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Abstract – Recent results have shown that heterogeneous populations are better suited to support
cooperation than homogeneous settings when the Prisoner’s Dilemma drives the evolutionary
dynamics of the system. The same occurs when the network growth is coevolving together with
the evolutionary dynamics, which also gives rise to highly cooperative scale-free networks. In the
latter case, however, the organization of cooperation is radically different with respect to the case
in which the underlying network is static. In this paper we study the structure of cooperation
in static networks grown together with evolutionary dynamics and show that the general belief
that hubs can only be occupied by cooperators does not hold. Moreover, these scale-free networks
support high levels of cooperation despite having defector hubs. Our results have several important
implications for the explanation of cooperative behavior in scale-free networks and highlight the
importance that the formation of complex systems have on its function.

Copyright c© EPLA, 2009

Evolutionary dynamics [1] has attracted a lot of inter-
est in the physics community lately, in particular in the
context of evolutionary games on graphs [2,3]. This is
a most relevant problem both from the physics view-
point as well as from its applications. Indeed, evolution-
ary games describe a local optimization dynamics, which
is largely different from the hamiltonian dynamics that is
the traditional physics paradigm. On the other hand, these
problems are related to important biological and socioeco-
nomical issues, such as the emergence of cooperation [4].
To date, a great deal of work has been done on evolu-

tionary game dynamics on fixed networks (see, e.g., [2] and
references therein). Beginning with the pioneering work
by Nowak and May [5], much research has focused on
whether the chances of establishing cooperative behavior
(if not global, at least to a large extent) are improved by

(a)E-mail: gardenes@gmail.com

the existence of a network (the hypothesis of network reci-
procity [6]). In the case of degree homogeneous networks
(such as, e.g., lattices, or Erdős-Renyi random graphs),
there have been several contradictory results. For instance,
it was recently reported that lattices inhibit cooperation
in Snowdrift games [7] but also that they enhance it [8].
In fact, both reports are correct in so far as, as has been
shown recently (see [3,9] and references therein), the
outcome of evolutionary games on these graphs is largely
dependent on the model details (such as evolutionary
update rule, network clustering, etc.). For degree-
heterogeneous networks, and in particular for scale-free
(SF) networks [10], there are grounds to claim an improve-
ment of cooperation at least in some parameter
regions [11–15]. The reason behind the increase of cooper-
ation levels in scale-free networks is that hubs are occupied
by cooperators, which ensures their long term success
and higher levels of cooperation in the network. In fact,
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the probability that a node of degree k plays as a cooper-
ator increases with k [16], which leads to an organization
of cooperation in scale-free networks radically distinct
from that of homogeneous topologies [11].
In all the aforementioned cases, the studied networks

are static, and taken as given from the start. Other papers
have considered networks co-evolving with the strategies
(see, e.g., [17–24]) but co-evolution took place from an
initial network where all the participating individuals were
already present when the process began. Therefore, the
question as to the origin of networks that support cooper-
ative behavior remained largely unanswered. On the other
hand, it would also be important to elucidate whether
playing while growing is qualitatively and quantitatively
equivalent to play once the networks are grown and to
test the validity of phenomenological arguments in the
new, more complex, dynamical scenario. We note that this
issue is relevant in the wider context of complex adap-
tive systems, namely the debate “form follows function”
or “function follows form”, which arises in many situations
of interest.
To answer the previous questions, we have recently [24]

