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We study the evolution of an adaptive network whose growth occurs simultaneously to the
propagation of a disease. The dynamics of the network growth is entangled to the spread of the
disease, since the probability for a node in the network to get new links depends on its healthy or
infected state. We analyze the influence that such coupling mechanism has both on the diffusion
of the disease and on the structure of the growing networks. Our results point out that a strong
interplay between network growth and disease spreading produces networks with degree—degree

correlations and nontrivial clustering patterns.
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1. Introduction

In the last decade, the burst of studies in complex
network science has spread across a large number
of scientific disciplines [Albert & Barabési, 2002;
Newman, 2003]. These studies have mainly focused
on the influence that the structure of interactions
of large complex systems has on their functioning
[Boccaletti et al., 2006]. In particular, most of the
functional properties explored so far are related to
the emergence of collective phenomena and their
critical properties [Dorogovtsev et al., 2008], such

*Author for correspondence

as synchronization [Arenas et al., 2008, social phe-
nomena [Szab6 & Fath, 2007; Castellano et al.,
2009], epidemics [Draief & Massoulié, 2010] or con-
gestion and jamming [Chen et al., 2012]. The exten-
sive studies on the interplay between the structure
and dynamics of complex networks have revealed
the relevant role of the scale-free (SF) architecture
of real complex networks, revealed from the power-
law probability distribution of the number of con-
tacts (k) per individual [P(k) ~ k~7], on the onset
of the former collective phenomena.
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More recently, the attention has focused on the
study of adaptive complex networks [Gross & Bla-
sius, 2008; Perc & Szolnoki, 2010; Herrera et al.,
2011]. Once the implications that the structural
properties of real networks have on their functioning
have been intensively studied, the question about
the origin of such structural patterns enters into
play. This question is addressed by considering a
dynamical evolution in which the structure of the
network coevolves with the dynamical process at
work. In this way, one entangles the evolution of the
backbone of interactions with the dynamical state
of the nodes that compose the network. These stud-
ies rely on two main approaches. On one hand, one
can consider that the network has a fixed number of
nodes whose ties adapt depending on the dynamical
states of the node. This adaptive dynamics is thus
based on rewiring processes or link plasticity, and
it has been coupled with synchronization dynamics
[Ito & Kaneko, 2002; Zhou & Kurths, 2006; Levina
et al., 2007; Sorrentino & Ott, 2008; Aoki & Aoyagi,
2009; Assenza et al., 2011; Gutierrez et al., 2011],
epidemic spreading processes [Gross et al., 2006;
Han, 2007; Van Segbroeck et al., 2010; Marceau
et al., 2010] or evolutionary games [Zimmermann
et al., 2004; Pacheco et al., 2006; Li et al., 2007;
Centola et al., 2007; Vazquez et al., 2007]. A second
major line of research in adaptive networks focuses
on the entanglement of the growth of the network
and its dynamics. In this way, the formation of
new links (launched from newcomers) depends on
the dynamical state of each of the nodes that is
already part of the growing network. However, once
these links are formed they are not altered. We can
find applications of such adaptive growth systems in
synchronization [Sendina-Nadal et al., 2008; Almen-
dral et al., 2010] and evolutionary games [Poncela
et al., 2008, 2009a, 2009b].

In this work, we study an adaptive network of
the second kind, i.e. whose growth is coupled with
the dynamical state of the system. In particular,
we study a growing network that evolves simultane-
ously to the spread of a disease. The entanglement
between growth and disease dynamics comes from
the fact that the attachment probability of new-
comers depends on the dynamical states (healthy
or infected) of the nodes that are already present
in the network, by favoring the attachment with
those healthy nodes. Obviously, as the formation of
new links (and thus the structure of the network) is
affected by the spread of the epidemics, a feed-back

loop is created in the system, and the dynamics of
the spreading process is also affected by the way
newcomers attach into the network. We will study
the implications that this interplay between struc-
ture and dynamics has on both the impact of the
epidemy and the structural network patterns that
show up after the network is grown. Our results
point out that a strong interplay may lead to a
decrease in the epidemic impact while the structure
of the network will show structural patterns such as
degree—degree correlations and nontrivial patterns
for the clustering coefficient.

2. The Adaptive Network Model

A previous work by some of the authors [Guerra &
Goémez-Gardenes, 2010] introduced a simplified
version of the following adaptive network model.
However, in that study the focus was on the
potentials of the annealed approach to study the
dynamics on static and adaptive complex networks.
Here, we will expand the adaptive model and focus
on the results that the adaptive dynamics has on the
structural and dynamical properties of the system.

