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In this paper, we study the synchronization properties of random geometric graphs. We show
that the onset of synchronization takes place roughly at the same value of the order parameter
as a random graph with the same size and average connectivity. However, the dependence of
the order parameter on the coupling strength indicates that the fully synchronized state is
more easily attained in random graphs. We next focus on the complete synchronized state and
show that this state is less stable for random geometric graphs than for other kinds of complex
networks. Finally, a rewiring mechanism is proposed as a way to improve the stability of the
fully synchronized state as well as to lower the value of the coupling strength at which it is
achieved. Our work has important implications for the synchronization of wireless networks,
and should provide valuable insights for the development and deployment of more efficient and

robust distributed synchronization protocols for these systems.
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1. Introduction

Synchronization phenomena constitute one of the
most striking examples of the emergent collective
behavior that arises in many fields of science, rang-
ing from natural to social and artificial systems
[Winfree, 1990; Strogatz, 2003; Manrubia et al.,
2004]. They have been intensively studied during
the last several decades not only from an academic
point of view, but also due to their applications
in many man-made systems. An emerging line of
research in which synchronization processes play a
key role is that of wireless communication networks.
Synchronization processes in wireless systems natu-
rally arise when routing and information flow algo-
rithms establish a universal coordinated time, thus
requiring the synchronization of the clocks of the
nodes of the wireless network. Additionally, due to
the finiteness of communication channels, the access
times of different users should be desynchronized
when their number is large, which on its turn, is a
function of the number of wireless devices accessing
the available resources, i.e. of the topology of the
underlying graph.

The description of the topological properties of
wireless ad hoc systems is not easy as they, unlike
wired networks, are created on the fly to perform
a task, such as information routing, environmen-
tal sensing, etc. [Hekmat, 2006] Furthermore, the
topology of these networks can be changed dynam-
ically to achieve a desired functionality. With the
rapid growth of the number of portable devices and
the increased popularity of wireless communication,
it is expected that these types of networks will play
a key role as a building block of the next generation
Internet. On the other hand, from the perspective
of fundamental research, these systems provide a
clear-cut example of highly dynamic, self-organizing
complex networks. It is therefore natural to ask how
networks that topologically resemble the features of
wireless settings compare with other architectures
with regards to synchronization processes.

The entangled structural and dynamical com-
plexity of synchronization phenomena in wireless
networks makes the problem difficult to tackle in
fine detail. Approximations that shed light on the
general dynamical behavior of similar systems are
thus required. In this paper, we study the syn-
chronization of Kuramoto oscillators on random
geometric graphs (RGGs), the latter being a plausi-
ble representation of the architecture of the system
when the time scale associated to the dynamics is

much faster than that associated to changes in the
underlying topology. We address the problem by
considering the limiting situations of the onset of
synchronization and the stability of the fully syn-
chronized state. Our results show that Kuramoto
oscillators achieve complete synchronization at very
large coupling values as compared to their ran-
dom graph counterparts. Moreover, we also show
that the fully synchronized state is less stable in
RGGs than in random and scale-free networks with
the same number of nodes and average connectiv-
ity. Finally, we propose a mechanism by which the
synchronization properties of RGGs can be greatly
improved at low costs.

2. Network Model and Dynamics

In what follows, we are interested in exploring the
dynamical behavior at both the onset and the fully
synchronized behavior. The first part of the phase
diagram can only be explored by invoking a specific
dynamics, while the stability of the fully synchro-
nized state can be generically studied for a wide
class of dynamical systems. The latter is achieved
by exploring the spectral properties of the Laplacian
matrix that completely describes the topology of
the system under study. Using recent results of the
Master Stability Function formalism [Barahona &
Pecora, 2002; Nishikawa et al., 2003; Motter et al.,
2005; Donetti et al., 2005; Zhou et al., 2006; Chavez
et al., 2005], one is able to reduce the problem of
inspecting the stability of the completely synchro-
nized state to an eigenvalue problem where only
the topological properties of the substrate graph are
relevant.

Let us then start by exploring the onset of syn-
chronization. To this end, we consider that the N
nodes of the RGG are oscillators whose dynamics
are described by the Kuramoto model (KM). The
KM [Kuramoto, 1984; Acebrén et al., 2005] is a
model of phase oscillators coupled through the sine
of their phase differences. This model owes most
of its success to the analytical insights that one can
get through the mean-field approximation originally
proposed by Kuramoto in which nodes are glob-
ally coupled, i.e. according to an all-to-all topology.
The model has also been recently used to study the
synchronization of phase oscillators in complex net-
works [Moreno & Pacheco, 2004; Oh et al., 2005;
McGraw & Menzinger, 2005; Arenas et al., 2006;
Gomez-Gardenes et al., 2007a, 2007b]. In the KM



formalism, the phase of the ¢th unit, denoted by

0;(t), evolves in time according to

db;
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where w; stands for its natural frequency, A is the
coupling strength between units and A;; is the con-
nectivity matrix (A;; = 1 if 7 is linked to j and
0 otherwise). The model can be solved in terms of
an order parameter r that measures the extent of
synchronization in a system of N oscillators as:

. 1 Mo
retV = N Z i (2)
j=1

where W represents the average phase of the system.
The parameter r takes values 0 < r < 1, 7 = 0 being
the value of the incoherent solution and » = 1 the
value for total synchronization.

