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We study the synchronization transition of Kuramoto oscillators in scale-free networks that are
characterized by tunable local properties. Specifically, we perform a detailed finite size scaling
analysis and inspect how the critical properties of the dynamics change when the clustering
coefficient and the average shortest path length are varied. The results show that the onset of
synchronization does depend on these properties, though the dependence is smooth. On the
contrary, the appearance of complete synchronization is radically affected by the structure of
the networks. Our study highlights the need of exploring the whole phase diagram and not only
the stability of the fully synchronized state, where most studies have been done up to now.
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1. Introduction

Emergent collective phenomena have been studied
for a long time. These phenomena arise in many
fields of science, ranging from natural to social and
artificial systems. They are characterized, among
other features, by the collective behavior of many
interacting units that show a pattern hard to pre-
dict from the individual behavior of the system
constituents. Several seminal models of statistical
physics and nonlinear dynamics have been scruti-
nized as paradigms of self-organization, emergence
and cooperation between the units forming the sys-
tem. In particular, synchronization phenomena con-
stitute one of the most striking examples because of
the many systems showing synchronization patterns
in their behavior [Winfree, 1990; Strogatz, 2003;
Manrubia et al., 2004].

One of the most celebrated synchronization
models is due to Kuramoto [Kuramoto, 1984;

Acebrón et al., 2005], who analyzed a model of
phase oscillators coupled through a function (sine)
of their phase differences. This model owes most of
its success to the plenty of analytical insights that
one can get through the mean-field approximation
originally proposed by Kuramoto. In this approach
(KM), the nodes of an all to all, i.e. globally, cou-
pled network, are considered to be oscillators with
an intrinsic frequency and their phases evolve in
time in such a way that if the coupling between
them is larger than a critical threshold, the whole
system gets locked in phase and attains complete
synchronization.

However, it has been recently discovered that
real systems do not show a homogeneous pattern
of interconnections among their parts. That is, the
underlying structure is not compatible with the
original assumption of the KM. It is not even well
described by random patterns of interconnections in
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the vast majority of systems. Therefore, the mean-
field approach requires several constraints that are
not usually fulfilled in real systems. Natural, social
and technological systems show complex patterns
of connectivity that characterize seemingly diverse
social [Newman, 2001], biological [Jeong et al., 2001;
Solé & Montoya, 2001] and technological systems
[Faloutsos et al., 1999; Wang et al., 2006]. They
exhibit common features that can be captured using
the tools of graph theory or in more recent terms,
network modeling [Dorogovtsev & Mendes, 2003;
Bornholdt & Shuster, 2003; Boccaletti et al., 2006].

It turns out that many real networks are well
described by the so-called scale-free (SF) networks.
Their main feature is that the probability that a
given node has k connections to other nodes follows
a power-law Pk ∼ k−γ , with 2 ≤ γ ≤ 3 in most cases
[Dorogovtsev & Mendes, 2003; Boccaletti et al.,
2006]. The study of processes in these networks has
led to reconsider classical results obtained for reg-
ular lattices or random graphs due to the radical
changes of the system’s dynamics when the hetero-
geneity of complex networks cannot be neglected
[Dorogovtsev & Mendes, 2003; Bornholdt & Shus-
ter, 2003; Boccaletti et al., 2006; Pastor-Satorras
& Vespignani, 2001a; Pastor-Satorras & Vespig-
nani, 2001b; Moreno et al., 2002; Cohen et al.,
2000].

It is then natural to investigate how synchro-
nization phenomena in real systems are affected
by the complex topological patterns of interac-
tion. This is not an easy task, as one has to
deal with two sources of complexity, the nonlin-
ear character of the dynamics and highly non-
trivial complex structures. In recent years, scien-
tists have addressed the problem of synchroniza-
tion capitalizing on the Master Stability Function
(MSF) formalism [Pecora & Carrol, 1998] which
allows to study the stability of the fully synchro-
nized state [Barahona & Pecora, 2002; Nishikawa
et al., 2003; Motter et al., 2005; Donetti et al.,
2005; Zhou et al., 2006; Chavez et al., 2005]. While
the MSF approach is useful to get an insight into
what is going on in the system as far as the stabil-
ity of the synchronized state is concerned, it tells
nothing about how synchronization is attained and
whether or not the system under study exhibits
a critical point similar to the original KM. To
this end, one must rely on numerical calcula-
tions and explore the entire phase diagram. Sur-
prisingly, there are only a few works that have
dealt with the study of the whole synchronization

