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Complex Systems

Eé’ Ingredients

W
ﬁ Composed of many interacting elements

g/ They give rise to emergent collective behavior

Emergence: Not directly related to individual
properties

They are Ubiquitous, i.e., not related to any
characteristic life/energy scale

@gomezgardenes





















— AR e -

o -
"c..‘ :' ‘v-;...



more than Congestion

4 i SRR : —— -—
2 ANt el wa e - v - .- : 74 . Sz
2 - - — S ‘- . 8 g s .’.;*,', V€ - S -
. - .- L — - . e g * - . s .‘ 72 - = s x .
- pe g . A - . R Sl = b (L S
~.—‘.‘ 5 pe oy 5 v E . ;’ - T o . e .'.".-.a Py e = : s
. vagla " . - . LR o o — s o . ¥ \
o ‘“:.' o N F -, “..;.27'1" wames " sy "l|..’
G = e TeWe e, =
. : o ek ‘. e ~ e - - ‘E‘LEi“I.;.-=:‘IIIiI'F’ : .
\ .. . 4 - . ! e " %2'0 y e
: ° . ’ ." - -v’. : l' > ' ... : }
R y b L 3 L Y

baan ad {!

0 - AL
SRRt



Social Collective Behavior
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® Unfolding of social movements
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BIG DATA Opportunities
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data revolution, a3 number of questions concerning the rellabllity and the blases inherent to the big data “proxdes” of
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dataset of mkroblogging posts. We show that avallable data allow for the study of at scales
from country-level aggregation to city neighborhoods. The resolution and of the data allows us 10

within countries and the geographical distribution of different languages in multilingual regions. This work highlights the
potential of geolocalized studies of open data sources to improve current analysis and develop indicators for major socal
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REPRESENTATIVENESS BY COUNTRY AND BY GDP
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It seems a very good sample for a sociology study
(especially in Kuwait...)
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LANGUAGES POLARIZATION
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DIGITAL EPIDEMIOLOGY

nature

LETTERS

Vol 45719 February 2009 |dok10.%038/nature07634

Detecting influenza epidemics using search engine

query data

Jeremy Ginsberg', Matthew H. Mohebbi', Rajan S. Patel’, Lynnette Brammer®, Mark S. Smolinski' & Larry Brilliant’

Seasonal influenza epidemics are a major public health concern,
causing tens of millions of respiratory illnesses and 250,000 to
500,000 deaths worldwide each year'. In addition to seasonal influ-
enza, a new strain of influenza virus against which no previous
immunity exists and that demonstrates human-to-human trans-
mission could result in a pandemic with millions of fatalities®,
Early detection of disease activity, when followed by a rapid
response, can reduce the impact of both seasonal and pandemic
influenza™’. One way to improve early detection is to monitor
health-secking behaviour in the form of queries to online search
engines, which are submitted by millions of users around the
world cach day. Here we present a method of analysing large
numbers of Google search queries to track influenza-like illness
in a population. Because the relative frequency of certain queries is
highly correlated with the percentage of physician visits in which a
patient presents with influenza-like symptoms, we can accurately
estimate the current level of weekly influenza activity in each
region of the United States, with a reporting lag of about one
day. This approach may make it possible to use search queries to
detect influenza epidemics in areas with a large population of web
scarch users,

By aggregating historical logs of online web search queries submitted
between 2003 and 2008, we computed a time series of weekly counts for
50 million of the most common search queries in the United States.
Separate aggregate weekly counts were kept for every query in each
state. No information about the identity of any user was retained. Each
time series was normalized by dividing the count for each query in a
particular week by the total number of online search queries submitted
in that location during the week, resulting in a query fraction
(Supplementary Fig. 1).

We sought to develop a simple model that estimates the probabil-
ity that a random physician visit in a particular region is related to an
ILI; this is equivalent to the percentage of IL1-related physician visits,
A single explanatory variable was used: the probability that a random
search query submitted from the same region is ILI-related, as deter-
mined by an automated method described below. We fit a linear
model using the log-odds of an ILI physician visit and the log-odds
of an ILI-related search query: logit(N¢)) = alogit(Q(f)) + &, where
K1) is the percentage of IL1 physician visits, Q(¢) is the ILI-related
query fraction at time ¢, 2 is the multiplicative coefficient, and ¢ is the
error term. Jogit(p) is simply In(p/(1 ~ p)).

Publicly available historical data from the CDC's US Influenza

Jeremy Ginsberg, Matthew H. Mohebbi, Rajan S. Patel, Lynnette
Brammer, Mark S. Smolinski & Larry Brilliant-Detecting

influenza epidemics using search engine query data
Nature 457, 1012-1014 (19 February 2009)
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Google

The initial Google paper stated
that the Google Flu Trends
predictions were 97% accurate
comparing with CDC data.
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GOOGLE FLU TRENDS

e First launched in 2008 by Google.org v e

to help predict outbreaks of flu.
e More than 25 countries

» First example of “Big Data” for
social/health use
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g00g|e Ol’g Flu Trends

G ' M
A Explore flu trends - United States
We've found that cenrtain search terms are good indicators of flu actaity Google Flu Trends uses
Flu Trends aggregated Google s=arch data to estimate flu activty. Leam more »
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The idea behind Google Flu Trends (GFT) is that, by monitoring
millions of users’ health tracking behaviors online, the large
number of Google search queries gathered can be analyzed to
reveal if there is the presence of flu-like illness in a population.



DIGITAL EPIDEMIOLOGY

WHAT HAPPENED ?
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WHAT HAPPENED ?

