wide Web,
are only a few examples of systems composed by a large number of highly interconnected dynamical units. The first approach to
capture the global properties of such systems is to model them as graphs whose nodes represent the dynamical units, and whose
links stand for the interactions between them. On the one hand, scientists have to cope with structural issues, such as characterizing
the topology of a complex wiring architecture, revealing the unifying principles that are at the basis of real networks, and developing
models to mimic the growth of a network and reproduce its structural properties. On the other hand, many relevant questions arise
when studying complex networks’ dynamics, such as learning how a large ensemble of dynamical systems that interact through a
complex wiring topology can behave collectively. We review the major concepts and results recently achieved in the study of the
structure and dynamics of complex networks, and summarize the relevant applications of these ideas in many different disciplines,
ranging from nonlinear science to biology, from statistical mechanics to medicine and engineering.
© 2005 Elsevier B.V. All rights reserved.
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Abstract. Inspired by empirical studies of networked systems such as the Internet, social networks,
and biological networks, researchers have in recent years developed a variety of techniques
and models to help us understand or predict the behavior of these systems. Here we
review developments in this field, including such concepts as the small-world effect, degree
distributions, clustering, network correlations, random graph models, models of network
growth and preferential attachment, and dynamical processes taking place on networks.
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Statistical mechanics of complex networks
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(Published 30 January 2002)

Complex networks describe a wide range of systems in nature and society. Frequently cited examples
include the cell, a network of chemicals linked by chemical reactions, and the Internet, a network of
routers and computers connected by physical links. While traditionally these systems have been
modeled as random graphs, it is increasingly recognized that the topology and evolution of real
networks are governed by robust organizing principles. This article reviews the recent advances in the
field of complex networks, focusing on the statistical mechanics of network topology and dynamics.
After reviewing the empirical data that motivated the recent interest in networks, the authors discuss
the main models and analytical tools, covering random graphs, small-world and scale-free networks,
the emerging theory of evolving networks, and the interplay between topology and the network’s
robustness against failures and attacks.
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We review the recent fast progress in statistical physics of evolving networks. Interest has focused
mainly on the structural properties of random complex networks in communications, biology, social
sciences and economics. A number of giant artificial networks of such a kind came into existence
recently. This opens a wide field for the study of their topology, evolution, and complex processes
occurring in them. Such networks possess a rich set of scaling properties. A number of them are
scale-free and show striking resilience against random breakdowns. In spite of large sizes of these
networks, the distances between most their vertices are short — a feature known as the “small-
world” effect. We discuss how growing networks self-organize into scale-free structures and the role
of the mechanism of preferential linking. We consider the topological and structural properties of
evolving networks, and percolation in these networks. We present a number of models demonstrating
the main features of evolving networks and discuss current approaches for their simulation and
analytical study. Applications of the general results to particular networks in Nature are discussed.
We demonstrate the generic connections of the network growth processes with the general problems
of non-equilibrium physics, econophysics, evolutionary biology, etc.
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Abstract

Coupled biological and chemical systems, neural networks, social interacting species, the Internet and the World Wide Web,
are only a few examples of systems composed by a large number of highly interconnected dynamical units. The first approach to
capture the global properties of such systems is to model them as graphs whose nodes represent the dynamical units, and whose
links stand for the interactions between them. On the one hand, scientists have to cope with structural issues, such as characterizing
the topology of a complex wiring architecture, revealing the unifying principles that are at the basis of real networks, and developing
models to mimic the growth of a network and reproduce its structural properties. On the other hand, many relevant questions arise
when studying complex networks’ dynamics, such as learning how a large ensemble of dynamical systems that interact through a
complex wiring topology can behave collectively. We review the major concepts and results recently achieved in the study of the
structure and dynamics of complex networks, and summarize the relevant applications of these ideas in many different disciplines,
ranging from nonlinear science to biology, from statistical mechanics to medicine and engineering.
© 2005 Elsevier B.V. All rights reserved.
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Statistical mechanics of complex networks

Réka Albert* and Albert-László Barabási
Department of Physics, University of Notre Dame, Notre Dame, Indiana 46556

(Published 30 January 2002)

Complex networks describe a wide range of systems in nature and society. Frequently cited examples
include the cell, a network of chemicals linked by chemical reactions, and the Internet, a network of
routers and computers connected by physical links. While traditionally these systems have been
modeled as random graphs, it is increasingly recognized that the topology and evolution of real
networks are governed by robust organizing principles. This article reviews the recent advances in the
field of complex networks, focusing on the statistical mechanics of network topology and dynamics.
After reviewing the empirical data that motivated the recent interest in networks, the authors discuss
the main models and analytical tools, covering random graphs, small-world and scale-free networks,
the emerging theory of evolving networks, and the interplay between topology and the network’s
robustness against failures and attacks.
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Evolution of networks

S.N. Dorogovtsev1,2,∗ and J.F.F. Mendes1,†
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We review the recent fast progress in statistical physics of evolving networks. Interest has focused
mainly on the structural properties of random complex networks in communications, biology, social
sciences and economics. A number of giant artificial networks of such a kind came into existence
recently. This opens a wide field for the study of their topology, evolution, and complex processes
occurring in them. Such networks possess a rich set of scaling properties. A number of them are
scale-free and show striking resilience against random breakdowns. In spite of large sizes of these
networks, the distances between most their vertices are short — a feature known as the “small-
world” effect. We discuss how growing networks self-organize into scale-free structures and the role
of the mechanism of preferential linking. We consider the topological and structural properties of
evolving networks, and percolation in these networks. We present a number of models demonstrating
the main features of evolving networks and discuss current approaches for their simulation and
analytical study. Applications of the general results to particular networks in Nature are discussed.
We demonstrate the generic connections of the network growth processes with the general problems
of non-equilibrium physics, econophysics, evolutionary biology, etc.
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Ci =
#triangles connected to i

#possible triangles connected to i
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2Ei

ki(ki � 1)

C =
1

N

NX

i=1

Ci

Clustering of the Network:

Clustering of a node:

II  Clustering Coefficient
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II  Clustering Coefficient
Clustering Spectrum

gulyás et Al. nature communications 6, 7651 (2015)
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Small-World Phenomenon (Six Degrees of Separation)

III  Distances

Everybody is connected to everybody else by no more than six degrees of separation 
by sociologist Stanley Milgram (1967)
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III  Distances

To reach all the nodes:

N =
L

maxX

l=0

hkil

log(N) � L log(hki)

� hkiL� hkiLmax

L  log(N)

log(hki)

@gomezgardenes



IV  Correlations

P (k0, k)

P (k0, k) = kP (k)P (k0|k) = k0P (k0)P (k|k0)

knn =
X

k0

k0P (k0|k) = f(k)

: Probability that two nodes of degree    and   
are linked

Detailed balance Equation for Networks

Two ways of measuring

r =
hkikji � hki2

hk2i � hki2

k k0
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@gomezgardenes



             Network                    Type            Nodes              Links            <k>         L                         Clustering       Corr. (r)  

Networks’ Taxonomy

NEWMAN, sIAM REVIEWS 45, 167 (2003)

@gomezgardenes



• Not regular/ordered

• Not completely random

Why Complex?

@gomezgardenes



• Not regular/ordered

• Not completely random

Why Complex?

@gomezgardenes



What are those important 
actors?

@gomezgardenes



“Two sides of the same node”

Good places to allocate controllers 
Good candidates for being vaccinated 

Ideal targets for attacks
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Centrality measure of a node that takes (also) into 
account the importance of its neighbors 

I  Eigenvector Centrality

x

⇤
i = ↵

NX

j=1

Aijx
⇤
j

Recursive definition:

P. Bonacich, Journal of Mathematical Sociology 2, 113 (1972)
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cj =
1

N�1
PN

l=1 djl

Considers the distances between a node and the 
rest of the network

j

l

II Closeness

M.A. Beauchamp, Systems Research and Behavioral Science 10, 161 (1965)
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Centrality measure of a node that counts the number 
of shortest paths that traverse it

Bi =
1

2

NX

j,l=1

gi(j, l)

i

j

l

gi(j, l) = 2/3

III  Betweenness

L.C. Freeman, Social Networks 1, 215 (1979)
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Scale-free network
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Simultaneous Sequential

Random Graph

Scale-free network
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Synthetic Models  
of  

Complex Networks
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Two frameworks

• Equilibrium Random Networks

• Non-equilibrium Random Networks

@gomezgardenes



• Number of nodes N fixed

• Connect

Percolation models

Equilibrium Random Networks
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• Number of nodes N fixed

• Connect randomly chosen pairs of nodes

Percolation models

Equilibrium Random Networks
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Statistical Sense 

• A particular network is a member (realization) of a 
statistical ensemble of networks. 

• Ensemble of Random      
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Erdös-Rènyi graphs

• Start with N isolated nodes

• For each pair connect them with probability p                   

• The total number of links created is a random variable

• The probability of                                                                                                                                                                                              

p. erdös  & A. Rènyi, Pub. Mathematicae 6, 290 (1959)
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Erdös-Rènyi graphs

• Start with N isolated nodes

• For each pair connect them with probability p                   

• The total number of links created is a random variable

• The probability of                                                                                                                                                                                              

E(L) = p
N(N � 1)

2

p. erdös  & A. Rènyi, Pub. Mathematicae 6, 290 (1959)
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Erdös-Rènyi graphs

• Start with N isolated nodes

• For each pair connect them with probability p                   

• The total number of links created is a random variable

• The probability of finding graphs with L links is                                                                                                                                                                                              

E(L) = p
N(N � 1)

2

P (N,L) =

✓
N(N � 1)/2

L

◆
pL(1� p)

N(N�1)
2 �L

p. erdös  & A. Rènyi, Pub. Mathematicae 6, 290 (1959)
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• Average connectivity of the nodes

• Percolation Transition:                                                                                                                                                                                            

p. erdös  & A. Rènyi, Pub. Mathematicae 6, 290 (1959)

Erdös-Rènyi graphs

@gomezgardenes



• Average connectivity of the nodes

• Percolation Transition:                                                                                                                                                                                            

hki = p(N � 1)

p. erdös  & A. Rènyi, Pub. Mathematicae 6, 290 (1959)

Erdös-Rènyi graphs

@gomezgardenes



• Average connectivity of the nodes

• Percolation Transition:                                                                                                                                                                                            

hki = p(N � 1)

For <k> < 1:  
            Isolated clusters 

For <k> >1:  
    Giant Connected Component appears

p. erdös  & A. Rènyi, Pub. Mathematicae 6, 290 (1959)

Erdös-Rènyi graphs
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P (k) ' e�pN (pN)k

k!
= e�hki hkik

k!