dynamics in specific scenarios [Moreno & Pacheco,
2004; Oh et al., 2005; McGraw & Menzinger,
2005; Arenas et al., 2006; Gómez-Gardeñes et al.,
2007a; Gómez-Gardeñes et al., 2007b] as com-
pared with those where the MSF is used, given
that the onset of synchronization is richer in its
behavioral repertoire than the state of complete
synchronization.

In this paper, we take a further step in the
detailed characterization of the phase diagram and
specifically, in the description of the dynamical
behavior at the onset of synchronization in SF net-
works. By performing a standard finite size scaling
analysis, we show that the local topology affects the
critical properties of the dynamics, though it is less
pronounced than what one may expect a priori.
We capitalize on a network model that keeps the
power-law exponent fixed while varying the cluster-
ing coefficient and the average path length. In what
follows, we describe the topological and dynamical
model and discuss the results from a global per-
spective. Finally, in the last section, we state our
conclusions.

2. Network Model and Dynamics

We implement a network model in which the graph
is grown at each time step by linking preferentially
new nodes to already existing nodes in the same way
as in the Barabasi and Albert (BA) model [Barabasi
& Albert, 1999]. The only difference is that the
nodes are assumed to have a fitness that charac-
terizes their affinities [Gómez-Gardeñes & Moreno,
2004]. In this way, by tuning a single parameter µ,
one can go from the BA limit down to a network
in which several network properties vary as a func-
tion of µ. On the other hand, as the linking mech-
anism is still the BA preferential attachment rule,
the exponent γ of the power-law degree distribution
is the same (i.e. γ = 3) regardless of the value of µ.
Roughly speaking, the model mimics the situation
in which new nodes are attached to an existing core
or network but without having knowledge of the
whole topology.

The recipe is then as follows [Gómez-Gardeñes
& Moreno, 2004]. (i) Initially, there is a small, fully
connected, core of m0 nodes. Assign to each of
these m0 nodes a random affinity ai taken from a
probability distribution. In this work, we have used
for simplicity a uniform distribution between (0, 1).
(ii) At each time step, a new node j with a random
affinity aj is introduced and m links are established
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with nodes already present in the network following
the rule

Π(ki) =
ki∑

s∈Γ

ks

, (1)

where the set Γ contains all nodes that verify the
condition ai − µ ≤ aj ≤ ai + µ, µ ∈ (0, 1) being
a parameter that controls the affinity tolerance of
the nodes. Finally, (iii) repeat step (ii) t times such
that the final size of the network be N = m0 + t.

In the above model, when µ is close enough to
1, the BA model is recovered. When it is decreased
from 1, the values of some magnitudes such as the
clustering coefficient (〈c〉) and the average path
length (〈L〉) grows with respect to the BA limit
[Gómez-Gardeñes & Moreno, 2004]. In Fig. 1 we
have represented how these properties vary as a
function of the parameter µ. Note that the larger
variations correspond to the clustering coefficient (a
factor greater than 4 as compared to a factor close
to 2 for 〈L〉) and that it is the first property that
deviates from the BA limit. This tendency holds
up to very small values of µ, where 〈L〉 rises at a
rate higher than 〈c〉 (not shown in Fig. 1). More
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Fig. 1. (Color Online) Top: Values of the clustering coeffi-
cient relative to those of the BA model against the parameter
µ. Bottom: The average cluster length for the network gen-
erated relative to the BA value as a function of µ. All the
networks are made up of N = 1000 and have an average
degree 〈k〉 = 6.

important for our purposes is the region of 0.4 ≤
µ ≤ 1. For these values of µ, one observes that 〈L〉
remains constant while 〈c〉 starts to grow as soon
as it moves away from the BA limit (µ = 1). This
allows to decouple the effects of both magnitudes on
what we are going to study. As we shall see, later
the structural clustering plays a major role in the
synchronization of Kuramoto oscillators, as does in
other dynamical processes [Echenique et al., 2004].