. Early Peak season

. Highly contagious strain
(H3N2)

e Huge news coverage

BIG DATA

The Parable of Google Flu:
Traps in Big Data Analysis

David Lazer,"?* Ryan Kennedy,'** Gary King,? Alessandro Vespignani®>®
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Science 343, 6176, 1203-1205 (2014)
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Common language for complex systems of diverse nature
CONNECTIONS
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Common language for complex systems of diverse nature
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Goal: To reveal Similar (Universal) organizational
principles of Complex Systems
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A growing field...
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Some Master References

* REVIEWS OF MODERN PHYSICS, VOLUME 74, JANUARY 2002
Reviews | |

Statistical mechanics of complex networks

Reka Albert* and Albert-Laszlo Barabasi
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Goal: To reveal Similar (Universal) organizational
principles of Complex Systems
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t{ Main Global Descriptors

® Degree Distribution

® Clustering Coefficient

® Distances

® Correlations
® Centrality

® K-Cores
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[ Degree Distribution

A Random network

Paul Erdos
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[ Degree Distribution
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[ Degree Distribution

Scale-free phenomenon
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[ Degree Distribution
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[I Clustering Coefficient

Clustering of a node:
j o #triangles connected to i - 2E; ,
" 4tpossible triangles connected to ¢ N ki(k; — 1)

j Clustering of the Network:
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[I Clustering Coefficient

Clustering Spectrum
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I[II Distances
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i Distance between two nodes d;; :

Minimum number of links to be crossed between them
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I[II Distances

B . e e Z i - ap o o a—

t Distance between two nodes d;; :

Minimum number of links to be crossed between them
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I[II Distances

B . e e Z i - ap o o a—

t Distance between two nodes d;; :
¢ Minimum number of links to be crossed between them
| Shortest Path:

,‘ The sequence of links to be
t crossed

4
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I[II Distances
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i Distance between two nodes d;; :

Minimum number of links to be crossed between them

Shortest Path:

The sequence of links to be
‘ crossed

Average Path Length
7, — 7 Z d; ﬂ—
t,)=1

Diameter: D = max{d;;}

LR P XA e g foe S0 Lo o-<na E o S0 el 2 g~ SR TR S A BT e o Ach B¢ L p-Ra

@gomezgardenes



I[II Distances
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. Small-World Phenomenon (Six Degrees of Separation) §

5’ S Lré

3 Everybody is connected to everybody else by no more than six degrees of separation
/4 by sociologist Stanley Milgram (1967)
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I[II Distances
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. omall-World Phenomenon (Six Degrees of Separation)
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Everybody is connected to everybody else by no more than six degrees of separation
by sociologist Stanley Milgram (1967) j.
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I[II Distances

i Small-World Phenomenon (Six Degrees of Separation)
: -j}P O 0—0~0~0—f§~ }

Everybody is connected to everybody else by no more than six degrees of separation
by sociologist Stanley Milgram (1967)
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I[II Distances

P P SN R P P SN o T D e o m a E g o e i e ke —

. omall-World Phenomenon (Six Degrees of Separation)
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Everybody is connected to everybody else by no more than six degrees of separation

',,‘- by sociologist Stanley Milgram (1967)
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III Distances

Naive Estimation
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III Distances

Naive Estimation

The number of nodes at distance /
from node i is:
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III Distances

Naive Estimation

The number of nodes at distance /
from node i is:

()’

To reach all the nodes:
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III Distances

Naive Estimation

The number of nodes at distance /
from node i is:

()’

To reach all the nodes:

Lmax

N = <k>l > <k>LmaX
[=0
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III Distances

{ Naive Estimation

The number of nodes at distance /
from node i is:
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To reach all the nodes:
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IV Correlations

P(K', k) : Probability that two nodes of degree k and k'
] are linked

Detailed balance Equation for Networks

P(k', k) = kP(k)P(k'|k) = K'P(k')P(k|K')
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IV Correlations

P(K', k) : Probability that two nodes of degree k and k'
] are linked

Detailed balance Equation for Networks

P(k', k) = kP(k)P(k'|k) = K'P(k')P(k|K')

Two ways of measuring
(kik;j) — (k)°

knn — Zk/P(k/|k) — f(k) r= <k,2> L <k>2
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IV Correlations

i i (b)
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3
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Positive correlations Negative correlations
'«" ASSORTATIVE NETWORKS DISASSORTATIVE NETWORKS

! v <0 v >0
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Networks’ Taxonomy

Network Type Nodes Links <k> L Clustering Corr. (r) |
filin actors undirected 449913 25516482 113.43 3.48 2.3 | 0.20 0.78 0.208
company directors undirected 7673 55 392 14.44 4.60 0.59 0.88 0.276
math coauthorship undirected 253339 496 189 3.02 7.57 — | 0.15 0.34 0.120
physics coauthorship | undirected 52909 245 300 9.27 6.19 - | 0.45 0.56 0.363
ZC: biclogy coauthorship undirected 1520251 11803 064 15.53 4.92 — | 0.088 | 0.60 0.127
g | telephone call graph | undirected 47 000000 £0 000 000 3.16 2.1
2 | email messages directed 50012 R6 300 1.44 4.95 | 1.5/2.0 0.16
email address books directed 16881 57029 3.38 5.22 0.17 0.13 0.092
student relationships | undirected 573 477 1.66 | 16.01 - | 0.005 | 0.001 [ —0.029
sexual contacts undirected 2810 3.2
g WWW nd.edu directed 269 504 1497 135 5.55 11.27 | 2.1/24 0.11 0.29 —0.067
g WWW Altavista directed 203 549 046 2 130000000 10.46 16.18 2.1/2.7
= | citation network directed 783339 6716198 8.57 3.0/
é Roget’s Thesaurus directed 1022 5103 1.99 4.87 - | 0.18 0.15 0.157
= | word co-nccurrence undirected 460902 17 000 000 70.13 2.7 0.44
Internet undirected 10697 31 992 .98 3.31 2.5 | 0,035 | 0.39 —0.189
'R | power grid undirected 4941 6 594 2.67 | 18.99 - | 0.10 0.080 | —0.003
gc train routes undirected 587 19603 66.79 2.16 - 0.69 —0.033
"5‘ software packages directed 1 439 1 723 1.20 2.42 1.6/1.4 0.070 0).082 —0.016
_;E software classes directed 1377 2213 1.G1 1.51 - | 0.033 | 0.012 —0.119
é electronic circuits undirected 24097 53 248 4.34 | 11.05 3.0 | 0.010 | 0.030 | —0.154
) peer-to-peer network | undirected RR0 1 206 1.47 4.28 2.1 | 0.012 | 0.011 | —0.366
—. | metabolic network undirected 765 3686 9.64 2.56 2.2 | 0.090 | 0.67 —0.240
§ protein interactions undirected 2113 2 240 2.12 6.30 2.4 | 0,072 | 0.071 —0.156
2 | marine food web directed 135 598 1.43 2.05 0.16 0.23 0.263
2 | freshwater food web directed 92 097 10.84 1.90 — | 0.40 0.48 —0.326
8 | neural network directed 307 2339 7.68 3.97 - | 0.18 0.28 —0.226

m

NEWMAN, STAM REVIEWS 45, 167 (2003)
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Why Complex®?