The topological properties of the wireless sys-
tem contained in the matrix A;; is modeled by
considering that the connections among the nodes
of the network vary at a time scale much slower
than the time scale associated to the dynamics.
Therefore, one can consider the underlying graph
as static. In order to generate the network, we con-
sider a set of nodes distributed in a two-dimensional
plane. To each of these nodes, a maximum transmis-
sion range is assigned, such that a node is linked to
only those nodes within a circle of radius equal to
the maximum transmission range [Nekovee, 2007].
Repeating this procedure for all nodes in the net-
work, the topology of the resulting network can be
described as a two-dimensional random geometric
graph [Dall & Christensen, 2002; Penrose, 2003].
Random geometric graphs have been used before in
the study of continuum percolation and have been
revitalized recently in the context of wireless ad hoc
networks [Glauche et al., 2004; Krause et al., 2006].
They have a distribution of connectivity, P(k), that
like Erdés—Rény random graphs (ER) [Dorogovt-
sev & Mendes, 2003; Bornholdt & Schuster, 2003;
Boccaletti et al., 2006], is peaked at an average
value (k) with a finite variance.

On the other hand, other topological charac-
teristics of the RGGs are very far from typical ran-
dom networks, namely their clustering coefficient
(C) and the average path length (L). The clus-
tering coeflicient is defined as the probability that
two neighbors of a given node are also connected
betweem them, whereas the average path length
accounts for the average distance between every pair
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of nodes in the network, the distance between two
neighbors being set to 1. As introduced before, a
RGG is constructed in a physical space and hence
when two nodes are physically close to a third one
(and hence both share a link with it), the probabil-
ity that they are also physically close is high. There-
fore, the value of the clustering coefficent is much
higher than the typical values found in random ER
networks with the same number of nodes, N, and
links, IV;. Furthermore, the absence of links between
physically separated nodes prevents the existence
of shortcuts in the network and hence RGGs have
a much larger average path length than the ER
graphs with the same N and NV;.

To unravel how the above topological features
of RGGs affect the synchronization of phase oscilla-
tors we have constructed a family of networks whose
structural characteristics are varied from those of
RGG to those found in random graphs such as ER
networks. For this purpose, a rewiring process is
performed on the RGGs. The rewiring is made as
follows: we consider one pair of connected nodes
(,7) and with probability 0 < p < 1 we remove
the link and add a new one from one of the nodes
i or j (we choose one with equal probability) to a
new node randomly chosen from the N — 2 remain-
ing nodes of the network. This process is repeated
for all the links present in the original graph. For
each value of p, we generate a sample of rewired
networks over which averages are performed. In
this way, we have new networks with a fraction p
of links different from those of the original RGG.
Besides, we only consider those resulting networks
that after the rewiring process have one single con-
nected component.

The rewiring process is aimed to gradually (as p
varies from 0 to 1) destroy the correlations between
nodes present in the RGG so that in the limit
p = 1 we obtain ER networks. We have constructed
ensembles of 10? rewired networks for different val-
ues of p and computed the average clustering coef-
ficient and average path length in these ensembles.
In Fig. 1 we plot both quantities as a function of
the rewiring parameter, (C)(p) and (L)(p), normal-
ized to the corresponding values found in the RGG.
The result obtained is a small-world transition as
p grows from 0 to 1: while the average path length
decreases very fast with the rewiring of a few links
(this rewiring creates shortcuts), the clustering coef-
ficient (C')(p) shows a slower decrease and remain
roughly the same as in the RGG until p ~ 1072.
Notice, however, that given the large value of (C)
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Fig. 1. Average clustering coefficient (C) and average path

length (L) of the rewired RGG network as a function of the
fraction of rewired links p. Both quantities are normalized
to the corresponding values of the original RGG network
(Craa = 0.61 and Lrgg = 11.55).

for the RGG, even for larger values of p, the clus-
tering coefficient is very high.