Poisson Degree distribution

p. erdös  & A. Rènyi, Pub. Mathematicae 6, 290 (1959)

Erdös-Rènyi graphs
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Clustering Coefficient

Probability that two nodes j and l are connected, 
provided they are both connected to a third one 
i, is:

i

l

j

p

CC = p =
hki
N

Clustering tends to 0 as N increases!!!

p. erdös  & A. Rènyi, Pub. Mathematicae 6, 290 (1959)

Erdös-Rènyi graphs
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• Number of nodes N fixed

• Connect randomly chosen pairs of nodes

Percolation models

Equilibrium Random Networks
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• Number of nodes and links fixed

• Reconnect r

Rewiring models

Equilibrium Random Networks
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• Number of nodes and links fixed

• Reconnect randomly chosen pairs of nodes

Rewiring models

Equilibrium Random Networks
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• Number of nodes and links fixed

• Reconnect randomly chosen pairs of nodes

Rewiring models

Equilibrium Random Networks

@gomezgardenes



Watts-Strogatz Model

Networks of coupled dynamical systems have been used to model biological oscillators, Josephson junction arrays, excitable media, neural networks,
spatial games, genetic control networks and many other self-organizing systems. Ordinarily, the connection topology is assumed to be either completely
regular or completely random. But many biological, technological and social networks lie somewhere between these two extremes.

Here we explore simple models of networks that can be tuned through this middle ground: regular networks 'rewired' to introduce increasing amounts of
disorder. We find that these systems can be highly clustered, like regular lattices, yet have small characteristic path lengths, like random graphs. We call
them 'small-world' networks, by analogy with the small-world phenomenon (popularly known as six degrees of separation). The neural network of the
worm Caenorhabditis elegans, the power grid of the western United States, and the collaboration graph of film actors are shown to be small-world
networks.

Models of dynamical systems with small-world coupling display enhanced signal-propagation speed, computational power, and synchronizability. In
particular, infectious diseases spread more easily in small-world networks than in regular lattices.

ABSTRACT

To interpolate between regular and random networks, we consider the following random rewiring procedure.

This construction allows us to 'tune' the graph between regularity (p = 0) and disorder (p = 1), and thereby to probe the intermediate region 0 < p < 1,
about which little is known.

ALGORITHM

We start with a 
ring of n vertices

n = 12

where each vertex
is connected to its 
k nearest neighbors

k = 4

like so. We choose a vertex, and 
the edge to its nearest 
clockwise neighbour.

With probability p, we reconnect 
this edge to a vertex chosen 
uniformly at random over the

entire ring, with 
duplicate edges 
forbidden. Other- 
wise, we leave 
the edge in place.

We repeat this process by 
moving clockwise around 
the ring, considering each

vertex in turn 
until one lap 
is completed.

Next, we consider the 
edges that connect vertices 
to their second-nearest 
neighbours clockwise.

As before, we randomly 
rewire each of these 
edges with probability p.

We continue this process, 
circulating around the ring and 
proceeding outward to more 
distant neighbours after each 
lap, until each original edge 
has been considered once.

As there are nk/2 edges in 
the entire graph, the rewiring 
process stops after k/2 laps.

For p = 0, 
the ring is 
unchanged.

As p increases, the 
graph becomes 
increasingly disordered.

p=0.15

At p = 1, all 
edges are re- 
wired randomly.

We quantify the structural properties of these graphs by their characteristic path length L(p) and clustering coefficient C(p).
L(p) measures the typical separation between two vertices (a global property). C(p) measures the cliquishness of a typical neighbourhood (a local property).

For friendship networks, these statistics have intuitive meanings: L is the average number of friendships in the shortest chain connecting two people.
Cv reflects the extent to which friends of v are also friends of each other; and thus C measures the cliquishness of a typical friendship circle.

METRICS

L is defined as the number 
of edges in the shortest 
path between two vertices

shortest path
is 1 edge

shortest path
is 3 edges

averaged over all 
pairs of vertices.

C is defined as follows. 
Suppose that a vertex v 
has kv neighbours.

kv = 4 neighbours

Then at most kv (kv – 1) / 2 edges 
can exist between them. (This 
occurs when every neighbor of

v is connected 
to every other 
neighbour of v.)

at most 6 edges between 4 neighbours

Let Cv denote the fraction of 
these allowable edges that 
actually exist. Define C as the

average of Cv 
over all vertices.

4 out of 6 edges exist. Cv = 4/6 = 0.67

SMALL
WORLDS

The regular lattice at p = 0 is 
a highly clustered, large world 
where L grows linearly with n.

The random network at p = 1 is a 
poorly clustered, small world where 
L grows only logarithmically with n.

These limiting cases might lead one to suspect that large C is always associated with 
large L, and small C with small L. On the contrary, we find that there is a broad 
interval of p over which L(p) is almost as small as Lrandom yet Cp >> Crandom.

The data shown in the figure are averages over 20 random realizations of the rewiring process,
and have been normalized by the values L(0), C(0) for a regular lattice. All the graphs have n =
1000 vertices and an average degree of k = 10 edges per vertex. We note that a logarithmic
horizontal scale has been used to resolve the rapid drop in L(p), corresponding to the onset of
the small-world phenomenon. During this drop, C(p) remains almost constant at its value for the
regular lattice, indicating that the transition to a small world is almost undetectable at the local level.

These small-world networks result from the immediate drop 
in L(p) caused by the introduction of a few long-range edges. 
Such 'short cuts' connect vertices that would otherwise be 
much farther apart than Lrandom. For small p, each short

cut has a highly nonlinear 
effect on L, contracting the 
distance not just between the 
pair of vertices that it 
connects, but between their 
immediate neighbourhoods, 
neighbourhoods of neigh- 
bourhoods and so on.

5 hops to 
neighbourhood

shortcut to 
neighbourhood

By contrast, an edge removed from a clustered neighbour- 
hood to make a short cut has, at most, a linear effect on C; 
hence C(p) remains practically unchanged for small p even 
though L(p) drops rapidly. The important implication here is

that at the local level (as 
reflected by C(p)), the trans- 
ition to a small world is 
almost undetectable.

The 4 neighbors of 
each vertex have 
3 out of 6 edges 
among themselves. 
C = 3/6 = 0.5

With shortcut, 
this is still true 
for almost 
every vertex.
C = 0.48

Collective dynamics of ‘small-world’ networks
Duncan J. Watts & Steven H. Strogatz
Department of Theoretical and Applied Mechanics, Kimball Hall, Cornell University, Ithaca, New York 14853, USA

Networks of coupled dynamical systems have been used to model biological oscillators, Josephson junction arrays, excitable media, neural networks,
spatial games, genetic control networks and many other self-organizing systems. Ordinarily, the connection topology is assumed to be either completely
regular or completely random. But many biological, technological and social networks lie somewhere between these two extremes.

Here we explore simple models of networks that can be tuned through this middle ground: regular networks 'rewired' to introduce increasing amounts of
disorder. We find that these systems can be highly clustered, like regular lattices, yet have small characteristic path lengths, like random graphs. We call
them 'small-world' networks, by analogy with the small-world phenomenon (popularly known as six degrees of separation). The neural network of the
worm Caenorhabditis elegans, the power grid of the western United States, and the collaboration graph of film actors are shown to be small-world
networks.

Models of dynamical systems with small-world coupling display enhanced signal-propagation speed, computational power, and synchronizability. In
particular, infectious diseases spread more easily in small-world networks than in regular lattices.

ABSTRACT

To interpolate between regular and random networks, we consider the following random rewiring procedure.

This construction allows us to 'tune' the graph between regularity (p = 0) and disorder (p = 1), and thereby to probe the intermediate region 0 < p < 1,
about which little is known.

ALGORITHM

We start with a 
ring of n vertices

n = 12

where each vertex
is connected to its 
k nearest neighbors

k = 4

like so. We choose a vertex, and 
the edge to its nearest 
clockwise neighbour.

With probability p, we reconnect 
this edge to a vertex chosen 
uniformly at random over the

entire ring, with 
duplicate edges 
forbidden. Other- 
wise, we leave 
the edge in place.

We repeat this process by 
moving clockwise around 
the ring, considering each

vertex in turn 
until one lap 
is completed.

Next, we consider the 
edges that connect vertices 
to their second-nearest 
neighbours clockwise.

As before, we randomly 
rewire each of these 
edges with probability p.

We continue this process, 
circulating around the ring and 
proceeding outward to more 
distant neighbours after each 
lap, until each original edge 
has been considered once.

As there are nk/2 edges in 
the entire graph, the rewiring 
process stops after k/2 laps.

For p = 0, 
the ring is 
unchanged.

As p increases, the 
graph becomes 
increasingly disordered.

p=0.15

At p = 1, all 
edges are re- 
wired randomly.

We quantify the structural properties of these graphs by their characteristic path length L(p) and clustering coefficient C(p).
L(p) measures the typical separation between two vertices (a global property). C(p) measures the cliquishness of a typical neighbourhood (a local property).

For friendship networks, these statistics have intuitive meanings: L is the average number of friendships in the shortest chain connecting two people.
Cv reflects the extent to which friends of v are also friends of each other; and thus C measures the cliquishness of a typical friendship circle.

