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Abstract – In this letter we present a new perspective for the study of the Public Goods games
on complex networks. The idea of our approach is to consider a realistic structure for the groups in
which Public Goods games are played. Instead of assuming that the social network of contacts self-
defines a group structure with identical topological properties, we disentangle these two interaction
patterns so to deal with systems having groups of definite sizes embedded in social networks
with a tunable degree of heterogeneity. Surpisingly, this realistic framework, reveals that social
heterogeneity may not foster cooperation depending on the game setting and the updating rule.

Copyright c© EPLA, 2011

Introduction. – The last few years have witnessed
the success of the application of physical techniques and
concepts to social systems [1]. One topic that has attracted
a considerable amount of attention is the evolutionary
dynamics [2,3] of social dilemmas [4]: situations in which
an individually desirable outcome leads to an undesirable
one from a societal viewpoint. A particularly important
paradigm in this class is the tragedy of the commons [5] or,
as is more generally known, the Public Goods game [6,7].
In a Public Goods game (PGG), altruistic or cooperative
individuals in a group of m people contribute an amount
c (cost) to the public good; selfish people or defectors do
not contribute. The total contribution is multiplied by
an enhancement factor r <m and the result is equally
distributed between all m members of the group. Hence,
defectors get the same benefit of cooperators at no cost,
i.e., they free-ride on the cooperators effort. The dilemma
then arises as nobody has any incentive to contribute
to the public good, and therefore nobody receives any
benefit. A number of hypotheses have been put forward
to explain why people might eventually contribute to a
public good, including reputation, punishment, beliefs and
other factors [8,9].

(a)E-mail: gardenes@gmail.com

One of such hypotheses is of particular relevance for our
research, namely, that contributions to a public good are
enhanced by the assortment of individuals. This implies
that contributors interact mostly with other contributors
and, therefore, end up doing better than free-riders. There
are several roads to assortment but prominent among
them is the existence of a social network that dictates who
interacts with whom. This proposal, originating [10] from
work on another paradigm, the Prisoner’s Dilemma [11],
has given rise to an explosion of research on evolu-
tionary game theory on graphs [12,13]. For the specific
context of the PGG, the issue was considered by Brandt
et al. [14], whose numerical simulations indicated that
local interactions can foster contribution, even for values of
r well below the critical value r=m (above this threshold
contributing is obviously always the best option). While
this result was obtained on a hexagonal lattice, subsequent
research [15,16] generalized it to other lattices as well as
to heterogeneous scale-free (SF) [17] networks.
Within the above context, and following the seminal

work by Santos et al. [16] about the PGG on top of
complex networks, it is widely accepted that SF topolo-
gies enhance considerably the emergence of cooperation
as was previously observed for the Prisoner’s Dilemma
game [18,19]. In the case of the PGG [16] it is assumed
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that each of the groups in which the game is played is
automatically defined by considering each player and all
of her neighbors in the network. Following this recipe,
several mechanisms aimed at further enhancing cooper-
ation on SF networks have been investigated [20–27].
However, the structure of most real networks [28] reveals
that the above assumption about the structure of the
interaction groups does not hold. On the contrary, most
real interaction networks comprise many small modules
of densely interconnected nodes in which group interac-
tions take place. More importantly, these small modules
tend to overlap only slightly [29], so that a given node
rarely involves all its social acquaintances when collabo-
rating in one groupal task. Therefore, the existing works
on the PGG on networks have neglected the role of the
mesoscale patterns, i.e., the groups in which the PGG is
played.
The aim of this letter is to use the PGG to gain

knowledge on the effects of social heterogeneity (that
arising when looking at the number of social contacts of
nodes) when the mesoscale structure of small interaction
modules is incorporated. Recent work by us [30] hints that
the fostering of cooperation observed on heterogeneous
networks may be different depending on whether the
mesoscopic structure of real collaboration networks is
incorporated or not. Thus, the question arises naturally
as to what are the effects of social heterogeneity when a
mesoscale structure is incorporated in synthetic models
of homogeneous (Erdös-Rényi [17]) and heterogeneous SF
networks. Thus, the answer to this question allows to
disentangle the influence of social heterogeneity from that
imposed to the group structure in [16]. Surprisingly, our
results show that cooperation is not an increasing function
of social heterogeneity. On the contrary, a homogeneous
social structure may lead to larger levels of cooperation
depending on the game setting and the updating rule at
work. We believe that this is an important contribution
to both evolutionary games on graphs and dynamics
involving group interactions on networks, in so far as
data on social collaborations very often reveals a rather
homogenous group structure embedded in heterogeneous
social networks.