® Not regular/ordered

(e esesastsesasasasasel AVAVAVAVAVAVAVAVAVAY
(2332202020522 22asasa] VAVAVAVAVAVAVAVAVAY
AVAVAVAVAVAVAVAVAVAY
\VAVAVAVAVAVAVAVAVAY,
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Why Complex®?

® Not regular/ordered
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VVhat are those important
actors?



“Two sides of the same node”

Ideal targets for attacks

)

Vs €

Good places to allocate controllers
Good candidates for being vaccinated
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7 Main Centrality measures

® Degree
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7 Main Centrality measures

® Degree
® Kigenvector Centrality
® (Closeness

® Betweenness
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[ Eigenvector Centrality

Centrality measure of a node that takes (also) into
account the importance of its neighbors

, Recursive definition:

N
x ok
T, =« E A
j=1

P. BONACICH, JOURNAL OF MATHEMATICAL SOCIOLOGY 2, 113 (1972)
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| Bigenvector Centrality

x

Centrality measure of a node that takes (also) into
account the importance of its neighbors

‘,

Recursive definition:

i

| oaf=a) Ay
{ j=1

1 1
—x" = Ax” i
a ]

High value when being important and/or
connected to important (high degree) nodes

./

; P. BONACICH, JOURNAL OF MATHEMATICAL SOCIOLOGY 2, 113 (1972)
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| Eigenvector Centrality

Centrality measure of a node that takes (also) into
account the importance of its neighbors

Recursive definition:

* = A Al A ;k | (1 —C¥>
1=1

1
—x* = Ax*
Q

High value when being important and/or
connected to important (high degree) nodes

./

P. BONACICH, JOURNAL OF MATHEMATICAL SOCIOLOGY 2, 113 (1972)
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| Eigenvector Centrality

Centrality measure of a node that takes (also) into
account the importance of its neighbors

Recursive definition:

j * . .m¥ j | .
| 7, =« E Awa:j T, = g i i | N
j:l :

Pagerank centrality

*

1 ¥
—x" = Ax” i
a J

High value when being important and/or
connected to important (high degree) nodes

./

P. BONACICH, JOURNAL OF MATHEMATICAL SOCIOLOGY 2, 113 (1972)
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| Eigenvector Centrality

Recursive definition:

! N

“‘ * — o o *
P L T« E :Aw%‘
? IE |

4
'8 ,

High vall :
connected Lo . 0

»
>

APOTGEMGEY O

./

L 1]

Ooama g —opn oD ) A ORI e fop S0 Lo o -<n
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Centrality measure of a node that takes (also) into
account the importance of its neighbors

al r: (1 —a«)
; ”k] N

Pagerank centrality

P. BONACICH, JOURNAL OF MATHEMATICAL SOCIOLOGY 2, 113 (1972)
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I1 Closeness

Con5|ders the dlstances between a node and the
rest of the network

{ 1
Cj —

1 Zl]il d

&

g M.A. BEAUCHAMP, SYSTEMS RESEARCH AND BEHAVIORAIL SCIENCE 10, 161 (1965)
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I1 Closeness

Con5|ders the dlstances between a node and the
rest of the network
| Closeness Centrality
¢ = Comparison

1 sz\;1 d

(¥ ‘e sl
i

[;, A!"‘ e
Seattle
Edinburgh

Sydney

"

B e SeetstSammRESIRTYTT
M.A. BEAUCHAMP, SYSTEMS RESEARCH AND BEHAVIORAL SCIENCE 10, 161 (1965)
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III Betweenness

Centrallty measure of a hode that counts the number
‘ of shortest paths that traverse it

7,l=1

,;' 9i(J,1)
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III Betweenness
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Centrallty measure of a node that counts the number
of shortest paths that traverse it

g9i(J,1) =2/3

A

L.C. FREEMAN, SOCIAL NETWORKS 1, 215 (1979)
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Lets test!



OPEN 8 ACCESS Freely available online

O PLOS |one

Attack Robustness and Centrality of Complex Networks

Swami lyer’, Timothy Killingback®*, Bala Sundaram® Zhen Wang®

1 Computer Science Department, University of Massachusetts, Boston, Massachusetts, United States of America, 2 Mathematics Department, University of Massachusetts,
Boston, Massachusetts, United States of America, 3Physics Department, University of Massachusetts, Boston, Massachusetts, United States of America, 4 Physics

Department, University of Massachusetts, Boston, Massachusetts, United States of America

(—

Scale-free network

Random Graph

@gomezgardenes

Fractional size of largest component (#)

Fractional size of largest component ()

Simultaneous

1.0
- Degree (V=0391)
- Betweenness (V=0377)
0.8 ——  Closeness (V=0.207)
Eigenvector (V=0.153)
1 e Random (V- 0.067)
0.6 0.50
- 0.25 |l
0.4 \\ 0005 F R
02 \\
0 3 0.2 04 06 08
Fraction of vertices removed ()
(c)
1.0

1.0

0.8

0.6

0.4

02

—  Degree (V=0.297)

—  Betweenness (V=027s)

—  Closeness (V=0.187)
Eigenvector (V- 0.161)

= Random (V= 0.103)