METRICS

L is defined as the number 
of edges in the shortest 
path between two vertices

shortest path
is 1 edge

shortest path
is 3 edges

averaged over all 
pairs of vertices.

C is defined as follows. 
Suppose that a vertex v 
has kv neighbours.

kv = 4 neighbours

Then at most kv (kv – 1) / 2 edges 
can exist between them. (This 
occurs when every neighbor of

v is connected 
to every other 
neighbour of v.)

at most 6 edges between 4 neighbours

Let Cv denote the fraction of 
these allowable edges that 
actually exist. Define C as the

average of Cv 
over all vertices.

4 out of 6 edges exist. Cv = 4/6 = 0.67

SMALL
WORLDS

The regular lattice at p = 0 is 
a highly clustered, large world 
where L grows linearly with n.

The random network at p = 1 is a 
poorly clustered, small world where 
L grows only logarithmically with n.

These limiting cases might lead one to suspect that large C is always associated with 
large L, and small C with small L. On the contrary, we find that there is a broad 
interval of p over which L(p) is almost as small as Lrandom yet Cp >> Crandom.

The data shown in the figure are averages over 20 random realizations of the rewiring process,
and have been normalized by the values L(0), C(0) for a regular lattice. All the graphs have n =
1000 vertices and an average degree of k = 10 edges per vertex. We note that a logarithmic
horizontal scale has been used to resolve the rapid drop in L(p), corresponding to the onset of
the small-world phenomenon. During this drop, C(p) remains almost constant at its value for the
regular lattice, indicating that the transition to a small world is almost undetectable at the local level.

These small-world networks result from the immediate drop 
in L(p) caused by the introduction of a few long-range edges. 
Such 'short cuts' connect vertices that would otherwise be 
much farther apart than Lrandom. For small p, each short

cut has a highly nonlinear 
effect on L, contracting the 
distance not just between the 
pair of vertices that it 
connects, but between their 
immediate neighbourhoods, 
neighbourhoods of neigh- 
bourhoods and so on.

5 hops to 
neighbourhood

shortcut to 
neighbourhood

By contrast, an edge removed from a clustered neighbour- 
hood to make a short cut has, at most, a linear effect on C; 
hence C(p) remains practically unchanged for small p even 
though L(p) drops rapidly. The important implication here is

that at the local level (as 
reflected by C(p)), the trans- 
ition to a small world is 
almost undetectable.

The 4 neighbors of 
each vertex have 
3 out of 6 edges 
among themselves. 
C = 3/6 = 0.5

With shortcut, 
this is still true 
for almost 
every vertex.
C = 0.48

Collective dynamics of ‘small-world’ networks
Duncan J. Watts & Steven H. Strogatz
Department of Theoretical and Applied Mechanics, Kimball Hall, Cornell University, Ithaca, New York 14853, USA

D. Watts & S.H. Strogatz, Nature 393, 440 (1998)
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D. Watts & S.H. Strogatz, Nature 393, 440 (1998)

Watts-Strogatz Model
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L ' N

2hki � 1 C =
3(hki � 2)

4(hki � 1)

Watts-Strogatz Model
D. Watts & S.H. Strogatz, Nature 393, 440 (1998)
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Watts-Strogatz Model
D. Watts & S.H. Strogatz, Nature 393, 440 (1998)

L ' lnN

lnhki C =
hki
N
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L =
lnN

lnhki
C =

hki
N? ?

Watts-Strogatz Model
D. Watts & S.H. Strogatz, Nature 393, 440 (1998)

?
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Watts-Strogatz Model
D. Watts & S.H. Strogatz, Nature 393, 440 (1998)
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Degree distribution?

Watts-Strogatz Model
D. Watts & S.H. Strogatz, Nature 393, 440 (1998)
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Degree distribution?

�Dirac   -function

Poisson distribution

Watts-Strogatz Model
D. Watts & S.H. Strogatz, Nature 393, 440 (1998)
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... but Complex Networks evolve!



Non-Equilibrium Networks

• Number of nodes N(t) grows with time

• At each time step new nodes are 
incorporated

• New links are also created at each time 
step
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Barabàsi-Albert Model
A.L. barabàsi & R. albert, science 286, 509 (1999)

• At each time step 1 new node is incorporated

• The new node launches m new links to the already 
existing nodes
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(Preferential attachment rule)⇧i(t) =
ki(t)Pt+m0�1

j=1 kj(t)

• The probability that a node i receives a link from the 
newcomer is:

A.L. barabàsi & R. albert, science 286, 509 (1999)

Barabàsi-Albert Model
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• The probability that a node i receives a link from a 
newcomer at time t is: 

• The time evolution of the degree of a node is given 
by: 

@ki
@t

= m
ki(t)Pt+m0�1

j=1 kj(t)
with ki(t = ti) = m

• The time evolution of the degree of a node is given 
by: 

• …whose solution is: 

Barabàsi-Albert Model
A.L. barabàsi & R. albert, science 286, 509 (1999)
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• The probability that a node i receives a link from a 
newcomer at time t is: 

• The time evolution of the degree of a node is given 
by: 

@ki
@t

= m
ki(t)Pt+m0�1

j=1 kj(t)
with ki(t = ti) = m

ki(t) = m

✓
t

ti

◆1/2

t > ti

t < tiki(t) = 0

• The time evolution of the degree of a node is given 
by: 

• …whose solution is: 

Barabàsi-Albert Model
A.L. barabàsi & R. albert, science 286, 509 (1999)
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P (k) =
2m(m+ 1)

k(K + 1)(k + 2)
' k�3

• …that finally yields:

A.L. barabàsi & R. albert, science 286, 509 (1999)

Barabàsi-Albert Model

@gomezgardenes



Clustering Coefficient

CBA ⇠ N�0.75

CER ⇠ N�1

A.L. barabàsi & R. albert, science 286, 509 (1999)

Barabàsi-Albert Model

@gomezgardenes



Clustering Coefficient

CBA ⇠ N�0.75

CER ⇠ N�1

Average Path length

LBA ⇠ lnN

ln lnN

LER ⇠ lnN

A.L. barabàsi & R. albert, science 286, 509 (1999)

Barabàsi-Albert Model
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• Degree distribution 

• Average length

• Clustering Coefficient                                                                                                                                                                                          

A number of variations of the former network models available

Overview

ER        WS        BA
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� = 3

⇧i(t) =
ki + ↵

Pm0+t�1
j=1 (kj(t) + ↵)

↵ 2 (�m,1)

Scale-free with tunable �
Dorogovtsev-mendes-samukhin 

phys. rev. lett. 85, 4633 (2000)
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Structure of Growing Networks with Preferential Linking

S. N. Dorogovtsev,1,2,* J. F. F. Mendes,1,† and A. N. Samukhin2,‡

1Departamento de Física and Centro de Física do Porto, Faculdade de Ciências, Universidade do Porto,
Rua do Campo Alegre 687, 4169-007 Porto, Portugal

2A. F. Ioffe Physico-Technical Institute, 194021 St. Petersburg, Russia
(Received 10 April 2000)

The model of growing networks with the preferential attachment of new links is generalized to include
initial attractiveness of sites. We find the exact form of the stationary distribution of the number of
incoming links of sites in the limit of long times, P!q", and the long-time limit of the average connectivity
q!s, t" of a site s at time t (one site is added per unit of time). At long times, P!q" # q2g at q ! `
and q!s, t" # !s$t"2b at s$t ! 0, where the exponent g varies from 2 to ` depending on the initial
attractiveness of sites. We show that the relation b!g 2 1" ! 1 between the exponents is universal.

PACS numbers: 84.35.+i, 05.40.–a, 05.50.+q, 87.18.Sn

It was observed recently that the distributions of several
quantities in various growing networks have a power-law
form. This scaling behavior was observed in the World
Wide Web, in neural and social networks, in nets of cita-
tions of scientific papers, etc.; see [1–14], and references
therein. These observations challenge us to find the general
reasons of such behavior. It is only recently that scien-
tists became aware of the ever increasing impact of vari-
ous evolving networks on everyone’s life. Earlier studies
[15–20] concentrated on simple random networks, and it
was recently discovered that many complex networks are
hierarchically organized [5,6,21].

Mostly, the interest is concentrated on the distribution of
shortest paths between the different sites of a network [1]
and on the distribution of the number of connections with
a site [2–6]. The second quantity is obviously simpler to
obtain than the first one but even for it, in the case of the
networks with scaling behavior, no exact results are known.

The only known mechanism of self-organization of a
growing network into a free-scale structure is preferential
linking [7–9], i.e., new links are preferentially attached to
sites with high numbers of connections. A simple model of
a growing network with preferential linking was proposed
by Barabási and Albert [7] (BA model). At each time step
a new site is added. It connects with old sites by a fixed
number of links. The probability of an old site to get a new
link is proportional to the total number of connections with
this site. It was found in [7,8] that the distribution of the
number of links has a power-law form at long times. The
value of the corresponding scaling exponent, g, obtained
using a mean-field approach, equals 3. This value is close
to that one observed in the network of citations [3], but
other examples of evolving networks show different values
of g. Introduction of the aging of sites changes g [22] and
may even break the scaling behavior [13,22].

In the present Letter, we generalize the BA model and
find the exact form of the distribution of incoming links of
sites in the limit of large sizes of the growing network. We
derive a scaling relation connecting the scaling exponent of
the distribution of incoming links and the exponent of the

temporal behavior of the average connectivity, and demon-
strate that it applies for a large class of evolving networks.

The model.—At each time step a new site appears (see
Fig. 1). Simultaneously, m new directed links coming out
from nonspecified sites are introduced. Let the connectiv-
ity qs be the number of incoming links to a site s, i.e., to a
site added at time s. The new links are distributed between
sites according to the following rule. The probability that
a new link points to a given site s is proportional to the
following characteristic of the site:

As ! A 1 qs , (1)

thereafter called its attractiveness. All sites are born with
some initial attractiveness A $ 0, but afterwards it in-
creases because of the qs term. The introduced parame-
ter A, the initial attractiveness, governs the probability for
“young” sites to get new links.