Interaction networks and group structure. – Let
us start by introducing the complex networks in which the
evolutionary dynamics of the PGG will be implemented.
In fig. 1 we show a model network composed of 11 indi-
viduals with a complex interaction backbone. The complex
interaction backbone described by the connections among
pairs of nodes appears as the projection of the seven inter-
action groups highlighted in fig. 1. Each of these groups
comprises three individuals and represents the interaction
groups in which collaborative tasks take place. It is evident
that the set of groups is enough to define univocally the
resulting complex backbone of interactions. However, the
information provided solely by the projected network does
not allow to recover the groups in which each individual
has been involved to produce the final topology.

Fig. 1: (Colour on-line) A model network composed of 11
nodes is shown. Each node engages in different groups of
size m= 3. The corresponding interaction backbone appears
projected below.

The above example highlights that any dynamical
process involving group interactions, such as the PGG,
cannot be treated from the macroscopic interaction
backbone but it demands to incorporate the mesoscopic
patterns arising from the integration of all the interaction
groups. To this aim, it is useful to represent the system
as a bipartite network [31] in which two types of nodes
coexist: individuals and groups. The bipartite nature of
a system such as the one shown in fig. 1 is characterized
by two distributions: i) the probability that an individual
participates in q groups, P (q), and ii) the probability that
m individuals take part in one group, P (m). In order to
construct such bipartite graphs we will consider a method
of network generation inspired in a model [32] aimed
at mimicking the structure of scientific collaboration
networks. Inspired in this context, where the interaction
groups represent co-authored articles, and also in real
collaboration data [33–35], we consider the size m of the
groups to be small and homogeneous (note that m= 3 in
fig. 1).
As in [32], the construction of our networks relies on an

iterative process in which interaction groups are created
sequentially starting from an initial core of m individuals
(that by itself constitutes the first group of the system)
and a set of (N −m) unconnected individuals. At each
step of the process, a new individual from the uncon-
nected set defines a new group of size m by choosing
its (m− 1) partners among the remaining (N − 1) indi-
viduals in the system. In order to generate a family of
networks interpolating between homogeneous and hetero-
geneous topologies we adopt a similar strategy to that
of the model introduced in [36]. For each of its (m− 1)
choices, the newcomer assigns a probability Πi to the
other (N − 1) nodes. With probability α the newcomer
makes the choice completely random so that the prob-
ability Πi that a node i is selected by the newcomer is
Πi = 1/(N − 1). On the other hand, with probability
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Fig. 2: (Colour on-line) Panels (A) and (B) show, respectively,
the probability distribution for the number of groups each
individual belongs to, P (q), and the probability that a group is
composed ofm players, P (m), for those networks generated via
random selection of group partners (α= 1). In (C) and (D) we
show the two latter distributions for networks generated with
preferential selection of group partners (α= 0).

(1−α), the newcomer selects a partner i proportion-
ally to the number of groups i belongs to, qi, so that
Πi = qi/