08

\ 0.50
= 0.25 l
I
0.00 DBCER
\
\
] W
.
.
0.2 04 06 08

Fraction of vertices removed ()

1.0

Fractional size of largest component (#)

Fractional size of largest component ()

08

06

04

02

—

Sequential

- Degree (V=0.394)

—  Betweenness (V= 0.409)

——  Closeness (V=0.402)
Eigenvector (V=0.3958)

! e Random (V- 0077)

0.50

0.00

' DBCER

o8

02 04 06 08
Fraction of vertices removed ()

(d)

10

08

06

04

02

- Degree (V=0.321)

—  Betweenness (V' =0.335)

—  Closeness (V=032)
Eigenvector (V-0.325)

= Random (V=0.082)

0.50

-..o.zsI I | |
0.00

DB CER

&\

)

02 04 0.6 08
Fraction of vertices removed (4

1.0



OPEN 8 ACCESS Freely available online

O PLOS |one

Attack Robustness and Centrality of Complex Networks

Swami lyer’, Timothy Killingback®*, Bala Sundaram® Zhen Wang®

1 Computer Science Department, University of Massachusetts, Boston, Massachusetts, United States of America, 2 Mathematics Department, University of Massachusetts,
Boston, Massachusetts, United States of America, 3Physics Department, University of Massachusetts, Boston, Massachusetts, United States of America, 4 Physics

Department, University of Massachusetts, Boston, Massachusetts, United States of America

—

Scale-free network

Random Graph

@gomezgardenes

Fractional size of largest component (#)

Fractional size of largest component ()

Simultaneous

1.0
- Degree (V=0391)
Betweenness (V=0377
0.8 ——  Closeness (V=0.207)
Eigenvector (V=0.153)
1 e Random (V- 0.067)
0.6 0.50
\ - 0.25 |l
0.4 \\ 0.00°5=5 C ER
02 \
L\ L
04 0.2 04 06 08 1.0
Fraction of vertices pemoved ()
(c)
1.0

0.8

0.6

0.4

02

Degree (V=0.297)
Betweenness (V=027s)
Closeness (V=0.187)
Eigenvector (V- 0.161)
Random (V"= 0.103)

0.50

- 0.25

0.00

08

0.2 04 06 o8 1.0
Fraction of vertices removed ()

Fractional size of largest component (#)

Fractional size of largest component ()

08

06

04

02

—

Sequential

- Degree (V=0.394)
Betweenness (V= 0.409)
——  Closeness (V=0.402)
Eigenvector (V=0.3958)
1 e Random (V- 0077)

A[]

DBCER

o8

02

04 06 08
Fraction of vertices removed ()

(d)

10

08

06

04

02

- Degree (V=0.321)

—  Betweenness (V' =0.335)

—  Closeness (V=032)
Eigenvector (V-0.325)

= Random (V=0.082)

)

0.50
-..o.zsI I | |
O.MD B C ER
|
02 04 06 08

Fraction of vertices removed ()

1.0



(a)

- Degree {V-0.2x)

—  Betweenness (V.0 2%
e Closeness (Vea.121)
= Eigervecton (V.0e47)
e Random (V

. o0 02 o4 L o ie

o Eigarvector (Va0 26
- Random (V=0123)

o
-0

o4 os s ie
Fra(on of vertiies revmowed (4

04 L]
FaiDon of vartiioes frovived L)

(c)

- Dogree (V-00i)

——  Betweenness (1.0 #x)
e Closeness (Veo.457)
—  Eigenvector (V<0 s
e Rangom (Vo020

Al

10

s s
FR(Uas of wrtioes semived L)

()

(i)

— Dogree (V.0m1)

— Betweenness (1 «0.5)

e Closeness (V.0.1M)
Elgenvectorn (V<o)

—  Random (V-0 %)

.]E

%5 (5] 34 o [ 1o

(1)




1.0,

(a)

Degree () )
Betweenness (V.0 1M
Closeness () 21
Eigervecton (V. 0e7)

Rasdom (Vo0 118)

e
@

Degree (1'=0.271)
Betweenness (V- 0.325)
Closeness (V=0.315)
Eigenvector (V- 0.262)
Random (V'=0.125)

e
=)

e
>

Fractional size of largest component (o)
o
N

0.50

e
o
o

0.2 0.4

0.6 0.8 1.0

Fraction of vertices removed (p)

(g)

0.8

Degree (V=0.437)
Betweenness (V- 0.434)
Closeness (V=0.303)
Eigenvector (V=0.157
Random (V=0.273)

0.6

04

Fractional size of largest component (=)

0.2

0.50

= 0.25

O.MU B CER

°‘%.o 0.2 0.4

0.6 0.8 1.0

Fraction of vertices removed (p)

o

2 4%

ora s o0 of

& 02

\
-
04 o B 1
1 1] T Y O

@gomezgardent «

»en torrgorert |- )

fractona soo of

04
o of vertiet reToyed

(k)

(b)

Degree (V <0.44s)
Betweenness (V-0 sis)
Coseness () )
Eigenvector (V

Random ()

0 YOr—

|11

36 OA

Oegree (V-0214)
Betweenness (1
Coseness () 2s1)
Eipenvector (Y

Random () 1)

0 YO~ -~

=029 l I
,V.“I

Frace

Fractoral vou of largey torrporent |

Y
0e

onal Ve of larpen cormporernt 1)

(c)

“
\

Degree (V-0o1)
Retweerness (I )
Coseness (Vo)
figenvector (1
Random (Vo042

B 11T

0l 3 4

1A oa 1€
Fracton of vertoet semoved |
(1)
Loy
§ Degree (V ~0.2m)
Betweenness (1 1=
Jy Closeness (V-0.9m)
Eigenvector (1