We emphasize that we do not specify sites from which
the new links come out. They may come out from the new
site, from old sites, or even from outside of the network.
Our results do not depend on that. Therefore, the model
describes also the particular case when every new site is
the source of all the m new links like in the BA model.
In this case, every site has m outgoing links and the total

t t+1

FIG. 1. Illustration of the growing network under considera-
tion. Each instant a new site (open circle) and m (here, m ! 2)
new directed links (dashed arrows) are added. These links are
distributed between the sites according to the rule introduced in
the text.

0031-9007$00$85(21)$4633(4)$15.00 © 2000 The American Physical Society 4633
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equations. Indeed, if we replace the finite difference with a
derivative over q, we get the expression obtained in [7,8].

For ma 1 q ¿ 1, the distribution function (9) takes the
form

P!q" # !1 1 a"
G$!m 1 1"a 1 1%

G!ma"
!q 1 ma"2!21a".

(11)

Therefore, we find the scaling exponent g of the distribu-
tion function:

g ! 2 1 a ! 2 1 A&m , (12)

where A is the initial attractiveness of a site.
The distribution p!q, s, t".— Let us find the connectivity

distribution p!q, s, t" for the site s. At long times t ¿ 1,
keeping only two leading terms in 1&t in Eq. (2), one gets

p!q, s, t 1 1" !
∑

1 2
q 1 am
!1 1 a"t

∏

p!q, s, t" 1
q 2 1 1 am

!1 1 a"t
p!q 2 1, s, t" 1 O

µ

p
t2

∂

. (13)

Assuming that the scale of time variation is much larger than 1, we can replace the finite t difference with a derivative

!1 1 a"t
≠p
≠t

!q, s, t" ! !q 2 1 1 am"p!q 2 1, s, t" 2 !q 1 am"p!q, s, t" . (14)

Finally, using the Z transform in the similar way as before, we obtain the solution of Eq. (14), i.e., the connectivity
distribution of individual sites:

p!q, s, t" !
G!am 1 q"

G!am"q!

µ

s
t

∂am&!11a"∑

1 2

µ

s
t

∂1&!11a"∏q

. (15)

Hence, this distribution has an exponential tail. Now one
may get also the expression for the average connectivity of
a given site:

q!s, t" !
X̀

q!0
qp!q, s, t" ! am

∑µ

s
t

∂21&!11a"
2 1

∏

.

(16)

Thus, at a fixed time t the average connectivity of an old
site s ø t depends upon its age as 's2b , where the ex-
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FIG. 2. Log-log plot of the distribution of the incoming links
of sites for m ! 1 and m ! 5 (the curves for m ! 5 are dis-
placed down by 15). (1) a ! 0.001, (2) a ! 0.05, (3) a ! 1.0
(BA model), (4) a ! 2.0, (5) a ! 4.0.

ponent b ! 1&!1 1 a". Therefore, we have the following
relation between the exponents of the considered network:

b!g 2 1" ! 1 , (17)

that was previously obtained in the continuous approxi-
mation [22].

We can show that Eq. (17) is universal and may be
obtained from the most general considerations. In fact,
we assume only that the averaged connectivity q!s, t" and
the connectivity distribution P!q" show scaling behavior.
Then, in the scaling region, the quantity of interest, i.e.,
the probability p!q, s, t", has to be of the following form:
p!q, s, t" ! !s&t"D1f$qD2!s&t"D3%. Obviously, one can set
D2 ! 1. D1 ! D3 because of the normalization condition
for p!q, s, t" at a fixed s,

P`
q!0 p!q, s, t" ! 1. Then, the

relation q!s, t" ~ !s&t"2b leads to D1 ! D3 ! b [we use
the definition (16)], and finally, inserting p!q, s, t" in such
a form into the relation P!q" ~ q2g at large q and t, one
gets the relation (17).

The network that we consider here belongs to the class
of scale-free growing networks (we use the classification of
growing networks presented in [13]). For the known real
networks of this class (see the most complete description
[13]), no data for the variation of the average connectivity
of a site with its age are available yet. These data are
necessary to obtain the exponent b. It would be intriguing
to study this quantity in the real scale-free networks and to
check Eq. (17). One should note that, for the network with
aging of sites, the relation (17) was already confirmed by
the simulation [22].

The particular form of the scaling function f!j", j (
q!s&t"2b , depends on the specific model of the growing
network. In the case under consideration, it follows from
Eq. (15) that

f!j" !
1

G!am"
jam21 exp!2j" (18)
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It was observed recently that the distributions of several
quantities in various growing networks have a power-law
form. This scaling behavior was observed in the World
Wide Web, in neural and social networks, in nets of cita-
tions of scientific papers, etc.; see [1–14], and references
therein. These observations challenge us to find the general
reasons of such behavior. It is only recently that scien-
tists became aware of the ever increasing impact of vari-
ous evolving networks on everyone’s life. Earlier studies
[15–20] concentrated on simple random networks, and it
was recently discovered that many complex networks are
hierarchically organized [5,6,21].

Mostly, the interest is concentrated on the distribution of
shortest paths between the different sites of a network [1]
and on the distribution of the number of connections with
a site [2–6]. The second quantity is obviously simpler to
obtain than the first one but even for it, in the case of the
networks with scaling behavior, no exact results are known.

The only known mechanism of self-organization of a
growing network into a free-scale structure is preferential
linking [7–9], i.e., new links are preferentially attached to
sites with high numbers of connections. A simple model of
a growing network with preferential linking was proposed
by Barabási and Albert [7] (BA model). At each time step
a new site is added. It connects with old sites by a fixed
number of links. The probability of an old site to get a new
link is proportional to the total number of connections with
this site. It was found in [7,8] that the distribution of the
number of links has a power-law form at long times. The
value of the corresponding scaling exponent, g, obtained
using a mean-field approach, equals 3. This value is close
to that one observed in the network of citations [3], but
other examples of evolving networks show different values
of g. Introduction of the aging of sites changes g [22] and
may even break the scaling behavior [13,22].

In the present Letter, we generalize the BA model and
find the exact form of the distribution of incoming links of
sites in the limit of large sizes of the growing network. We
derive a scaling relation connecting the scaling exponent of
the distribution of incoming links and the exponent of the

temporal behavior of the average connectivity, and demon-
strate that it applies for a large class of evolving networks.

The model.—At each time step a new site appears (see
Fig. 1). Simultaneously, m new directed links coming out
from nonspecified sites are introduced. Let the connectiv-
ity qs be the number of incoming links to a site s, i.e., to a
site added at time s. The new links are distributed between
sites according to the following rule. The probability that
a new link points to a given site s is proportional to the
following characteristic of the site:

As ! A 1 qs , (1)

thereafter called its attractiveness. All sites are born with
some initial attractiveness A $ 0, but afterwards it in-
creases because of the qs term. The introduced parame-
ter A, the initial attractiveness, governs the probability for
“young” sites to get new links.

We emphasize that we do not specify sites from which
the new links come out. They may come out from the new
site, from old sites, or even from outside of the network.
Our results do not depend on that. Therefore, the model
describes also the particular case when every new site is
the source of all the m new links like in the BA model.
In this case, every site has m outgoing links and the total

t t+1

FIG. 1. Illustration of the growing network under considera-
tion. Each instant a new site (open circle) and m (here, m ! 2)
new directed links (dashed arrows) are added. These links are
distributed between the sites according to the rule introduced in
the text.
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tFig. 6.6 The HK model allows to construct scale-free networks with finite clustering. (a) The
clustering coefficient is reported as a function of the order N of the graph and (b) for
different values of q. (c) Degree distribution and (d) average clustering coefficient of
nodes of degree k for networks with N = 50000 nodes.fig07:holme_tunableC

notice that the probability q of creating a triangle does not a↵ect the shape of the degree
distribution of the network. In fact, as shown in panel (c), the degree distributions remain,
for any value of q, indistinguishable from the power law with exponent � = 3 generated
by the linear preferential attachment in the BA model. Finally, the model also reproduces
another interesting feature of the clustering coe�cient of real-world networks that we have
explored in Example 4.4 of Chapter 4, namely the dependence of the node clustering coe�-
cient C on the node degree k. For each value of q we have computed the average clustering
coe�cient c(k) of nodes with degree k as defined in Eq. (4.5). The quantity c(k) is reported
as a function of k in panel (d). The results indicate that, for every value q , 0, the node
clustering coe�cient c(k) has a power-law dependence on k, which converges to c(k) ⇠ k�1

when q increases, thus reproducing the same exponent found for the movie actor collabo-
ration network in Example 4.4. Conversely, when q = 0 we find that the value of the node
clustering coe�cient is very small and does not depend on the node degree k. In this case
we expect c(k)! 0 for each value of k when N ! 1. This is perfectly consistent with the
behavior we would observe in a random graph. In fact, the clustering coe�cient of a node
i is equal to the density of the subgraph induced by the first neighbours of i. Since in a
random graph each couple of nodes has the same probability of being connected by a link,
we expect that the density of the subgraph induced by the first neighbours of a node does
not depend on the node degree. Therefore in finite random graphs the clustering coe�cient
will be small, but di↵erent from zero, and such that the average clustering coe�cient c(k)
of nodes of degree k will not depend on the value of k.
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notice that the probability q of creating a triangle does not a↵ect the shape of the degree
distribution of the network. In fact, as shown in panel (c), the degree distributions remain,
for any value of q, indistinguishable from the power law with exponent � = 3 generated
by the linear preferential attachment in the BA model. Finally, the model also reproduces
another interesting feature of the clustering coe�cient of real-world networks that we have
explored in Example 4.4 of Chapter 4, namely the dependence of the node clustering coe�-
cient C on the node degree k. For each value of q we have computed the average clustering
coe�cient c(k) of nodes with degree k as defined in Eq. (4.5). The quantity c(k) is reported
as a function of k in panel (d). The results indicate that, for every value q , 0, the node
clustering coe�cient c(k) has a power-law dependence on k, which converges to c(k) ⇠ k�1