∑
j qj . When the newcomer has selected (m− 1)

partners, the new group is constituted. This process is iter-
ated (N −m) times so that the final network is composed
of (N −m+1) groups and N individuals. In our case we
will fix N = 5000.
Obviously, when α= 1 the network groups are always

formed following a random selection rule so that the final
probabilty that a node participates in q groups follows
a Poisson distribution centered around m (see fig. 2(A)
for which m= 3) similarly to Erdös-Rényi (ER) graphs.
Alternatively, when α= 0 the group structure is created
by means of a preferential choice so that the probability
P (q) follows a scale-free (SF) distribution, P (q)∼ q−3
with mean 〈q〉=m (see fig. 2(C)). Let us recall that these
two topologies are homogeneous (ER) and heterogeneous
(SF) only from the point of view of the number of groups
each individual participates in, i.e., regarding the social
structure. However, in both topologies the group structure
is homogeneous, so that P (m) is a delta function centered
around m (see fig. 2(B) and (D)). Let us note that the
projected versions of the bipartite networks constructed
with α= 0 and α= 1 correspond to SF and ER networks,
respectively. In the remainder of the letter we will focus
on these two limiting cases (ER and SF) in order to unveil
the effects that social heterogeneity (as described by P (q))
has on the evolution of cooperation.
Having set the network structure we encode it by means

of a biadjacency matrix {Bji} (with j = 1, . . . , (N −m+
1) and i= 1, . . . , N) so that Bji = 1 if agent i participates
in group j and Bji = 0 otherwise. With this topological

information one can define the dynamics of the PGG as
follows. At each time step t, each individual i plays a round
of the PGG within each of the qi groups she is engaged to.
Obviously, the benefit obtained in each of these games
depends on the strategies of the m agents participating
in each group. If we denote by xti the strategy of agent i
during round t of the PGG, so that xti = 1 when i plays as
cooperator and xti = 0 when i defects, the overall benefit
after playing round t of the PGG reads

fi(t) =
N−m+1∑
j=1

rBji

m

[
N∑
l=1

Bjlx
t
lcl

]
−xticiqi, (1)

where qi is (as defined above) the number of groups in
which i is engaged and ci accounts for the cost payed
by agent i in each of her qi groups when playing as
cooperator. We will study two formulations of the PGG
(as defined in [16]). First, we consider a fixed cost per game
(FCG) formulation so that each cooperator i invests a
fixed cost ci = z in each of the qi groups she participates in.
Alternatively, we will also study the situation of fixed cost
per individual (FCI). In this latter scenario, a cooperator
invests a total amount z that is equally distributed among
all her qi groups so that ci = z/qi.
Once a round of the PGG is played, every agent updates

her strategy. We will focus now on the Replicator update
rule as used in [16]. In this framework each agent i chooses
randomly one of her partners, say j, and compares their
benefits in the last round of the game. If fi(t)� fj(t)
nothing happens and i stays the same in the next round,
xt+1i = xti. However, when fj(t)> fi(t) agent i will take
the strategy of j (xt+1i = xtj) with probability

Pi→j =
fj(t)− fi(t)

M
, (2)

where M is a normalization term that accounts for the
difference between the maximum possible payoff of i and
j and the minimum one. Thus, to compute M one must
calculate first the maximum and the minimum payoff each
individual can obtain, and use these values, fmaxi and
fmini , to compute the correctM associated to each couple
of nodes. In the case of the PGG with FCG we can take
advantage of the fixed size m of the groups to derive
analitically the value of M as a function of the number
of groups each of the two nodes, say i and j, belongs to.
In particular, when r�m we obtain

M =
z

m
max [qi, qj ] [m(r+1)− 2r], (3)

while for r >m the expression for M reads

M =
z

m
[max [qi, qj ](m− 1)r−min [qi, qj ](r−m)]. (4)

For the case of FCI, it is not possible to derive M as a
function of qi and qj and one must compute the maximum
payoff for each node. This maximum payoff reads:

fmaxi =
r

m

N−m+1∑
j=1

Bji
∑
l

Bjl
zxl

ql
. (5)
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Fig. 3: (Colour on-line) Average fraction of cooperators, ρc, as a function of the normalized enhancement factor r/m (we have
fixed z = 1). Panels (A), (B) and (C) (top) are for the FCG formulation of the PGG, while (D), (E) and (F) (bottom) are for its
FCI version. The panels correspond tom= 3 ((A) and (D)),m= 4 ((B) and (E)) andm= 5 ((C) and (F)). The curves with filled
squares correspond to ER networks, while the results for the SF ones correspond to the curves with filled circles. The triangles
account for the level of cooperators reached in each of the 102 realizations performed on SF networks for each value of r/m.