The adaptive model we consider is the follow-
ing. We start with a complete graph with N(0)
healthy nodes. At each time step, ¢, a new (also
healthy) node with m links is added to the network.
The probability II;(t) that one of the N(t) nodes
in the network at time ¢, say node j, receives one of
the new m links depends (in a manner that will be
specified below) on whether the node is infected or
not by an epidemic process running on the network.
In fact, after 7 time steps of the growth process, 5%
of the N(7) nodes in the network are infected. From
this time on, the disease is propagated, namely one
step of a Susceptible-Infected-Susceptible (SIS) epi-
demic model takes place after the addition of a new
node to the network. In the SIS model the dynam-
ical state of a node j, at a given time ¢, is a binary
variable: healthy s;(t) = 1 or infected s;(t) = 0.
Thus, macroscopically, the state of the population
of N(t) nodes at time ¢ can be described by the frac-
tion i(t) of infected individuals or, alternatively, by
the fraction (1 — i(¢)) of healthy individuals. Fol-
lowing the rules of the SIS model, at each time step
of the SIS dynamics, each node of the network will
update its state as follows. Each healthy individ-
ual has a probability A of being infected by each of
its infected neighbors. Thus, if a healthy individual,
say node j, has a fraction x;(¢) of its k;(t) neighbors
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in the infected state at time ¢, the probability that
it will be infected at time t 4 1 is

Phmit) =1 (1— A0, (1)

On the other hand, each infected individual, say j,
at time ¢ has a constant probability P;*h(t) = p of
recovering, i.e. to come back to healthy state at the
next time step ¢+ 1. In the SIS model, the relevant
parameter that controls the spread of the disease is
the ratio between infection and recovery rates, A/,
while the impact of the disease of the population
can be quantified by the fraction of infected indi-
viduals in the asymptotic limit, i*° = limy_ . i(t).
In the classical version of the SIS model [Draief &
Massoulié, 2010], in which a well-mixed static set of
N individuals is considered, a phase transition for
the order parameter i* occurs, so that, when A/u
is below a certain critical value, the state of the
system ends up in a free-of-disease state, i*° = 0,
while, when \/p is above the critical value, we have
1° > 0 and the system is said to be in an epidemic
state. It is also worth mentioning that when the
SIS model is implemented on top of a static net-
work (abandoning the well-mixed assumption) the
epidemic onset takes place at \/u = (k)/(k?), (k)
and (k?) being the first and the second moments of
the degree distribution P(k) of the network. For SF
networks, P(k) ~ k™7, the second moment diverges
when 7 < 3 (as happens in most real-world net-
works) and thus the epidemic onset goes to zero
making SF networks extremely vulnerable to suf-
fer epidemic states [Pastor-Satorras & Vespignani,
2001].

In our adaptive network model, the spread
of the SIS disease takes place on a growing sys-
tem. Moreover, the network growth depends on the
health of the infected state of the nodes. In fact, the
probability that a node j receives a link from a new
node at time ¢, I1;(t) is defined as:

kY(t)1 —e+e-s;
= SOt s

(2)

)
EF(E)[1 — e+ e-s(t)]
=1

Where « and € are two parameters ranging in the
interval [0, 1]. The exponent « tunes the importance
given to the degree of node j. In fact, a = 0 corre-
sponds to no-dependence on the node degree, while
« = 1 is the usual linear preferential attachment of
the Barabdsi and Albert growth model [Barabési &
Albert, 1999]. On the other hand, the parameter

€ measures the importance given to the disease
state of the network: for ¢ = 0 there is no inter-
play between SIS and network dynamics. In this
case, the dynamics of the disease and the network
growth are completely independent, and we obtain
networks with an exponentially decaying degree dis-
tribution P(k) ~ e, when a = 0, and SF networks
with P(k) ~ k=3 for a = 1. On the contrary, as
€ — 1 new nodes tend to increasingly avoid linking
to infected individuals.

3. Results

Let us first study how the incidence of the disease
changes as function of the two parameters a and
€, tuning, respectively, the dependence on the node
degree and the node internal state. In Fig. 1, we
report the fraction of healthy individuals in the sta-
tionary state, s> = (1 — i®), typically achieved
when the network size has reached N(t) ~ 103.
We have set three different values of the infection
rate: A = 0.07, 0.12 and 0.3. From the figure, it is
clear that when the selection of newcomers becomes
more biased towards large degree nodes (o — 1),
the impact of the SIS disease increases, regardless
of the value of €. The reason behind this behavior
is clearly that preferential attachment increases the
connectivity of the individuals with a large number
of contacts and thus reinforces the ability of the SIS
disease to spread across the population. However,
for a fixed value of a, we observe that increasing
the tendency of newcomers to connect with healthy
nodes, i.e. increasing the interplay between growth
and SIS dynamics, produces an effective way for
decreasing the impact of the disease.