when q increases, thus reproducing the same exponent found for the movie actor collabo-
ration network in Example 4.4. Conversely, when q = 0 we find that the value of the node
clustering coe�cient is very small and does not depend on the node degree k. In this case
we expect c(k)! 0 for each value of k when N ! 1. This is perfectly consistent with the
behavior we would observe in a random graph. In fact, the clustering coe�cient of a node
i is equal to the density of the subgraph induced by the first neighbours of i. Since in a
random graph each couple of nodes has the same probability of being connected by a link,
we expect that the density of the subgraph induced by the first neighbours of a node does
not depend on the node degree. Therefore in finite random graphs the clustering coe�cient
will be small, but di↵erent from zero, and such that the average clustering coe�cient c(k)
of nodes of degree k will not depend on the value of k.
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notice that the probability q of creating a triangle does not a↵ect the shape of the degree
distribution of the network. In fact, as shown in panel (c), the degree distributions remain,
for any value of q, indistinguishable from the power law with exponent � = 3 generated
by the linear preferential attachment in the BA model. Finally, the model also reproduces
another interesting feature of the clustering coe�cient of real-world networks that we have
explored in Example 4.4 of Chapter 4, namely the dependence of the node clustering coe�-
cient C on the node degree k. For each value of q we have computed the average clustering
coe�cient c(k) of nodes with degree k as defined in Eq. (4.5). The quantity c(k) is reported
as a function of k in panel (d). The results indicate that, for every value q , 0, the node
clustering coe�cient c(k) has a power-law dependence on k, which converges to c(k) ⇠ k�1

when q increases, thus reproducing the same exponent found for the movie actor collabo-
ration network in Example 4.4. Conversely, when q = 0 we find that the value of the node
clustering coe�cient is very small and does not depend on the node degree k. In this case
we expect c(k)! 0 for each value of k when N ! 1. This is perfectly consistent with the
behavior we would observe in a random graph. In fact, the clustering coe�cient of a node
i is equal to the density of the subgraph induced by the first neighbours of i. Since in a
random graph each couple of nodes has the same probability of being connected by a link,
we expect that the density of the subgraph induced by the first neighbours of a node does
not depend on the node degree. Therefore in finite random graphs the clustering coe�cient
will be small, but di↵erent from zero, and such that the average clustering coe�cient c(k)
of nodes of degree k will not depend on the value of k.
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equations. Indeed, if we replace the finite difference with a
derivative over q, we get the expression obtained in [7,8].

For ma 1 q ¿ 1, the distribution function (9) takes the
form

P!q" # !1 1 a"
G$!m 1 1"a 1 1%

G!ma"
!q 1 ma"2!21a".

(11)

Therefore, we find the scaling exponent g of the distribu-
tion function:

g ! 2 1 a ! 2 1 A&m , (12)

where A is the initial attractiveness of a site.
The distribution p!q, s, t".— Let us find the connectivity

distribution p!q, s, t" for the site s. At long times t ¿ 1,
keeping only two leading terms in 1&t in Eq. (2), one gets

p!q, s, t 1 1" !
∑

1 2
q 1 am
!1 1 a"t

∏

p!q, s, t" 1
q 2 1 1 am

!1 1 a"t
p!q 2 1, s, t" 1 O

µ

p
t2

∂

. (13)

Assuming that the scale of time variation is much larger than 1, we can replace the finite t difference with a derivative

!1 1 a"t
≠p
≠t

!q, s, t" ! !q 2 1 1 am"p!q 2 1, s, t" 2 !q 1 am"p!q, s, t" . (14)

Finally, using the Z transform in the similar way as before, we obtain the solution of Eq. (14), i.e., the connectivity
distribution of individual sites:

p!q, s, t" !
G!am 1 q"

G!am"q!

µ

s
t

∂am&!11a"∑

1 2

µ

s
t

∂1&!11a"∏q

. (15)

Hence, this distribution has an exponential tail. Now one
may get also the expression for the average connectivity of
a given site:

q!s, t" !
X̀

q!0
qp!q, s, t" ! am

∑µ

s
t

∂21&!11a"
2 1

∏

.

(16)

Thus, at a fixed time t the average connectivity of an old
site s ø t depends upon its age as 's2b , where the ex-
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FIG. 2. Log-log plot of the distribution of the incoming links
of sites for m ! 1 and m ! 5 (the curves for m ! 5 are dis-
placed down by 15). (1) a ! 0.001, (2) a ! 0.05, (3) a ! 1.0
(BA model), (4) a ! 2.0, (5) a ! 4.0.

ponent b ! 1&!1 1 a". Therefore, we have the following
relation between the exponents of the considered network:

b!g 2 1" ! 1 , (17)

that was previously obtained in the continuous approxi-
mation [22].

We can show that Eq. (17) is universal and may be
obtained from the most general considerations. In fact,
we assume only that the averaged connectivity q!s, t" and
the connectivity distribution P!q" show scaling behavior.
Then, in the scaling region, the quantity of interest, i.e.,
the probability p!q, s, t", has to be of the following form:
p!q, s, t" ! !s&t"D1f$qD2!s&t"D3%. Obviously, one can set
D2 ! 1. D1 ! D3 because of the normalization condition
for p!q, s, t" at a fixed s,

P`
q!0 p!q, s, t" ! 1. Then, the

relation q!s, t" ~ !s&t"2b leads to D1 ! D3 ! b [we use
the definition (16)], and finally, inserting p!q, s, t" in such
a form into the relation P!q" ~ q2g at large q and t, one
gets the relation (17).

The network that we consider here belongs to the class
of scale-free growing networks (we use the classification of
growing networks presented in [13]). For the known real
networks of this class (see the most complete description
[13]), no data for the variation of the average connectivity
of a site with its age are available yet. These data are
necessary to obtain the exponent b. It would be intriguing
to study this quantity in the real scale-free networks and to
check Eq. (17). One should note that, for the network with
aging of sites, the relation (17) was already confirmed by
the simulation [22].

The particular form of the scaling function f!j", j (
q!s&t"2b , depends on the specific model of the growing
network. In the case under consideration, it follows from
Eq. (15) that

f!j" !
1

G!am"
jam21 exp!2j" (18)
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It was observed recently that the distributions of several
quantities in various growing networks have a power-law
form. This scaling behavior was observed in the World
Wide Web, in neural and social networks, in nets of cita-
tions of scientific papers, etc.; see [1–14], and references
therein. These observations challenge us to find the general
reasons of such behavior. It is only recently that scien-
tists became aware of the ever increasing impact of vari-
ous evolving networks on everyone’s life. Earlier studies
[15–20] concentrated on simple random networks, and it
was recently discovered that many complex networks are
hierarchically organized [5,6,21].

Mostly, the interest is concentrated on the distribution of
shortest paths between the different sites of a network [1]
and on the distribution of the number of connections with
a site [2–6]. The second quantity is obviously simpler to
obtain than the first one but even for it, in the case of the
networks with scaling behavior, no exact results are known.

The only known mechanism of self-organization of a
growing network into a free-scale structure is preferential
linking [7–9], i.e., new links are preferentially attached to
sites with high numbers of connections. A simple model of
a growing network with preferential linking was proposed
by Barabási and Albert [7] (BA model). At each time step
a new site is added. It connects with old sites by a fixed
number of links. The probability of an old site to get a new
link is proportional to the total number of connections with
this site. It was found in [7,8] that the distribution of the
number of links has a power-law form at long times. The
value of the corresponding scaling exponent, g, obtained
using a mean-field approach, equals 3. This value is close
to that one observed in the network of citations [3], but
other examples of evolving networks show different values
of g. Introduction of the aging of sites changes g [22] and
may even break the scaling behavior [13,22].

In the present Letter, we generalize the BA model and
find the exact form of the distribution of incoming links of
sites in the limit of large sizes of the growing network. We
derive a scaling relation connecting the scaling exponent of
the distribution of incoming links and the exponent of the

temporal behavior of the average connectivity, and demon-
strate that it applies for a large class of evolving networks.

The model.—At each time step a new site appears (see
Fig. 1). Simultaneously, m new directed links coming out
from nonspecified sites are introduced. Let the connectiv-
ity qs be the number of incoming links to a site s, i.e., to a
site added at time s. The new links are distributed between
sites according to the following rule. The probability that
a new link points to a given site s is proportional to the
following characteristic of the site:

As ! A 1 qs , (1)

thereafter called its attractiveness. All sites are born with
some initial attractiveness A $ 0, but afterwards it in-
creases because of the qs term. The introduced parame-
ter A, the initial attractiveness, governs the probability for
“young” sites to get new links.

We emphasize that we do not specify sites from which
the new links come out. They may come out from the new
site, from old sites, or even from outside of the network.
Our results do not depend on that. Therefore, the model
describes also the particular case when every new site is
the source of all the m new links like in the BA model.
In this case, every site has m outgoing links and the total

t t+1

FIG. 1. Illustration of the growing network under considera-
tion. Each instant a new site (open circle) and m (here, m ! 2)
new directed links (dashed arrows) are added. These links are
distributed between the sites according to the rule introduced in
the text.
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tFig. 6.6 The HK model allows to construct scale-free networks with finite clustering. (a) The
clustering coefficient is reported as a function of the order N of the graph and (b) for
different values of q. (c) Degree distribution and (d) average clustering coefficient of
nodes of degree k for networks with N = 50000 nodes.fig07:holme_tunableC

notice that the probability q of creating a triangle does not a↵ect the shape of the degree
distribution of the network. In fact, as shown in panel (c), the degree distributions remain,
for any value of q, indistinguishable from the power law with exponent � = 3 generated
by the linear preferential attachment in the BA model. Finally, the model also reproduces
another interesting feature of the clustering coe�cient of real-world networks that we have
explored in Example 4.4 of Chapter 4, namely the dependence of the node clustering coe�-
cient C on the node degree k. For each value of q we have computed the average clustering
coe�cient c(k) of nodes with degree k as defined in Eq. (4.5). The quantity c(k) is reported
as a function of k in panel (d). The results indicate that, for every value q , 0, the node
clustering coe�cient c(k) has a power-law dependence on k, which converges to c(k) ⇠ k�1

when q increases, thus reproducing the same exponent found for the movie actor collabo-
ration network in Example 4.4. Conversely, when q = 0 we find that the value of the node
clustering coe�cient is very small and does not depend on the node degree k. In this case
we expect c(k)! 0 for each value of k when N ! 1. This is perfectly consistent with the
behavior we would observe in a random graph. In fact, the clustering coe�cient of a node
i is equal to the density of the subgraph induced by the first neighbours of i. Since in a
random graph each couple of nodes has the same probability of being connected by a link,
we expect that the density of the subgraph induced by the first neighbours of a node does
not depend on the node degree. Therefore in finite random graphs the clustering coe�cient
will be small, but di↵erent from zero, and such that the average clustering coe�cient c(k)
of nodes of degree k will not depend on the value of k.
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equations. Indeed, if we replace the finite difference with a
derivative over q, we get the expression obtained in [7,8].