The dynamic ingredient of the model is given by
the collective behavior that arises when the nodes
are considered to be phase oscillators that follow
the Kuramoto model. In this formalism, the popu-
lation of N interconnected units are coupled phase
oscillators where the phase of the ith unit, denoted
by θi(t), evolves in time according to

dθi

dt
= ωi +

∑

j

ΛijAij sin(θj − θi) i = 1, . . . , N

(2)

where ωi stands for its natural frequency, Λij = λ
(we refer to [Gómez-Gardeñes et al., 2007a; Gómez-
Gardeñes et al., 2007b] for a discussion on the
proper choice of the coupling strength describing the
interaction between the oscillators) is the coupling
strength between units and Aij is the connectivity
matrix (Aij = 1 if i is linked to j and 0 otherwise).
Note that in the original Kuramoto model mean-
field interactions were assumed which leads to
Λij =K/N∀i, j, for the all-to-all architecture. On
the other hand, the model can be solved in terms
of an order parameter r that measures the extent of
synchronization in a system of N oscillators as:

reiΨ =
1
N

N∑

j=1

eiθj (3)

where Ψ represents an average phase of the system.
The parameter r takes values 0 ≤ r ≤ 1, r = 0 being
the value of the incoherent solution and r = 1 the
value for total synchronization.

3. Results

In order to inspect how the dynamics of the N oscil-
lators depends on the underlying topology, we have
performed extensive numerical simulations of the
model. Starting from λ = 0, we increase its value at
small intervals. The natural frequencies and the ini-
tial values of θi are randomly drawn from a uniform
distribution in the interval (−1/2, 1/2) and (−π, π),
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respectively. Then, we integrate the equations of
motion Eq. (2) using a fourth order Runge–Kutta
method over a sufficiently large period of time to
ensure that the system reaches the stationary state,
where the order parameter r is computed. The pro-
cedure is repeated by gradually increasing λ.

The results for r are shown in Fig. 2 against the
control parameter λ for several networks character-
ized by different µ. For all values of µ, when the cou-
pling is increased from small values, the incoherent
solution prevails and macroscopic synchronization
is not attained. This behavior persists until a cer-
tain critical value λc(µ) is crossed. At this point,
some elements lock their relative phase and syn-
chronized nodes appear. This constitutes the onset
of synchronization. Beyond this value, the popu-
lation of oscillators splits into a partially synchro-
nized state contributing to r and a group of nodes
whose natural frequencies are too spread out as to
be part of the coherent pack. Finally, after further
increasing the value of λ, more and more nodes get
entrained around the mean phase and the system
settles in a completely synchronized state where
r ≈ 1 (not shown).

A comparison between the results for different
values of µ (and thus different 〈c〉 and 〈L〉 val-
ues) indicate several interesting features of the syn-
chronization process. First, it is remarkable that
when the clustering coefficient increases, the sys-
tem reaches complete synchronization at higher val-
ues of the coupling. This result agrees with the
results reported in [McGraw & Menzinger, 2005],
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Fig. 2. (Color Online) Order parameter r as a function of λ
for different values of µ as indicated. The network parameters
are those of Fig. 1.

where a different network model able to generate
topologies with a tunable clustering coefficient was
implemented.

At this point, one may ask whether the effects
are only due to the influence of 〈c〉 or to the increase
of the average path length. Note that although the
main differences in the network model are observed
for 〈c〉 and 〈L〉, other properties may slightly vary as
well and that the model implemented in [McGraw
& Menzinger, 2005] does not explore this possi-
bility. Unfortunately, the two factors are generally
linked together so they cannot be considered sepa-
rately. However, as stated previously, a closer look
at Fig. 1 reveals that there is a region of the param-
eter µ where the clustering coefficient grows while
the average shortest path length remains almost
constant. This corresponds to the interval 0.4 ≤
µ ≤ 1.0 approximately. Going back to Fig. 2, the
behavior of r in this interval of µ reveals that syn-
chronization is almost unaffected. In fact, the r(µ)
curves lie slightly above that corresponding to the
BA limit. Therefore, though the above comparison
is not conclusive, it seems that the delayed transi-
tion to complete synchronization is mainly due to
the effect of the increase in 〈L〉 at smaller values of
µ rather than to the increase in 〈c〉. This conclusion
is further supported by a direct comparison of the
results in Fig. 2 with those reported in [McGraw
& Menzinger, 2005], where the authors explored a
region with higher values of 〈c〉 (up to 0.7) and the
profile of r(λ) is almost the same as ours.