We next focus on the more interesting issue
about the structural patterns produced by adaptiv-
ity in the strong interplay limit (e — 1). In Fig. 2
we show the degree distributions P(k) produced
for different values of the infection rate A in the
two cases @ = 0 and ¢ = 0.99 (left panel), and
a = 1 and € = 0.99 (right panel). As expected,
when a = 0, the networks produced have exponen-
tially decaying degree distributions P(k). However,
a careful check of the tails of these distributions
show a dependence on the value of the infection
rate A. To show more clearly this latter dependence
we have plotted in the inset of the figure the evo-
lution of the second moment, (k?), of the degree
distribution as A\ increases. The second moment
measures the heterogeneity of the degree distribu-
tions as it is very sensitive to the behavior of their
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Fig. 1. The contour plots show the asymptotic fraction of healthy individuals, s°°, as a function of the parameters o and

€ controlling the preference of newcomers towards connected and healthy nodes respectively [see Eq. (2)]. From left to right,
the values of the infection rate A are 0.07, 0.12 and 0.3. In all cases, the recovery rate is fixed to p = 1, while the final network
size is 5 - 10% nodes. From the plots, it is clear that the incidence of the disease decreases as a grows, and it decreases as €

increases.

tails. From the inset we observe that as A increases,
the distributions become more homogeneous [short-
ening the tails of P(k)], reaching a minimum value
around A ~ 0.2. From this value on, the tails start
to enlarge, reaching the exponential behavior again
for large values of A. The minimum found for (k?)
occurs close to the epidemic onset, when the num-
ber of infected nodes is relatively small (compared
to the number of nodes in the system) and they
are mainly placed on the most connected nodes of
the network. Therefore, in the strong interplay limit
(e = 0.99) this hierarchical placement avoids these
latter nodes to capture new links thus narrowing the
exponential degree distribution. For large values of
A the disease reaches almost all the population and
newcomers do not distinguish between connectivity
classes, thus making again the attachment at ran-
dom and recovering the exponential decay for P (k).
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Fig. 2.

This evolution is more evident in the case of o =1
(right panel in Fig. 1). In this case, the degree dis-
tribution behaves as a power law P(k) ~ k=3 for
large values of A\ (high impact of the disease). How-
ever, close to the epidemic onset the tails of P(k)
become stretched because of the hierarchical place-
ment of infected nodes in large degree nodes which,
for &« = 1, correspond to hubs with an extremely
large number of connections. This homogenization
becomes again evident from the inset of the figure
in which the evolution (k?)(\) shows a minimum for
low values of A.

Now we focus on the patterns obtained for the
clustering coefficient. The clustering coefficient of a
node, say j, with degree k; is defined as the number
of connections among the neighbors of j divided by
the maximum possible number of these neighbor—
neighbor links: k; - (k; — 1)/2. In Fig. 3, we show

1 .
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Degree distributions P(k) of the adaptive networks in the strong coupling growth-disease (e = 0.99) and for several

values of the infection rate A. The plot on the left refers to the case a = 0 while the plot on the right refers to a = 1. The
insets show the evolution of the second moment (k?) of the degree distribution as A increases. As in Fig. 1 the value of the
recovery rate is set to pu = 1 and the final size of the networks is 5 - 102 nodes.
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Clustering coefficient as a function of the degree of the nodes CC(k) of the adaptive networks in the strong interplay

limit (e = 0.99) and several values of the infection rate A\. The plot on the left is for the situation with o = 0 while o = 1 for
those curves on the right panel. As in Fig. 1 the value of the recovery rate is set to 4 = 1 and the final size of the networks is

5-10% nodes.

the value of the clustering coefficient as a function
of the degree k of the nodes, CC(k). To this end we
have averaged the clustering of the nodes having the
same number of neighbors as

e L XA @)

{J|kj—k} Lm

CC(k) =

where {A;} is the adjacency matrix of the network
defined as A;; = 1 when nodes j and [ are connected
while Aj; = 0 otherwise. The plots in Fig. 2 corre-
spond to the strong interplay limit (e = 1) while the
left panel is for « = 0 and o = 1 for the right one.
After the results discussed in Fig. 2 we can take the
curves CC(k) for A = 1 (large impact of the disease)
as references since, from what we discussed above,
the large degree of infection of the evolving net-
works masks the newcomers’ preference for attach-
ing to healthy individuals while « (controlling the
preference towards high degree nodes) turns out to
be the dominant parameter. In this limit (A = 1) we
observe that for a = 0 the clustering increases with
the degrees of nodes. However, for smaller values
of A the same trend is observed. On the contrary,
CC(k) patterns for the case of & = 1 are much more
sensitive to changes in the infection rate A at work.
For A =1 we observe a rather constant pattern for
CC(k) pointing out that clustering is not dependent
on the degree hierarchy of nodes. However for small
A values, specially for those around the minimum of
(k%) in Fig. 2, we observe a strong positive correla-
tion between clustering and degree.