For ma 1 q ¿ 1, the distribution function (9) takes the
form

P!q" # !1 1 a"
G$!m 1 1"a 1 1%

G!ma"
!q 1 ma"2!21a".

(11)

Therefore, we find the scaling exponent g of the distribu-
tion function:

g ! 2 1 a ! 2 1 A&m , (12)

where A is the initial attractiveness of a site.
The distribution p!q, s, t".— Let us find the connectivity

distribution p!q, s, t" for the site s. At long times t ¿ 1,
keeping only two leading terms in 1&t in Eq. (2), one gets

p!q, s, t 1 1" !
∑

1 2
q 1 am
!1 1 a"t

∏

p!q, s, t" 1
q 2 1 1 am

!1 1 a"t
p!q 2 1, s, t" 1 O

µ

p
t2

∂

. (13)

Assuming that the scale of time variation is much larger than 1, we can replace the finite t difference with a derivative

!1 1 a"t
≠p
≠t

!q, s, t" ! !q 2 1 1 am"p!q 2 1, s, t" 2 !q 1 am"p!q, s, t" . (14)

Finally, using the Z transform in the similar way as before, we obtain the solution of Eq. (14), i.e., the connectivity
distribution of individual sites:

p!q, s, t" !
G!am 1 q"

G!am"q!

µ

s
t

∂am&!11a"∑

1 2

µ

s
t

∂1&!11a"∏q

. (15)

Hence, this distribution has an exponential tail. Now one
may get also the expression for the average connectivity of
a given site:

q!s, t" !
X̀

q!0
qp!q, s, t" ! am

∑µ

s
t

∂21&!11a"
2 1

∏

.

(16)

Thus, at a fixed time t the average connectivity of an old
site s ø t depends upon its age as 's2b , where the ex-
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FIG. 2. Log-log plot of the distribution of the incoming links
of sites for m ! 1 and m ! 5 (the curves for m ! 5 are dis-
placed down by 15). (1) a ! 0.001, (2) a ! 0.05, (3) a ! 1.0
(BA model), (4) a ! 2.0, (5) a ! 4.0.

ponent b ! 1&!1 1 a". Therefore, we have the following
relation between the exponents of the considered network:

b!g 2 1" ! 1 , (17)

that was previously obtained in the continuous approxi-
mation [22].

We can show that Eq. (17) is universal and may be
obtained from the most general considerations. In fact,
we assume only that the averaged connectivity q!s, t" and
the connectivity distribution P!q" show scaling behavior.
Then, in the scaling region, the quantity of interest, i.e.,
the probability p!q, s, t", has to be of the following form:
p!q, s, t" ! !s&t"D1f$qD2!s&t"D3%. Obviously, one can set
D2 ! 1. D1 ! D3 because of the normalization condition
for p!q, s, t" at a fixed s,

P`
q!0 p!q, s, t" ! 1. Then, the

relation q!s, t" ~ !s&t"2b leads to D1 ! D3 ! b [we use
the definition (16)], and finally, inserting p!q, s, t" in such
a form into the relation P!q" ~ q2g at large q and t, one
gets the relation (17).

The network that we consider here belongs to the class
of scale-free growing networks (we use the classification of
growing networks presented in [13]). For the known real
networks of this class (see the most complete description
[13]), no data for the variation of the average connectivity
of a site with its age are available yet. These data are
necessary to obtain the exponent b. It would be intriguing
to study this quantity in the real scale-free networks and to
check Eq. (17). One should note that, for the network with
aging of sites, the relation (17) was already confirmed by
the simulation [22].

The particular form of the scaling function f!j", j (
q!s&t"2b , depends on the specific model of the growing
network. In the case under consideration, it follows from
Eq. (15) that

f!j" !
1

G!am"
jam21 exp!2j" (18)
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The model of growing networks with the preferential attachment of new links is generalized to include
initial attractiveness of sites. We find the exact form of the stationary distribution of the number of
incoming links of sites in the limit of long times, P!q", and the long-time limit of the average connectivity
q!s, t" of a site s at time t (one site is added per unit of time). At long times, P!q" # q2g at q ! `
and q!s, t" # !s$t"2b at s$t ! 0, where the exponent g varies from 2 to ` depending on the initial
attractiveness of sites. We show that the relation b!g 2 1" ! 1 between the exponents is universal.

PACS numbers: 84.35.+i, 05.40.–a, 05.50.+q, 87.18.Sn

It was observed recently that the distributions of several
quantities in various growing networks have a power-law
form. This scaling behavior was observed in the World
Wide Web, in neural and social networks, in nets of cita-
tions of scientific papers, etc.; see [1–14], and references
therein. These observations challenge us to find the general
reasons of such behavior. It is only recently that scien-
tists became aware of the ever increasing impact of vari-
ous evolving networks on everyone’s life. Earlier studies
[15–20] concentrated on simple random networks, and it
was recently discovered that many complex networks are
hierarchically organized [5,6,21].

Mostly, the interest is concentrated on the distribution of
shortest paths between the different sites of a network [1]
and on the distribution of the number of connections with
a site [2–6]. The second quantity is obviously simpler to
obtain than the first one but even for it, in the case of the
networks with scaling behavior, no exact results are known.

The only known mechanism of self-organization of a
growing network into a free-scale structure is preferential
linking [7–9], i.e., new links are preferentially attached to
sites with high numbers of connections. A simple model of
a growing network with preferential linking was proposed
by Barabási and Albert [7] (BA model). At each time step
a new site is added. It connects with old sites by a fixed
number of links. The probability of an old site to get a new
link is proportional to the total number of connections with
this site. It was found in [7,8] that the distribution of the
number of links has a power-law form at long times. The
value of the corresponding scaling exponent, g, obtained
using a mean-field approach, equals 3. This value is close
to that one observed in the network of citations [3], but
other examples of evolving networks show different values
of g. Introduction of the aging of sites changes g [22] and
may even break the scaling behavior [13,22].

In the present Letter, we generalize the BA model and
find the exact form of the distribution of incoming links of
sites in the limit of large sizes of the growing network. We
derive a scaling relation connecting the scaling exponent of
the distribution of incoming links and the exponent of the

temporal behavior of the average connectivity, and demon-
strate that it applies for a large class of evolving networks.

The model.—At each time step a new site appears (see
Fig. 1). Simultaneously, m new directed links coming out
from nonspecified sites are introduced. Let the connectiv-
ity qs be the number of incoming links to a site s, i.e., to a
site added at time s. The new links are distributed between
sites according to the following rule. The probability that
a new link points to a given site s is proportional to the
following characteristic of the site:

As ! A 1 qs , (1)

thereafter called its attractiveness. All sites are born with
some initial attractiveness A $ 0, but afterwards it in-
creases because of the qs term. The introduced parame-
ter A, the initial attractiveness, governs the probability for
“young” sites to get new links.

We emphasize that we do not specify sites from which
the new links come out. They may come out from the new
site, from old sites, or even from outside of the network.
Our results do not depend on that. Therefore, the model
describes also the particular case when every new site is
the source of all the m new links like in the BA model.
In this case, every site has m outgoing links and the total

t t+1

FIG. 1. Illustration of the growing network under considera-
tion. Each instant a new site (open circle) and m (here, m ! 2)
new directed links (dashed arrows) are added. These links are
distributed between the sites according to the rule introduced in
the text.
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Main Dynamical Processes
•Simple diffusion processes 

•Cascades (Failures and Attacks) 

•Contagion processes  

•Diffusion with queues 

•Synchronization 

•Evolutionary games  

•Chaotic dynamics 

•…
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Well mixed / Mean field
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Compartmental models 
Aimed at capturing the global (population-level) dynamics 

from the microscopic contagion processes

S - Susceptible (Healty) I - Infected (and infectious) R - Recovered (immune/dead)
(From Petter Holme’s blog)

Each individual can be in one of n states at time t
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Compartmental models  

S - Susceptible (Healty) I - Infected (and infectious) R - Recovered (immune/dead)
(From Petter Holme’s blog)

�
! !

µ

The transitions (e.g. S     I) are mediated by some rates: 
and    

!
� µ
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Compartmental models  

S - Susceptible (Healty) I - Infected (and infectious) R - Recovered (immune/dead)
(From Petter Holme’s blog)

�
! !

µ

The transitions (e.g. S     I) are mediated by some rates: 
and    

!
� µ

The final impact of an SIR epidemic is given by the fraction 
of affected (Recovered) individuals
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Some examples
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�
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Some examples
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QUESTION: What is the minimum value of    for the 
epidemic outbreak to take place?