The second region of interest is the onset of syn-
chronization. From Fig. 2, it is difficult to elucidate
how the critical point for the BA limit compares
with those at values of µ < 1. At first glance, it
seems that λc(µ) shifts rightward as the parameter
µ is decreased below 1. However, a more detailed
analysis shows that it is indeed the contrary. To this
end, we have performed a finite size scaling analysis
that allows to determine the critical points λc(µ).
We assume a scaling relation of the form

r = N−αf(Nβ(λ − λc)), (4)

where f(x) is a universal scaling function bounded
as x → ±∞ and α and β are critical exponents to
be determined. The estimation of λc can then be
done by plotting Nαr as a function of λ and tuning
α for several system sizes N until the curves cross
at a single point, the critical one.

The results of the FSS analysis are shown in
Fig. 3 for different values of µ (from top to bottom
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Fig. 3. (Color Online) Finite size scaling analysis for several values of µ. From top to bottom and from left to right the values
of µ are: 0.05, 0.15, 0.50 and 0.60. Each panel represents the rescaled order parameter against the control parameter λ. The
insets are a zoom to the regions around the critical points λc(µ). The data are averaged over at least 100 realizations for each
value of λ. The sizes of the networks, the critical points λc(µ) at which the onset of synchronization takes place, as well as the
values of the critical exponents α are those indicated in the plots. See the main text for more details.

and from left to right µ = 0.05, 0.15, 0.50, 0.60). The
insets show a blow-up around the critical points
λc(µ). Although the differences in the critical points
at different values of µ are small, they are certainly
distinguishable. In fact, the higher the value of µ,
the higher the critical point. That is, when the
clustering coefficient and the average path length
grow with respect to the BA network, the onset
of synchronization is anticipated. Moreover, taking
into account that the increase in 〈L〉 is likely to
inhibit synchronization, one may hypothesize that
the effects of the clustering coefficient prevail in this
region of the parameter λ. To check this hypoth-
esis, we have also included in Fig. 3 the analysis
performed for µ = 0.50 and µ = 0.60. As pointed
out before, for these values, the differences can only
arise from the variations of the clustering coeffi-
cient as the average path length remains constant in

this region of the parameter µ. The critical points,
although very close to each other, are clearly differ-
ent. Therefore, the main contribution to the onset
of synchronization at low values of λ comes from
the raising of the clustering coefficient.

4. Discussions and Conclusions

Rounding off, our results point to a nontrivial
dependence between the clustering coefficient and
the average path length, and the synchronization
patterns of phase oscillators. Separately, the onset
of synchronization seems to be mainly determined
by 〈c〉, promoting synchronization at low values
of the coupling strength with respect to networks
not showing high levels of structural clustering.
On the other hand, when the coupling is increased
beyond the critical point, the effect of 〈L〉 dominates
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and the phase diagram is smoothed out (a sort of
stretching), delaying the appearance of the fully
synchronized state. These results confirm and com-
plement those anticipated in [McGraw & Men-
zinger, 2005] and show that the general statements
about synchronizability using the MSF are mislead-
ing. Whether or not a system is more or less syn-
chronizable than others showing distinct structural
properties is relative to the region of the phase
diagram in which the system operates [Gómez-
Gardeñes et al., 2007a; Gómez-Gardeñes et al.,
2007b].

In summary, we have shown that synchroniz-
ability of complex networks is dependent on the
effective coupling λ among oscillators, and on the
properties of the underlying network. For small val-
ues of λ, the incoherent solution r = 0 first destabi-
lizes as the clustering coefficient is higher, while the
coherent solution r = 1 is promoted when both the
structural clustering and the average path length
are small. Finally, we point out that our results are
also consistent if a different local order parameter is
considered [Gómez-Gardeñes et al., 2007b]. More-
over, though these results have been obtained for
phase oscillators, we think that they should hold
for other nonlinear dynamical systems as well. It
would be interesting to check this latter hypothesis
in future works.
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