3. Results and Discussions

To inspect how the synchronization transition of the
N Kuramoto oscillators depends on the underly-
ing topology, we have performed extensive numer-
ical simulations of the model in the RGG and the
rewired networks. Starting from \ = 0, we increase
it at small intervals. The natural frequencies and
the initial values of 6; are randomly drawn from a
uniform distribution in the interval (—1/2,1/2) and
(—m,m), respectively. Then, we integrate the equa-
tions of motion Eq. (1) using a fourth order Runge—-
Kutta method over a sufficiently large period of
time to ensure that the order parameter r reaches
a stationary value. The procedure is repeated grad-
ually increasing A.

Figure 2 shows the synchronization diagram
r(A) for the RGG and three rewired versions (p =
1072, p = 107! and p = 1). For low values of the
coupling A, it is observed that the RGG achieves
local coherence (r > 0) slightly faster than its
rewired versions. However, the transition to global
synchronization (r = 1) shows two clearly differ-
ent behaviors. For both the RGG and the ran-
domized network with p = 1072 the transition is
extremely slow and the global coherence is finally
attained (not shown in figure) at very high val-
ues of A. This resistance of the network to achieve
global synchronization disappears for the other two

107 RGG :
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Rewired p=1.0 —+—

1072 10 1 10

Fig. 2. (Color online) Order parameter r as a function of the
coupling strength A. The global coherence is plotted for the
original RGG and other three rewired networks correspond-
ing to p = 10727 107! and 1.

rewired networks studied, p = 107! and p = 1
(the ER network). These two qualitatively dif-
ferent behaviors in the synchronization transition
can be understood by looking at the evolution of
the clustering coefficient in Fig. 1. It seems clear
that the high clustering coefficient presents both
in the RGG and those networks with p = 1072
is at the root of the extremely slow convergence
tor =1.

We next focus our attention on the stabil-
ity of the synchronized state. As noted before, we
can now abandon the specifics of a model and
work for generic dynamical systems with just a few
restrictions (for more details of the formalism and
the conditions for its application, see, for instance
[Boccaletti et al., 2006] and references therein). In a
series of previous works [Barahona & Pecora, 2002;
Nishikawa et al., 2003; Motter et al., 2005; Donetti
et al., 2005; Zhou et al., 2006; Chavez et al., 2005],
a relation has been established between the dynam-
ical behavior of the units close to the synchroniza-
tion manifold and the eigenvalues of the (static)
matrix that accounts for the individual dynamics.
As was first shown by Barahona and Pecora [2002],
the synchronizability (linear stability of the syn-
chronized state) depends on the ratio between the
largest and the smallest nonzero eigenvalues of the
Laplacian matrix, that is related to the adjacency
matrix by means of

Lij = kzéw — A” (3)



Later on, this framework has been extended to a
more general situation in which networks can be
directed and/or weighted and the Laplacian is no
longer the matrix that appears explicitly in the
equations of motion. In any case, there is a clear
mapping between the ratio of the two extremal
eigenvalues and the stability of the synchronized
state.

In a different scenario, Arenas et al. [2006]
showed that the relation between spectral proper-
ties and dynamics goes far beyond the stability of
the synchronized state. In the case of Kuramoto
oscillators for undirected and unweighted networks,
as described in this paper, the linearized dynamics

db;
E = w; + ;UAZ‘]‘(QJ' — 91) = w; + Lz‘jej

i=1,...,N

is described exclusively in terms of the Laplacian
matrix, for identical oscillators running with the
same intrinsic frequency, i.e. w; = w (w can in turn
be set to zero without loss of generality). Ordering
the eigenvalues of the Laplacian

0=X <X <+ <Ay, (5)

they show that there is a striking similarity
between the spectral representation (plotting the
index of the eigenvalue as a function of the inverse
of the numerical value) and the dynamical evolution
(plotting the number of synchronized components
as a function of time) for networks of Kuramoto
oscillators with a clear community structure. In that
case a plateau in the spectral representation (degen-
eracy of the eigenvalues) is related to the synchro-
nization stability of clusters of oscillators that form
the topological communities. Here it is important to
notice that the approximation of phase oscillators
coupled through the sine of the phase difference is
very close to its linear counterpart, the main differ-
ence being in the initial stage of the evolution when
phase differences are not small. But when clusters
of synchronized oscillators form, the difference is so
small in all pairs of interacting oscillators that the
approximation is very good and explains the accu-
racy of the mapping between the two representa-
tions [Arenas et al., 2006].