Random (V.0

0%

-0 ;-.I I I
0.00 .
c i

ol
\
\_
A .
0 02 24 6 os L0
’ o (f v L e



(a) (b) (c)

i \ ) 07 ' 025
\ Degree () ) Degree (V <0.44s) L\ Degree (V-0.01)
Betweeneess (Vo0 29 s Betweenness (1 R N\ Retweerness (1 o)
. 26| ! .
. \.‘ Coseness () 1) s Coseness () ¥¥i) . g Coseness (Vooax7)
g . Eigervecton (V.0e87) t Eigenvector (V.0 Je) t \\ Eigenvector ()
v Random (V0116 ¢ Random (| Random (Vo042
i

0 YOr—

1.0,

AN A N 11
— Degree (V=0.271) e | w LLLE 1§ sl LLJ
—  Betweenness (V- 0.325) 4 ~
—  Closeness (V=0.315)
~— Eigenvector (V"= 0.262)
- Random (V=10.125)

0.50

e
@

Fractional soe of largest cormmpone

e
=)

L=

<.
=
=
-~
™
=

Fractional size of largest component (o)
o
2 ¢

S ——— N,

0.2 0.4 0.6 0.8 1.0
Fraction of vertices removed (p)

(g)

e
o
o

—  Degree (V=0.437)

O\ —  Betweenness (V- 0.434)

‘ —  Closeness (V=0.303)
Eigenvector (V=0.157

- —  Random (V=0.273)

| 0.50

0.8

0.6
= 025

0.4 o'wl) B CER

vy

2 gt - — . — -
1Y) 02 04 3 6 on 1L LT 0l 34 1A 0s 1e
Fracton of verticet remowed Fracton of vert:oet semoved |

(k) (1)

Fractional size of largest component (=)

0.2

N Betweenness (1 RBetweerness (1 "=

Fraction of vertices removed (p) o BN Closeness (V8.281) Cosenass (Ved.ob)

0.%.0 02 oY) 0.6 08 10 ™ Degree {V -0.214) - \ Degree (\ -0.1n)
) :

Elgenvector (V Eigenvector (1

: ! ;e
Ll » . \
$ Random (V  na) $ \ Random (V.00
J E o 0 %0 - b - \ 0 30 —|

o ) o \

. - ) R X 4 “ 029 : % ) “02%

F ) 1L : | :

* occd 4 » N » oo e > \ 0 . I

g 048 g o4 ! g o4 | !

- a B - i

2 \ 3 3 \ ‘

8 \ \ g g \ \

- \ v "

s 02 1 -t - \

- - - ~

@gomezgardenc dibe—ae—— W o om—l



Synthetic Models
of
Complex Networks



Two frameworks

® Equilibrium Random Networks

® Non-equilibrium Random Networks
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Equilibrium Random Networks

PERCOLATION MODELS

® Number of nodes N fixed
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Equilibrium Random Networks

PERCOLATION MODELS

® Number of nodes N fixed

® Connect randomly chosen pairs of nodes
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Statistical Sense

® A particular network is a member (realization) of a
statistical ensemble of networks.
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m Erdos-Renyi graphs
H. P BRDOS & A. RENYI, PUB. MATHEMATICAE 6, 290 1959)

® Start with N isolated nodes

® For each pair connect them with probability p

® [he total number of links created is a random variable

@gomezgardenes



m Erdos-Renyi graphs
H. P BRDOS & A. RENYI, PUB. MATHEMATICAE 6, 290 1959)

® Start with N isolated nodes

® For each pair connect them with probability p

® [he total number of links created is a random variable
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m Erdos-Renyi graphs
H. P BRDOS & A. RENYI, PUB. MATHEMATICAE 6, 290 1959)

Start with N isolated nodes

® For each pair connect them with probability p

® [he total number of links created is a random variable
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m Erdos-Renyi graphs
H. P BRDOS & A. RENYI, PUB. MATHEMATICAE 6, 290 1959)

® Average connectivity of the nodes
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m Erdos-Renyi graphs
H. P BRDOS & A. RENYI, PUB. MATHEMATICAE 6, 290 1959)

® Average connectivity of the nodes
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) ‘g;l Erdos-Renyi graphs
J f “. P. ERDOS & A. RENYI, PUB. MATHEMATICAE 6, 290 (1959)

® Average connectivity of the nodes

® Percolation Transition:

0.7 =
N=10° /,-/'
ol N=10°
For <k> < 1: x }g /
o3 N=10’ z
Isolated clusters ey /
0.4} theory //
For <k> >1 ;) //
or ) 03| /7 098 089 1 101 102
. /
Giant Connected Component appears e} /)" 0.04
' /
o //// 0.02
1/ 0

0
0.75 1 ;o\ 125 1.5 1.75
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) ‘;:I‘ Erdos-Renyi graphs
J f “. P. ERDOS & A. RENYI, PUB. MATHEMATICAE 6, 290 (1959)

Poisson Degree distribution

—pN (pN)k — (k) <]€>k
k!

P(k) ~e

— €

®
;
T
:
E
z

0~ auauuaanuﬁ

0
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) @ Erdos-Renyi graphs
y. P BRDOS & A. RENYI, PUB. MATHEMATICAE 6, 290 1959)

5 Clustering Coefficient

Probability that two nodes j and / are connected,
provided they are both connected to a third one |

i, 18: P

Clustering tends to 0 as N increases!!!
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Equilibrium Random Networks

PERCOLATION MODELS

® Number of nodes N fixed

® Connect randomly chosen pairs of nodes
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Equilibrium Random Networks

REWIRING MODELS

® Number of nodes and links fixed
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Equilibrium Random Networks

REWIRING MODELS

® Number of nodes and links fixed

® Reconnect randomly chosen pairs of nodes
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Equilibrium Random Networks

REWIRING MODELS

® Number of nodes and links fixed

® Reconnect randomly chosen pairs of nodes
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where each vertex
IS connected to its
k nearest neighbors

SR

We start with a
ring of n vertices

'. We choose a vertex, and
the edge to its nearest
clockwise neighbour.

|

@goegakdene

Watts-Strogatz Model

D. WATTS & S.H. STROGATZ, NATURE 393, 440 (1998)

like so.