On the contrary, the minimum possible payoff of a node
in the FCI formulation does not depend on the properties
of the node: fmini = z(r−m)/m. Finally, let us note that
the group structure plays no role in this update stage, as
it makes use of the (projected) network of contacts.

Homogeneous vs. heterogenous networks. – We
now focus on the evolution of the cooperation for networks
with homogeneous group structure and either SF or ER
social patterns. To this end we simulate the evolution-
ary dynamics of the PGG from an initial condition in
which the number of defectors and cooperators is roughly
the same and they are randomly distributed across the
network. For each value of the normalized enhancement
factor r/m, we iterate a large number of rounds of the
PGG (typically 5 · 104) and we measure the average frac-
tion of cooperators, ρc, over a time window of 10

4 addi-
tional rounds. The results reported for each value of r/m
are the average over 102 different initial conditions.
In the top panels of fig. 3 we show the evolution of ρc

as a function of r/m for the PGG in its FCG version.
Each of the plots corresponds to a different value of m,
namely m= 3 in fig. 3(A), m= 4 in fig. 3(B) and m= 5
in fig. 3(C), and all of them show the curves ρc(r/m) for
both ER (filled squares) and SF (filled circles) topologies.
The main finding is that the average level of cooperation
achieved on ER substrates is remarkably larger than
those observed on SF architectures. Specifically, while
the onset of cooperation occurs around the same value
rc/m� 0.5 (regardless of the value of m) for both ER
and SF substrates, the sharp boost in the cooperation
of ER networks is in contrast of the slow increment
observed for SF networks, particularly for m= 4 and m=
5. This striking result points out that the ability of SF to
outperform the promotion of cooperators on ER networks
reported in [16] is intrinsically due to the entanglement
of social and group heterogeneities (in [16] the associated

distribution of group sizes in SF networks is P (m)∼m−γ ,
γ being the same exponent of the degree distribution of the
SF network of contacts). In our setting, the discrimination
of social and group heterogeneities in SF networks and the
addition of a realistic group architecture lead to a dramatic
change in the ability of heterogeneous networks to foster
cooperation.
The differences in the average level of cooperation

are not the unique difference between homogeneous and
heterogeneous networks. In the panels of fig. 3 we show
the values reached by ρc in each of the realizations for
SF networks. It is clear that, after the cooperation onset,
rc/m, some of the realizations reach full cooperation
while others end up in a dynamical equilibrium in which
cooperators and defectors coexist. Note also that the value
of ρc associated to those solutions displaying coexistence
decreases significantly with m. On the other hand, ER
networks always lead to fixation, i.e., the dynamics always
reaches one absorbing state (either full defection or full
cooperation).
The results obtained with the FCI formulation are

shown in the bottom panels of fig. 3. This scenario turns
out to favor the emergence of cooperation on SF networks
since its onset anticipates significantly with respect to
the FCG formulation (note that rc/m∼ 0.2 for all the
values of m). On the contrary, for ER networks the onset
of cooperation takes place at the same value of r/m as
in the FCG formulation. The enhancement shown by SF
networks is clearly due to the fact that in the FCI setting
cooperators pay the same cost regardless of the number
of groups they belong to. This equivalence among degree-
classes allows cooperator hubs to collect more payoff
while, for defector hubs, the change from FCG to FCI
does not represent any improvement. On the other hand,
the dynamical differences between SF networks and ER
networks persist since SF networks allow coexistence of
cooperators and defectors, while ER networks do not.
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Moreover, as m grows the frequency of the solution
displaying coexistence increases and for large values of
r/m the average value of ρc is lower than that reached by
ER networks for m= 4 and m= 5. Therefore, in the FCI
setting, when both the size of the groupsm and the degree
of enhancement r increase, ER substrates outperform the
ability of SF networks to sustain cooperation.