Another interesting finding is that the time
needed for the whole system to synchronize can be
shown to depend mainly on the smallest nonzero
eigenvalue \o. In the above picture, it corresponds
to the behavior at long times. In [Almendral & Diaz-
Guilera, 2007] it is analytically proven that this

Synchronization in Random Geometric Graphs 691

dependence for the linear case is Tyyne ~ 1/A2. For
other dynamics, as the Kuramoto oscillators, it is
shown that this dependence is maintained although
the prefactors can be relevant and we have a rough
idea on the scaling of the time for a set of compara-
ble networks but we cannot infer the time a single
network will need to get completely synchronized.
However, these two facts put together can
be very helpful in understanding the dynamics of
Kuramoto oscillators in a network like RGG. In
Fig. 3 we plot the synchronizability of the origi-
nal RGG and the rewired versions. There we see
that the ratio decays about two orders of mag-
nitude from the original RGG to the completely
rewired, i.e. ER equivalent. Since the largest eigen-
value depends mainly on the maximum degree of
the nodes, we infer that the second eigenvalue is
responsible for such a decay. This also means that
the RGG network requires about two orders of mag-
nitude more in time to get synchronized. For the size
of the networks considered and the accuracy nec-
essary for any detailed discussion, this time scale
may be out of our currently available computer
resources. But we can make some predictions about
this time, although this assumption has to be done
with care. In Fig. 4 we have plotted, as suggested
above for networks with community structure, the
index of the eigenvalue as a function of the inverse

10° g - -
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Fig. 3. Synchronizability of the rewired networks as a func-

tion of the fraction of rewired links p. The synchronizability
is measured as the eigenratio An /A2 (the ratio between the
largest and the first nonvanishing eigenvalues of the Lapla-
cian matrix). We have also plotted the value of this eigenratio
for SF and ER networks with the same number of nodes N
and average connectivity (k).



692 A. Diaz-Guilera et al.

SpectraER v
Spectra RGG ¢
*

N..(t) ER
Nscft‘i(F){GG

1 \ -— \ \
102 10" 1 10 102 10° 10* 10°

1/A; ; time
Fig. 4. (Color online) Index of the eigenvalue as a function

of its numerical value for the RGG and for the completely
rewired one (leftmost curves) and number of synchronized
components as a function of time for the same networks
(rightmost curves).

of its numerical value for the original RGG and
for the completely rewired one. We see in these
curves a different organization of the set of eigen-
values. While for the ER graph there is a rapid
decay, for the RGG there is a slow and system-
atic drop. We can proceed to identify the spectrum
of the Laplacian with the synchronization dynam-
ics, even if there is no community structure. This is
represented in the other curves of Fig. 4, the num-
ber of synchronized components as a function of
time for the same two networks. This number is
obtained following the method introduced in [Are-
nas et al., 2006]. Notice that the ER graph follows
a similar rapid drop, meaning that synchronization
takes place in a very fast scale once the initial read-
justments of phase have taken place. But for the
RGG we cannot proceed to complete synchroniza-
tion because of computer time limitations but we do
notice the similarity in the slope of the two curves,
clusters of oscillators get synchronized following the
spectrum of the Laplacian matrix. If we extrapolate
this behavior we infer an approximation for the time
needed for the RGG network to get completely syn-
chronized.

Returning to the results depicted in Fig. 3,
we see that the completely synchronized state in
RGGs is the less stable of all the networks consid-
ered. Namely, the RGG performs worse than scale-
free networks and random graphs in the region of
the phase diagram where the coupling strength is
high enough as to achieve full synchronization in

all graphs. Therefore, if the synchronizability of a
network is measured as the robustness of the com-
pletely synchronized state of the system, RGGs are
not the best architecture. This behavior, however,
can be radically changed by adding a few long
range connections to the network. Through this
rewiring mechanism, the synchronizability of RGG
is improved well beyond that of scale-free networks
as shown in Fig. 3 for p > 1072

4. Conclusions

We have explored the synchronization properties
of RGGs. In order to inspect the onset of syn-
chronization and partially synchronized states, we
have made use of the Kuramoto model and showed
that RGGs start to show some degree of synchrony
roughly at the same critical value of the coupling
strength found for random graphs. However, the for-
mer networks are harder to synchronize completely.
Once the fully synchronized state is achieved, this
state is the less robust compared to other classes of
complex networks. A rewiring mechanism can easily
solve the problem by adding just a few shortcuts to
the network, which provokes both a faster landing
on the fully synchronized state and an increase of
its robustness.

In summary, the results here obtained allow to
rank RGG as not particularly suitable for synchro-
nization phenomena — all the elements of the sys-
tem are hard to synchronize and once this state is
attained, it is the less robust. On one hand, this
is bad news given the crucial role that synchro-
nization processes play in these systems. On the
other hand, the fact that by simply adding some
shortcuts to the system its synchronization perfor-
mance greatly improves constitutes the good news.
This is specific to the case in the context of wire-
less ad hoc networks where such shortcuts can be
achieved using advanced technologies such as trans-
mit power control and directional antennas. Future
research should confirm our preliminary insights
by incorporating more details of the structure and
dynamics of wireless systems and should also test
whether or not the proposed rewiring mechanism is
effective.
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