R,

With probability p, we reconnect ]

this edge to a vertex chosen

uniformly at random over the
entire ring, with ;.
duplicate edges $
forbidden. Other-
wise, we leave
the edge in place.



Watts-Strogatz Model

D. WATTS & S.H. STROGATZ, NATURE 393, 440 (1998)

Regular Random

ke
1
o
Y

o
1

Increasing randomness
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Watts-Strogatz Model

D. WATTS & S.H. STROGATZ, NATURE 393, 440 (1998)

Regular

p=0 » p=1
Increasing randomness
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Watts-Strogatz Model

D. WATTS & S.H. STROGATZ, NATURE 393, 440 (1998)

Regular

p = O > ,D =1
Increasing randomness
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Watts-Strogatz Model

D. WATTS & S.H. STROGATZ, NATURE 393, 440 (1998)

p=0 » p=1
Increasing randomness

@gomezgardenes



Watts-Strogatz Model

D. WATTS & S.H. STROGATZ, NATURE 393, 440 (1998)

1074 102 109
Probability, p
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Watts-Strogatz Model

D. WATTS & S.H. STROGATZ, NATURE 393, 440 (1998)

104 102 109
Probability, p

R— ——
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Watts-Strogatz Model

D. WATTS & S.H. STROGATZ, NATURE 393, 440 (1998)

Degree distribution?

J\ e

Poisson d1str1but1on

)

Dirac 5—funct10n

Probability, p
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... but Complex Networks evolve!

Dec. 2005 Jan. 2008, Mar. 2006 Jun. 2006
& -, . -3




Non-Equilibrium Networks

® Number of nodes N(t) grows with time

® At each time step new nodes are
incorporated

® New links are also created at each time
step

@gomezgardenes



Barabasi-Albert Model

A.L. BARABASI & R. ALBERT, SCIENCE 286, 509 (1999)

® At each time step 1 new node is incorporated

® The new node launches m new links to the already
existing nodes
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Barabasi-Albert Model

5 o5 e A.L. BARABASI & R. ALBERT, SCIENCE 286, 509 (1999)
; I i S T
‘ pids 3

® The probability that a node i receives a link from the
newcomer Is:

IT;(t) = ilt)

ZHmO ] - ( t) (Preferential attachment rule)
j=1 J
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fa Barabasi-Albert Model

A.L. BARABASI & R. ALBERT, SCIENCE 286, 509 (1999)

' ® The time evolution of the degree of a node is given

by:
@]‘C@ —m t—l-’ffz (_tl) with ]{7’1, (t — tz) = m
ot Zj:l k; (t)

” e ...whose solution is:
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fa Barabasi-Albert Model

A.L. BARABASI & R. ALBERT, SCIENCE 286, 509 (1999)

' ® The time evolution of the degree of a node is given

bv:
"o, B 10
ot ot

J=1

” e ...whose solution is:

kz(t) =0 t <t

/ 1/2 -

@gomezgardenes



Barabasi-Albert Model

A.L. BARABASI & R. ALBERT, SCIENCE 286, 509 (1999)

= S S . N e > o N i, SRy o o o o - _ P

| o ___that finally yields:

;f 2m(m + 1) 4

: P(k) = ~ k
(k) E(K+ 1)(k+ 2)

0

10" ¢ . 10

107 |

10°

5 3 00 F
7 o 107
10-6 b_“ 1»
3 10'F
10°

N

| - _ =T = . - N ~C = A . T C N ¥ " N - T N - _ i
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Barabasi-Albert Model

A.L. BARABASI & R. ALBERT, SCIENCE 286, 509 (1999)

T 2 < 52l > - g - g gl 4 - 5 gl

— .‘.o‘ P— ‘...10

10
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Barabasi-Albert Model

A.L. BARABASI & R. ALBERT, SCIENCE 286, 509 (1999)

105 | Y - Sedhiiiiinaal " PPN | - PR |
10° 10’ 10° 10°

Average Path length
In N

‘. Inln V
:' Lgp ~InN
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Overview

® Degree distribution 3 2 £
; ® Average length 2 S : =
. Clusteiii.';é. C oefﬁuent ........... 3 ..... : ....... E .....
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Alternative Formulations

PHYS. REV. LETT. 85, 4633 (2000)

' Scale-free with tunable 7
ki +
ST (ki (1) + @)

g=1

I1;(t) =

a € (—m, o0)

@gomezgardenes
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Alternative Formulations

O OGOV oIV A N D e AN T TIN ™
PHYS. REV. LETT. 85, 4633 (2000) 3

' Scale-free with tunable 7
k’i +
ST (ki (1) + @)

J=1

IT;(t) =
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Alternatlve Formulatlons

DOROGOVTSEV-MENDES-SAMUKHIN

Scale-free with tunable fy PHYS. REV. LETT. 85, 4633 (2000) ‘

-: ki + a
H'L (t) — mo-+t—1
' 23:1 (k] (t>

09,0

Scale-free with high clustering PHYS. REV. 1 65, 026107 (2002) ’

® First link: follow usual PA rule

® For each of the m — 1links:

b

(i) With probability (1 — ¢): usual PA

(ii) With probability ¢: Attach to one neighbor 1
of the first chosen node i

g

\ = or e oo - o R AT LIPS = o g e o x4 o  Gop go Lo on iyl o R A L SN e Aok A Boima g o e gR T o ) ST e Ao B L _boshs HeT e wyes Sl o S S et e e e 3 psnay
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Alternative Formulations

DOROGOVTSEV-MENDES-SAMUKHIN
PHYS. REV. LETT. 85, 4633 (2000)

Scale-free with tunable 7

1 ki +
H’L (t) — mo—+t—1
b Zj:l (k5 (¢)

g Scale-free with high clustering

i

® First link: follow usual PA rule

® For each of the m — 1links:

(i) With probability (1 — ¢): usual PA

(ii) With probability ¢: Attach to one neighbor
of the first chosen node

g

@gozarn

09,0

HOLME-KIM
PHYS. REV. K 65, 026107 (2002)
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Dynamical Processes
on Networks
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Dynamical Processes
on Networks




nature

LETTERS

Vol 45719 February 2005|dok10.%038/nature07634

Detecting influenza epidemics using search engine

query data

Jeremy Ginsberg', Matthew H. Mohebbi', Rajan S. Patel’, Lynnette Brammer’, Mark S. Smolinski’ & Larry Brilliant’

Seasonal influenza epidemics are a major public health concern,
causing tens of millions of respiratory illnesses and 250,000 to
500,000 deaths worldwide each year', In addition to seasonal influ-
enza, a new strain of influenza virus against which no previous
immunity exists and that demonstrates human-to-human trans-
mission could result in a pandemic with millions of fatalities®,
Early detection of disease activity, when followed by a rapid
response, can reduce the impact of both seasonal and pandemic
influenza™. One way to improve early detection is to monitor
health-secking behaviour in the form of queries to online search
engines, which are submitted by millions of users around the
world each day. Here we present a method of analysing large
numbers of Google search queries to track influenza-like illness
in a population. Because the relative frequency of certain queries is
highly correlated with the percentage of physician visits in which a
patient presents with influenza-like we can accurately
estimate the current level of weekly influenza activity in each
region of the United States, with a reporting lag of about one
day. This approach may make it possible to use search queries to
detect influenza epidemics in areas with a large population of web
search users.

By aggregating historical logs of online web search queries submitted
between 2003 and 2008, we computed a time series of weekly counts for
50 million of the most common search queries in the United States.
Separate aggregate weekly counts were kept for every query in each
state. No information about the identity of any user was retained. Each
time series was normalized by dividing the count for each query in a
particular week by the total number of online search queries submitted
in that location during the week, resulting in a query fraction
(Supplementary Fig. 1).

We sought to develop a simple model that estimates the probabil-
ity that a random physician visit in a particular region is related to an
ILJ; this is equivalent to the percentage of ILI1-related physician visits,
A single explanatory variable was used: the probability that a random
search query submitted from the same region is ILI-related, as deter-
mined by an automated method described below. We fit a linear
model using the log-odds of an ILI physician visit and the log-odds
of an ILI-related search query: logit(K1)) = alogn(O(l)) + &, where
K1) is the percentage of ILI physician visits, Q(#) is the ILI-related
query fraction at time ¢, x is the multiplicative coefficient, and ¢ is the
error term. Jogit(p) is simply In(p/(1 ~ p)).

Publicly available historical data from the CDC's US Influenza
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Detecting influenza epidemics using search engine

query data

Jeremy Ginsberg', Matthew H. Mohebbi', Rajan S. Patel’, Lynnette Brammer’, Mark S. Smolinski' & Larry Brilliant'

Seasonal influenza epidemics are a major public health concern,
causing tens of millions of respiratory illnesses and 250,000 to
500,000 deaths worldwide each year', In addition to seasonal influ-
enza, a new strain of influenza virus against which no previous
immunity exists and that demonstrates human-to-human trans-
mission could result in a pandemic with millions of fatalities®,
Early detection of disease activity, when followed by a rapid
response, can reduce the impact of both seasonal and pandemic
influenza™’. One way to improve early detection is to monitor
health-secking behaviour in the form of queries to online search
engines, which are submitted by millions of users around the
world each day. Here we present a method of analysing large
numbers of Google search queries to track influenza-like illness
in a population. Because the relative frequency of certain queries is
highly correlated with the percentage of physician visits in which a
patient presents with influenza-like we can accurately
estimate the current level of weekly influenza activity in each
region of the United States, with a reporting lag of about one
day. This approach may make it possible to use search queries to
detect influenza epidemics in areas with a large population of web
search users.

By aggregating historical logs of online web search queries submitted
between 2003 and 2008, we computed a time series of weekly counts for
50 million of the most common search queries in the United States.
Separate aggregate weekly counts were kept for every query in each
state. No information about the identity of any user was retained. Each
time series was normalized by dividing the count for each query in a
particular week by the total number of online search queries submitted
in that location during the week, resulting in a query fraction
(Supplementary Fig. 1).

We sought to develop a simple model that estimates the probabil-
ity that a random physician visit in a particular region is related to an
ILJ; this is equivalent to the percentage of ILI1-related physician visits,
A single explanatory variable was used: the probability that a random
search query submitted from the same region is ILI-related, as deter-
mined by an automated method described below. We fit a linear
model using the log-odds of an ILI physician visit and the log-odds
of an ILI-related search query: logit(K#)) = alogit{Q(1)) + & where
K1) is the percentage of ILI physician visits, Q(#) is the ILI-related
query fraction at time ¢, 2 is the multiplicative coefficient, and £ is the
error term. logit(p) is simply In(p/(1 =~ p)).

Publicly available historical data from the CDC's US Influenza
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Jeremy Ginsberg', Matthew H. Mohebbi', Rajan S. Patel’, Lynnette Brammer’, Mark S. Smolinski' & Larry Brilliant'

Seasonal influenza epidemics are a major public health concern,
causing tens of millions of respiratory illnesses and 250,000 to
500,000 deaths worldwide each year', In addition to seasonal influ-
enza, a new strain of influenza virus against which no previous
immunity exists and that demonstrates human-to-human trans-
mission could result in a pandemic with millions of fatalities’,
Early detection of disease activity, when followed by a rapid
response, can reduce the impact of both seasonal and pandemic
influenza™’. One way to improve early detection is to monitor
health-secking behaviour in the form of queries to online search
engines, which are submitted by millions of users around the
world each day. Here we present a method of analysing large
numbers of Google search queries to track influenza-like illness
in a population. Because the relative frequency of certain queries is
highly correlated with the percentage of physician visits in which a
patient presents with influenza-like we can accurately
estimate the current level of weekly influenza activity in each
region of the United States, with a reporting lag of about one
day. This approach may make it possible to use search queries to
detect influenza epidemics in areas with a large population of web
search users.