We round off our analysis by checking the evo-
lution of the degree—degree correlations, i.e. evalu-
ating the relation between the degrees of connected
nodes. To this aim, we measure the average degree
of the neighbors of nodes of degree k, ki, (k) which

is defined as:
ke (k) = Z > Ak (4)
{J\k =k} 1

kNP

By measuring the trend of the function k,, (k) we
can distinguish between assortative networks (for
which the ky,(k) is an increasing function and
thus connections are more likely to be established
between nodes of identical degrees), disassortative
networks (for which the &, (k) is a decreasing func-
tion and links are used to connect nodes of different
degrees) and networks with no degree—degree cor-
relations (for which the k,, (k) are nearly constant
so that there is no relation between the degrees of
neighboring nodes). In Fig. 4 we observe again the
correlation patterns in the strong interplay limit
(e = 0.99) for a« = 0 (left panel) and a = 1
(right panel). Taking again the curves correspond-
ing to A = 1 as references, we observe that when
the disease is close to the epidemic onset there is
a tendency towards assortativity, i.e. the slope of
the curves ky,(k) increases with respect to those
found for A = 1. This tendency towards assorta-
tivity is more evident in the case of « = 1. In
this case, the slope for A\ = 1 is slightly nega-
tive as expected from a SF network constructed
with the Barabdsi—Albert model. However, for low
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Fig. 4. Average degree of the neighbors of nodes with degree k, knn(k), of the adaptive networks in the strong interplay
limit (e = 0.99) and several values of the infection rate A. The plot on the left is for the situation with ov = 0 while o =1 for
those curves on the right panel. The insets show the evolution of the assortativity index r of the networks as A increases. As
in Fig. 1 the value of the recovery rate is set to 1 = 1 and the final size of the networks is 5 - 10% nodes.

A values the degree—degree correlations turn pos-
itive and the assortative character of the adaptive
networks is remarkable. This tendency is again sup-
ported from the large degree of infection of the hubs
for this low value of A. This state prevents many of
the connections with newcomers (low degree nodes)
thus making more relevant those connections pre-
viously established with other large degree nodes.
On the contrary, many connections between poorly
connected (and thus healthy) nodes are favored, so
that the average degree of the neighbors of nodes
with a small degree turns out to be also small. The
evolution of the assortative character of networks is
summarized in the insets of both panels in Fig. 4
by computing the assortativity index, r, introduced
in [Newman, 2002] which takes positive (negative)
values for assortative (disassortative) networks.

4. Conclusions

In this work we have analyzed an adaptive com-
plex network in which two dynamical processes
evolve entangled. These two dynamics are the
growth of the network (with the addition of new
nodes into the backbone) and an SIS disease
dynamics (so that nodes can be in two dynami-
cal states: healthy or infected). The two dynamical
processes are entangled via the way newcomers are
attached to those nodes that already take part
in the evolving network. In this way, we have
assumed that when the growth and SIS dynam-
ics are strongly correlated newcomers tend to
avoid infected individuals. Besides, we have also
considered the possible preference of newcomers

towards large degree nodes. By solving numeri-
cally this adaptive model we have obtained several
results. First, we have shown that the strong inter-
play between the two dynamical processes decreases
the impact of the disease on the growing network
due to the ability of newcomers to avoid infected
individuals. However, this ability (when the degree
of infection is not very high) has important conse-
quences on the final structure of the network since
those individuals that are more likely infected are
the more connected ones. Therefore, those adaptive
systems evolved in the large interplay regime evolve
towards more degree-homogeneous backbones than
what was expected if the SIS dynamics and the
growth processes were uncorrelated. Additionally
these networks show clustering-degree and degree—
degree correlations. In particular, the decrease of
low-to-large degree connections (made from the
attachment of newcomers to hubs) when the dis-
ease is close to the epidemic onset favor the onset of
positive correlations for both the clustering-degree
and the degree-degree correlations. These results
support the importance of considering the adaptive
networks perspective in order to explain both the
plasticity of the network backbone as a function of
the dynamical regimes it can explore, and the con-
sequences that this plasticity has on the functioning
of the adaptive network.
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