�
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More than 3900 citations 
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Epidemics & Networks
Scale-free phenomenon

P (k) ⇠ k��
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• in Well-mixed populations:

hk2i = hki2

i

�c ⇠
hki
hk2i

�c ⇠
1

hki

• in Scale-Free networks        P (k) ⇠ k��

2 < � < 3if                   then

�c ! 0

hk2i ! 1

�

Epidemics & Networks

@gomezgardenes



• in Well-mixed populations:

hk2i = hki2

i

�c ⇠
hki
hk2i

�c ⇠
1

hki

�c

• in Scale-Free networks        P (k) ⇠ k��

2 < � < 3if                   then

�c ! 0

hk2i ! 1

�

Epidemics & Networks

@gomezgardenes



+ Complexity
+ Realism

@gomezgardenes



+ Complexity

+ Realism

+ Complexity
+ Realism

@gomezgardenes



Metapopulation Models
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Metapopulation Models

Different levels of description:

   - Urban Areas
   - Cities
   - Regions
   - Countries
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 Basic Metapopulation Model

j

i
w

ij w
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• Different populations connected by a mobility 
network (encoded in matrix W). 

� µ

• Each individual moves with probability p 
from one population   to a neighboring 
one  , according to   observations 
(      ).nnnn

• Inside each subpopulation, and at each  
    time step, epidemic dynamics takes  
    place (    and    ).

• Then, each individual comes back to  
    its original subpopulation (node).

Wij

i
j
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Real mobility patterns 
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    time step, epidemic dynamics takes  
    place (    and    ).

• Then, each individual comes back to  
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passengers in the compartment X traveling from a city i to
a city j is an integer random variable, in that each of the Xi
potential travellers has a probability pij = wij/Ni to go from
i to j where wij is the traffic, according to the data, on a
given connection in the considered time scale and Ni is the
urban area population. In each city I, the numbers of pas-
sengers traveling on each connection at time t define a set
of stochastic variables that follows a multinomial distri-
bution. In addition, other routing constraints and two legs
travels can be considered. A detailed mathematical
description of the traveling coupling is reported in
[6,7,12].

The defined model considers stochastic fluctuations both
in the individual compartmental transitions and in the
traveling events. This implies that in principle each model
realization, even with the same initial conditions, may be
different from all the others. In this context, the compari-
son of a single realization of the model with the real evo-
lution of the disease may be very misleading. Similarly,
the mere comparison of the number of cases obtained in
each country averaged over several realizations with the
actual number of cases occurred is a poor indicator of the
reliability of the achieved prediction. Indeed in many
cases the average would include a large number of occur-
rences with no outbreaks in a variety of countries. It is
therefore crucial to distinguish in each country (or to a
higher degree of resolution, in each urban area) the non-
outbreak from the outbreak realizations and evaluate the
number of cases conditionally to the occurrence of the lat-
ter events. For this reason, we define in the following a set
of indicators and analysis tools that can be used to pro-
vide scenarios forecast and real world data comparison.

Outbreak likelihood and magnitude
The likelihood to experience an outbreak can be provided
by analyzing different stochastic occurrences of the epi-
demic with the same initial conditions, and by evaluating
the probability that the infection will reach a given coun-
try. In the following we will consider statistics over 103 dif-
ferent realizations of the stochastic noise, and define the
probability of outbreak in each country as the fraction of
realizations that produced a positive number of cases
within the country. This allows for the identification of
areas at risk of infection, with a corresponding quantita-
tive measure expressed by the outbreak probability. A
more quantitative analysis is obtained by inspecting the
predicted cumulative number of cases for each country,
conditional to the occurrence of an outbreak in the coun-
try. The outbreak likelihood and magnitude analysis can
be broken down at the level of single urban areas. In the
following section we present an example of the results
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value from the minimum, once the offset is set to its opti-
mal value. The obtained value of the reproductive number
– R0 = 2.76 – is in agreement with previous estimates [9].
We also tested different initial conditions that do not
effectively incorporate super-spreading events with no
substantial changes in the results.

Outbreak likelihood
In Figure 2 we represent on a map the countries that are
more likely to be infected with a color code, ranging from
gray, signaling low outbreak probability, to red for a high
probability of experiencing an outbreak. It represents a
quantitative indication of the risk to which each country
would be exposed in presence of a SARS-like infectious
disease in which the same containment measures are
implemented. It therefore provides a starting point for the
development of appropriate intervention scenarios aimed
at reducing that risk. The map readily identifies geograph-
ical areas with an appreciable likelihood for an outbreak.
In particular, many countries of South-East Asia display a
large probability of outbreak, as could be expected from
their vicinity from the initial seed. The fact that Western
Europe and North America also suffer outbreaks in most
realizations illustrates the role of large air traffic in the
propagation events. Figure 3 maps the outbreak likeli-
hood at a higher resolution scale, i.e. at the level of urban
areas, showing the expected situation in Canada. It is
worth noting that despite the large number of airports in

the country, only very few areas display a significant prob-
ability of outbreak, the two largest values corresponding
to the actual outbreaks experienced in Toronto and Van-
couver.

To proceed further in the comparison with empirical data,
we group countries in two categories according to a risk
threshold in the outbreak occurrence probability. The no-
risk countries are those where the probability of outbreak
is lower than the risk threshold. In any other situation the
country is defined at risk. In the following we set a risk
threshold of 20%. Small variations of the risk threshold
do not alter substantially the obtained results. In particu-
lar we show in Additional file 1 the results for the case of
a 10%, and 30% risk threshold. The results do not differ
considerably from those reported for the 20% risk thresh-
old. Obviously, progressively larger values of the risk
threshold leads to less significant results, and a risk thresh-
old of 40–50% is not providing valuable information as
defining a not at risk a country with a 45% outbreak prob-
ability would be quite unreasonable. In Figure 4 we repre-
sent the comparison between data reported by WHO on
11 July and the results obtained from the numerical sim-
ulations for the same date and the 20% risk threshold. The
report for 11 July, cross-checked with the WHO final sum-
mary obtained after laboratory tests, was of 28 infected
countries, spread on different continents [35]. Figure 4
shows in red the agreement of our results with the empir-

Worldwide map representation of the outbreak likelihood as predicted by the stochastic modelFigure 2
Worldwide map representation of the outbreak likelihood as predicted by the stochastic model. Countries are represented 
according to the color code, ranging from gray for low outbreak probability to red for high outbreak probability.
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Abstract
Background: The global spread of the severe acute respiratory syndrome (SARS) epidemic has
clearly shown the importance of considering the long-range transportation networks in the
understanding of emerging diseases outbreaks. The introduction of extensive transportation data
sets is therefore an important step in order to develop epidemic models endowed with realism.

Methods: We develop a general stochastic meta-population model that incorporates actual travel
and census data among 3 100 urban areas in 220 countries. The model allows probabilistic
predictions on the likelihood of country outbreaks and their magnitude. The level of predictability
offered by the model can be quantitatively analyzed and related to the appearance of robust
epidemic pathways that represent the most probable routes for the spread of the disease.

Results: In order to assess the predictive power of the model, the case study of the global spread
of SARS is considered. The disease parameter values and initial conditions used in the model are
evaluated from empirical data for Hong Kong. The outbreak likelihood for specific countries is
evaluated along with the emerging epidemic pathways. Simulation results are in agreement with the
empirical data of the SARS worldwide epidemic.

Conclusion: The presented computational approach shows that the integration of long-range
mobility and demographic data provides epidemic models with a predictive power that can be
consistently tested and theoretically motivated. This computational strategy can be therefore
considered as a general tool in the analysis and forecast of the global spreading of emerging diseases
and in the definition of containment policies aimed at reducing the effects of potentially catastrophic
outbreaks.
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to the international community. Its rapid spread to
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value from the minimum, once the offset is set to its opti-
mal value. The obtained value of the reproductive number
– R0 = 2.76 – is in agreement with previous estimates [9].
We also tested different initial conditions that do not
effectively incorporate super-spreading events with no
substantial changes in the results.

Outbreak likelihood
In Figure 2 we represent on a map the countries that are
more likely to be infected with a color code, ranging from
gray, signaling low outbreak probability, to red for a high
probability of experiencing an outbreak. It represents a
quantitative indication of the risk to which each country
would be exposed in presence of a SARS-like infectious
disease in which the same containment measures are
implemented. It therefore provides a starting point for the
development of appropriate intervention scenarios aimed
at reducing that risk. The map readily identifies geograph-
ical areas with an appreciable likelihood for an outbreak.
In particular, many countries of South-East Asia display a
large probability of outbreak, as could be expected from
their vicinity from the initial seed. The fact that Western
Europe and North America also suffer outbreaks in most
realizations illustrates the role of large air traffic in the
propagation events. Figure 3 maps the outbreak likeli-
hood at a higher resolution scale, i.e. at the level of urban
areas, showing the expected situation in Canada. It is
worth noting that despite the large number of airports in

the country, only very few areas display a significant prob-
ability of outbreak, the two largest values corresponding
to the actual outbreaks experienced in Toronto and Van-
couver.