By aggregating historical logs of online web search queries submitted
between 2003 and 2008, we computed a time series of weekly counts for
50 million of the most common search queries in the United States.
Separate aggregate weekly counts were kept for every query in each
state. No information about the identity of any user was retained. Each
time series was normalized by dividing the count for each query in a
particular week by the total number of online search queries submitted
in that location during the week, resulting in a query fraction
(Supplementary Fig. 1).

We sought to develop a simple model that estimates the probabil-
ity that a random physician visit in a particular region is related to an
ILI; this is equivalent to the percentage of ILI-related physician visits,
A single explanatory variable was used: the probability that a random
search query submitted from the same region is ILI-related, as deter-
mined by an automated method described below. We fit a linear
model using the log-odds of an ILI physician visit and the log-odds
of an ILI-related search query: logit(K¢)) = alogit{Q(1)) + &, where
K1) is the percentage of ILI physician visits, Q(#) is the ILI-related
query fraction at time ¢, 2 is the multiplicative coefficient, and £ is the
error term. logit(p) is simply In(p/(1 =~ p)).

Publicly available historical data from the CDC's US Influenza
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By ena - .
L{ Main Dynamical Processes

® Simple diffusion processes

® Cascades (Failures and Attacks)
® Contagion processes

® Diffusion with queues

® Synchronization

® Evolutionary games

® Chaotic dynamics
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Well mixed / Mean field
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Compartmental models

Aimed at capturing the global (population-level) dynamics
from the microscopic contagion processes

EFach individual can be in one of n states attime ¢

S - Susceptible (Healty) | - Infected (and infectious) R - Recovered (immune/dead)
@gomezgardenes (From Petter Holme’s blog)



Compartmental models

The transitions (e.g. S — ) are mediated by some rates:

Aand

S - Susceptible (Healty) | - Infected (and infectious) R - Recovered (immune/dead)
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Compartmental models

The transitions (e.g. S — ) are mediated by some rates:

Aand

The final impact of an SIR epidemic is given by the fraction
of affected (Recovered) individuals

S

iz

g

S - Susceptible (Healty) | - Infected (and infectious) R - Recovered (immune/dead)
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Some examples
A
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- @ @ @ ©

QUESTION: What is the minimum value of \ for the
epidemic outbreak to take place?
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Epidemic Threshold

epidemic extinction epidemic spread
virus death virus survival
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Well mixed / Mean field
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Epidemics & Networks

Scale-free phenomenon
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Epidemics & Networks

----------------------------------

In heterogeneous networks k — 2 (
the approximation k ~ (k)
doesn't hold

sssssssssssssssssssssssssssssssss

Solution:
Degree Block approximation

P —

All the nodes with the same degree are statistically equivalent

e — e

---------------------------------

.
---------------------------------

@gomezgardenes



Epidemics & Networks

----------------------------------

In heterogeneous networks k — 2 (
the approximation k ~ (k)
doesn't hold
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Solution:
Degree Block approximation

P‘*

All the nodes with the same degree are statistically equivalent /ﬁ v

.
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Epidemics & Networks

* in Well-mixed populations:

(k) = (k)2 — Ao ~

(k)
» in Scale-Free networks P (k) ~ k™7 ;

f 2 < v <3 then (k%) — o0

Ao — 0
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* in Well-mixed populations:

(k) = (k)2 — Ao ~

» in Scale-Free networks P (k) ~ k™7 ;

f 2 < v <3 then (k%) — o0

Ao — 0

@gomezgardenes



@gomezgardenes



@gomezgardenes

o

...v —h 10
TR ’ ..v _...
IG5

SIS —




Metapopulation Models
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Metapopulation Models

X

Different levels of description:

- Urban Areas
- Cities
- Regions

- Countries
@gomezgardenes



Basic Metapopulation Model

 Different populations connected by a mobility
network (encoded in matrix W).

Each individual moves with probabillity p
from one population; to a neighboring
one j, according to W;;

* |nside each subpopulation, and at each
time step, epidemic dynamics takes

place (A and ).

e Then, each individual comes back to
its original subpopulation (node).
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Basic Metapopulation Model

 Different populations connected by a mobility
network (encoded in matrix W).

Each individual moves with probabillity p
from one population; to a neighboring
one j, according to W;;

* |nside each subpopulation, and at each
time step, epidemic dynamics takes

place (A and ).

e Then, each individual comes back to
its original subpopulation (node).
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Basic Metapopulation Model

» Different populations connected by a mobility
network (encoded in matrix W). I
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* |nside each subpopulation, and at each
time step, epidemic dynamics takes

place (A and ).

e Then, each individual comes back to
its original subpopulation (node).
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A case study:
SARS Pandemic 004
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A case study:
SARS Pandemic /003

SARS : Cumulative Number of Reported Probable* Cases
Total number of cases: 3169 as of 14 Apr 2003, 16:00 GMT+2
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Model Validation

B Mc MEd iCi ne BioMQCentral

Research article

Predictability and epidemic pathways in global outbreaks of
infectious diseases: the SARS case study

Vittoria Colizza*!, Alain Barrat!-2, Marc Barthélemy3 and

Alessandro Vespignani4>
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Figure 2

Worldwide map representation of the outbreak likelihood as predicted by the stochastic model. Countries are represented
according to the color code, ranging from gray for low outbreak probability to red for high outbreak probability.
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Model Validation
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Predictability and epidemic pathways in global outbreaks of
infectious diseases: the SARS case study
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Figure 4

Map representation of the comparison between numerical results and WHO reported cases. Countries are considered at
risk if the probability of reporting an outbreak — computed on n = 103 different realizations of the stochastic noise — is larger than 20%. In
red we represent countries for which model forecasts are in agreement with WHO official reports, distinguishing between correct pre-
dictions of outbreak (filled red) and correct predictions of no outbreak (striped red). Forecasts that deviate from observed data are rep-

resented in green. Results shown refer to the date of || July 2003.
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Ginestra’s Lecture: Multilayer Networks
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Thanks for your
attention

[ he lecture I1s available at my website:

http:.//complex.unizar.es/~|esus/
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