Other update rules. – To complete our study, let
us now analyze the PGG with two other update rules,
namely, Moran selection and Unconditional Imitation
(UI). In the first case, a Moran agent i chooses one
neighbor j proportionally to her payoff (not randomly as
in the Replicator case). Then, agent i copies the strategy
of agent j for the next round, xt+1i = xtj , even if j has
performed worse than i (fi(t)> fj(t)). Therefore, the
probability that i takes the strategy of j reads

Pi→j =
fj(t)∑
〈j,i〉 fj(t)

, (6)

where the symbol 〈j, i〉 means that the sum is over the
partners of i. Note that, at variance with the Replicator
rule, Moran selection allows mistakes. In the setting of UI
the strategy update is done as follows. After every round
each agent imitates the neighbour with the largest payoff,
provided it is larger than her own. Thus, at variance
with Moran selection and the Replicator update, UI is a
completely deterministic rule while UI (as the Replicator
rule) does not allow mistakes. Note also that both Moran
and UI are context-focused rules (agents look at all their
partners), while the Replicator update is link focused
(agents look at one randomly chosen partner).
In fig. 4 the results obtained with the Moran update are

shown. It is worth noticing that in the FCG version (top
panel), there is no difference at all in behavior between SF
and ER networks, while in FCI (bottom panel) the onset of
cooperation appears earlier in heterogeneous SF networks,
as with the Replicator rule, but in here the differences
are not as pronounced as in the former case. Therefore,
under Moran selection the degree of heterogeneity of
social interactions plays little role in the promotion of
cooperation. In fig. 5 we show the behavior of systems with
the UI update rule. For the FCG situation (top panel)
the cooperation onset of SF and ER networks occurs
simultaneously (around rc/m� 0.5). However, the ER
network reaches full cooperation faster. In this sense, for
this cost scheme and under UI, the ER network promotes
cooperation better than the SF one (as in the Replicator
case). On the other hand, for the PGG with FCI (bottom
panel) cooperation on SF networks rises suddenly from
r= 0 (even earlier than in the Replicator case); however,
the ER network reaches full cooperation much before than
the SF one, particularly form= 4 andm= 5. Interestingly,
a plateau around ρc � 0.5 appears in both FCG and FCI
cases for the SF network. For such values of r/m, where
the plateau is observed, the evolutionary dynamics ends
up suddenly (few generations after the initial condition)
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(triangles). Panel (A) (top) is for the PGG in the FCG setting,
while (B) (bottom) accounts for its FCI version.
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reaching either a full cooperation or a full defection state.
Thus, the final outcome depends strongly on the initial
configuration of strategies so that for a large number of
realizations ρc→ ρc(t= 0) = 0.5. We believe that this is
connected to the initial distribution of strategies in the
hubs as under this update scheme their behavior is very
determinant for the rest of the network.
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Conclusions. – The work reported here allows us to
draw two important conclusions. First, the enhancement of
cooperation observed in PGG on SF networks with respect
to ER networks does not appear when taking into account
the details of the group structure of the population. This is
clearly so in the FCG scheme, while under FCI we observe
that cooperation sets on quite earlier but as the group
size increases it becomes more difficult to reach full coop-
eration. Second, SF and ER networks behave differently
depending on the evolutionary dynamics under consid-
eration. Thus, the above comments apply to Replicator
dynamics, but Moran selection gives rise to basically simi-
lar behavior on both types of networks and UI reverses the
Replicator dynamics outcome, with SF networks perform-
ing worse in general than ER networks. Therefore, as has
been shown for other social dilemmas [13], the outcome
of a PGG on a network is far from universal and depends
on the network structure, on the evolutionary dynamics
and on the (mesoscale) group structure, a novel factor
arising from the game itself. We believe that this conclu-
sion has far-reaching implications, the most important one
being the relevance of the network hierarchical structure
for the emergence of cooperation in a multi-player setup.
Indeed, our results strongly indicate that when trying to
model cooperative behavior, the outcome of the model
may depend very much on this mesoscale structure which,
in turn, is almost always determined by the kind of func-
tion or cooperative enterprise the agents are involved in.
In this context, it becomes apparent that disentangling
the scales associated to the different types of relationships
between the agents is crucial in order to understand the
observations in different social contexts.
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