To proceed further in the comparison with empirical data,
we group countries in two categories according to a risk
threshold in the outbreak occurrence probability. The no-
risk countries are those where the probability of outbreak
is lower than the risk threshold. In any other situation the
country is defined at risk. In the following we set a risk
threshold of 20%. Small variations of the risk threshold
do not alter substantially the obtained results. In particu-
lar we show in Additional file 1 the results for the case of
a 10%, and 30% risk threshold. The results do not differ
considerably from those reported for the 20% risk thresh-
old. Obviously, progressively larger values of the risk
threshold leads to less significant results, and a risk thresh-
old of 40–50% is not providing valuable information as
defining a not at risk a country with a 45% outbreak prob-
ability would be quite unreasonable. In Figure 4 we repre-
sent the comparison between data reported by WHO on
11 July and the results obtained from the numerical sim-
ulations for the same date and the 20% risk threshold. The
report for 11 July, cross-checked with the WHO final sum-
mary obtained after laboratory tests, was of 28 infected
countries, spread on different continents [35]. Figure 4
shows in red the agreement of our results with the empir-

Worldwide map representation of the outbreak likelihood as predicted by the stochastic modelFigure 2
Worldwide map representation of the outbreak likelihood as predicted by the stochastic model. Countries are represented 
according to the color code, ranging from gray for low outbreak probability to red for high outbreak probability.
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the fluctuations associated with the model forecasts. For
22 countries, out of the 28 of the final report, the model
is able to provide results where the actual number of cases
falls within the error bars of the statistical predictions. The
best agreement is obtained for Hong Kong, as expected, as
the initial conditions were fitted to Hong Kong data. It is
worth to note that all five countries wrongly predicted as
no-risk show statistics conditional to the outbreak in
agreement with empirical data (see inset of panel (A)).
Panels (B) and (C) correspond to the predictions for
which the observed data lie outside the range of fluctua-
tions of the model. Five countries fall in this category, two
of which – Thailand and Republic of Korea – report fluc-
tuations very close to the empirical data. While at first
sight the error bars associated to the model predictions
might appear large and the results of panels (B) and (C)
of Figure 5 for large outbreaks quite far from the real
occurrence, it is worth stressing that the predicted num-
bers of cases are strikingly in the correct ballpark if we con-
sider that we are dealing with a few hundred cases over the
total country population, typically of the order of several
millions. Finally, Table 2 reports data for the 10 countries
predicted at risk by simulations but where no infection
from SARS was reported. Japan represents an outlier: a
large number of cases is predicted by the numerical simu-

lations (the median being 83). Remarkably however, the
predicted number of cases remains small (median at most
equal to six cases) in the other nine countries. Forecasts
reported in Figures 2, 3, 4, 5 and Table 2, though with
some deviations from empirical data, provide quantita-
tive evidence in agreement with previous findings [3] that
air travel represents a crucial ingredient for describing
SARS propagation on a global scale. In the Additional file
1 we report the outbreak magnitude in the case of no
delay and 2 weeks delay in the reduction of the transmis-
sion rate since the detection of the first case in each coun-
try. It is possible to observe that for increasing delays the
simulations results increase their accuracy for countries
experiencing large outbreaks such as Canada and Singa-
pore. The results thus show that the delay has an impact
in determining the extent of the outbreak in certain coun-
tries. It is therefore important to stress that it is very likely
different delays have to be considered in each country
depending on the local health infrastructure.

Overlap and epidemic pathways
In order to test the predictability inherent to the model in
the case of the SARS case study, Figure 6 shows the overlap
as defined in the Methods section as a function of time.
The average value is displayed together with the 95% con-

Map representation of the comparison between numerical results and WHO reported casesFigure 4
Map representation of the comparison between numerical results and WHO reported cases. Countries are considered at 
risk if the probability of reporting an outbreak – computed on n = 103 different realizations of the stochastic noise – is larger than 20%. In 
red we represent countries for which model forecasts are in agreement with WHO official reports, distinguishing between correct pre-
dictions of outbreak (filled red) and correct predictions of no outbreak (striped red). Forecasts that deviate from observed data are rep-
resented in green. Results shown refer to the date of 11 July 2003.
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Abstract
Background: The global spread of the severe acute respiratory syndrome (SARS) epidemic has
clearly shown the importance of considering the long-range transportation networks in the
understanding of emerging diseases outbreaks. The introduction of extensive transportation data
sets is therefore an important step in order to develop epidemic models endowed with realism.

Methods: We develop a general stochastic meta-population model that incorporates actual travel
and census data among 3 100 urban areas in 220 countries. The model allows probabilistic
predictions on the likelihood of country outbreaks and their magnitude. The level of predictability
offered by the model can be quantitatively analyzed and related to the appearance of robust
epidemic pathways that represent the most probable routes for the spread of the disease.

Results: In order to assess the predictive power of the model, the case study of the global spread
of SARS is considered. The disease parameter values and initial conditions used in the model are
evaluated from empirical data for Hong Kong. The outbreak likelihood for specific countries is
evaluated along with the emerging epidemic pathways. Simulation results are in agreement with the
empirical data of the SARS worldwide epidemic.

Conclusion: The presented computational approach shows that the integration of long-range
mobility and demographic data provides epidemic models with a predictive power that can be
consistently tested and theoretically motivated. This computational strategy can be therefore
considered as a general tool in the analysis and forecast of the global spreading of emerging diseases
and in the definition of containment policies aimed at reducing the effects of potentially catastrophic
outbreaks.
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The outbreak of severe acute respiratory syndrome (SARS)

in 2002–2003 represented a serious public health threat
to the international community. Its rapid spread to
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fidence interval. The overlap starts from a value equal to
1, as all stochastic realizations share the same initial con-
ditions, and decreases monotonically with time. How-
ever, Θ(t) assumes values larger than 0.8 in the time
window investigated, confirming the relatively strong
computational reproducibility of the synthetic SARS out-
break. The simulated disease seems indeed to follow a
very similar evolution at each realization of the process.
As discussed in the previous section, the origin of such
reproducibility lies in the emergence of epidemic path-
ways, i.e. preferential channels along which the epidemic
will more likely spread [6,7]. In order to identify these
pathways, we monitor the spreading path followed by the
virus in 103 outbreaks starting from the same initial con-

ditions. More precisely, starting from Hong Kong, we fol-
low the propagation of the virus and identify for each
infected country Ci the country Cj where the infection
came from, thus defining a probability of origin of infec-
tion for each country. Results are reported in Figure 7
where the epidemic pathways are represented by arrows
whose thickness accounts for the probability of infection.
Almost every country in which at least one case was
detected in our simulations received the infection most
likely directly from Hong Kong, with probabilities ranging
from 32% for Italy, to 99% for Taiwan. Spain is the only
exception as it belongs to a second level of infection from
the seed and is predicted to receive the infection from
other European countries (see the bottom left panel of

Number of cases by country: comparison with WHO official reportsFigure 5
Number of cases by country: comparison with WHO official reports. Quantitative comparison of forecasted number of cases 
(conditional of the occurrence of an outbreak) with observed data. Simulated results are represented with a box plot in which lowest and 
highest values represent the 90% CI and the box is delimited by lower and upper quartile and reports the value of the median. Red sym-
bols represent WHO official reports and are accompanied by the value of the number of cases for sake of clarity. (A) Agreement of 
model predictions with observed data: symbols are compatible with the model predictions. Broken scale and inset are used for sake of 
visualization. (B,C) Disagreement of model predictions with observed data: WHO data lie outside the 90% CI obtained from n = 103 

numerical simulations. Results are reported in two different plots characterized by two different scales for a better visualization.
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Abstract
Background: The global spread of the severe acute respiratory syndrome (SARS) epidemic has
clearly shown the importance of considering the long-range transportation networks in the
understanding of emerging diseases outbreaks. The introduction of extensive transportation data
sets is therefore an important step in order to develop epidemic models endowed with realism.

Methods: We develop a general stochastic meta-population model that incorporates actual travel
and census data among 3 100 urban areas in 220 countries. The model allows probabilistic
predictions on the likelihood of country outbreaks and their magnitude. The level of predictability
offered by the model can be quantitatively analyzed and related to the appearance of robust
epidemic pathways that represent the most probable routes for the spread of the disease.

Results: In order to assess the predictive power of the model, the case study of the global spread
of SARS is considered. The disease parameter values and initial conditions used in the model are
evaluated from empirical data for Hong Kong. The outbreak likelihood for specific countries is
evaluated along with the emerging epidemic pathways. Simulation results are in agreement with the
empirical data of the SARS worldwide epidemic.

Conclusion: The presented computational approach shows that the integration of long-range
mobility and demographic data provides epidemic models with a predictive power that can be
consistently tested and theoretically motivated. This computational strategy can be therefore
considered as a general tool in the analysis and forecast of the global spreading of emerging diseases
and in the definition of containment policies aimed at reducing the effects of potentially catastrophic
outbreaks.

Background
The outbreak of severe acute respiratory syndrome (SARS)

in 2002–2003 represented a serious public health threat
to the international community. Its rapid spread to
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it ought to be considered that the situation in mainland
China is not trivially reproducible, due to the lack of avail-
able information on the actual initial conditions of the
spread. Results for China are therefore not reported in the
charts of Figure 5, as numerical simulations seeded in
Hong Kong are likely not able to describe the outbreak
occurred in that country. This fact is expected to have an
impact especially in South-East Asian countries – such as
Taiwan, Singapore and Vietnam – that have airline con-
nections with large traffic towards China.

Conclusion
The computational approach presented here is the largest
scale epidemic model at the worldwide level. Its good
agreement with historical data of the SARS epidemic sug-
gests that the transportation and census data used here are
the basic ingredients for the forecast and analysis of
emerging disease spreading at the global level. A more

detailed version of the model including the interplay of
different transportation systems, information about the
specific conditions experienced by each country and a
refined compartmentalization to include variations in the
susceptibility and heterogeneity in the infectiousness
would clearly represent a further improvement in the a
posteriori analysis of epidemic outbreaks. In the case of a
new emergent global epidemic the computational
approach could be useful in drawing possible scenarios
for the epidemic evolution. Though the initial conditions
and the disease parameters will be unknown before the
disease has already spread to a few countries, the compu-
tational approach would however allow in a short time
the exploration of a wide range of values for the basic
parameters and initial conditions, providing extensive
data on the worst and best case scenarios as well as likeli-
hood intervals, to the benefit of decision makers. In gen-
eral, the encouraging results achieved with the present

Map representation of epidemic pathwaysFigure 7
Map representation of epidemic pathways. Arrows show the paths followed by the virus in the transmission of the infection from 
Hong Kong to the other countries. The thickness of the arrows represents the probability associated to a given path, where all paths with 
probability less than 10% have been filtered out for sake of simplicity. Two different colors are used: black for paths that transmit the 
virus directly from the seed – Hong Kong – to the first level of infected countries; gray for paths that start from the first level of infected 
countries.
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The lecture is available at my website:
http://complex.unizar.es/~jesus/
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