introduced a self-organized network model and shown that
when networks grow coevolving with the strategies of
the individuals that take part on them, robust, highly
cooperative behavior also arises. More importantly, it was
also shown that such a growth dynamics gives rise (for
certain parameters, see below) to scale-free networks that
supported higher cooperative levels than the Barabási-
Albert ones. In this paper, we focus on a different aspect,
namely, on the microscopic interplay between structure
and dynamics that gives rise to the enhancement of coop-
eration as well as on its novel features. Specifically, our
results show that the statement that hubs are always
occupied by cooperators, is no longer true under coevo-
lution of network growth and strategies. Therefore, we
report on the structural and dynamical mechanisms allow-
ing that defector hubs can also be asymptotically stable
in a network sustaining high levels of cooperation. This
feature was already anticipated in [25], where by means of
a toy model it was analytically shown that under certain
conditions, it is possible to design heterogeneous networks
in which cooperator and defector hubs coexist in the
system. Here we show that structures similar to the theo-
retically proposed ones can and do arise in self-organized,
co-evolutionary networks and play a key role in governing
their properties.
Let us first describe the model of growing network

used henceforth [24]. As noted above, we change focus
to the long time dynamics of the strategists, in order to
discover the reasons for the well suitableness of the evolved
networks to support cooperation. Our model is defined
as follows: beginning with an initial complete graph of
m0 nodes, new elements are sequentially attached to
the network following a preferential attachment rule that
depends on the payoffs of a Prisoner’s Dilemma (PD)
game [26]. In this game, mutual cooperation (C) provides

the players with the reward payoff R, whereas mutual
defection (D) yields them the punishment payoff P . An
encounter between a cooperator and a defector leads
to the sucker’s payoff S and the temptation payoff T ,
respectively. We work here in the weak PD regime,
with parameters T = b >R= 1>P = S = 0. The network
growth process consists then of an evolutionary game
dynamics coupled to an attachment process. Evolutionary
game dynamics proceeds as follows: at equally spaced time
intervals τD every node plays a PD with her neighbors and
collects the corresponding payoffs. Subsequently, players
update their strategy according to the following rule
[11,13]: every node chooses randomly a neighbor, say j,
and, if the chosen neighbor’s payoff, fj(t), is larger than
her own fi(t), she copies her neighbor’s strategy with
probability

Pi =
fj(t)− fi(t)

bmax[ki(t), kj(t)]
, (1)

where ki(t) is the degree of node i at time t. The
above updating rule prevents that agents adopt a strategy
performing worse than theirs. However, if agents are
allowed to make the latter irrational moves the average
level of cooperation observed during network growth
decreases [27] as shown also for static networks in [28]. On
the other hand, the attachment process is as follows: at
equally spaced intervals τT , newcomers are incorporated
in the network by setting up m links, with probability
given by

Πi(t) =
1− ǫ+ ǫfi(t)

∑N(t)
j=1 (1− ǫ+ ǫfi(t))

, (2)

where N(t) is the size of the network at the considered
instant, and ǫ controls the strength of the game contribu-
tion to evolution, ǫ→ 0 and ǫ→ 1 (see footnote 1) being
the weak and strong selection limits, respectively. Thus,
nodes with larger payoffs are more often chosen for link-
ing by the newcomers, a mechanism we call evolutionary
preferential attachment (EPA).
Our object of study in this paper corresponds to the

case2 when τD/τT = 10, i.e., network growth is faster
than game dynamics, and with strong selection, ǫ→ 1.
As was shown in [24], small values of ǫ give rise to
homogeneous networks, the degree distribution becoming
more and more long ranged with increasing ǫ and finally
turning into scale-free networks when ǫ→ 1 (see figures
and discussion in [24]). In what follows, we will focus on

1Note that the strong selection limit is only defined approaching
1 from the left and excluding ǫ= 1.
2The topological and dynamical properties of the networks

generated using this recipe depend weakly on the specific choice
of τD/τT , at least when τD/τT > 1. Similar qualitative results are
obtained using τD/τT = 1, 5, 10, and 20. The choice of τD/τT < 1
leads to a situation in which cooperation and defection cannot
coexist as the system dynamics evolves either to an all-C or to all-
D configuration. Other rules for nodes attachment and evolutionary
dynamics might change both the topological and dynamical features
of the system [27]. We stress that our main goal is to show that there
are networks for which defector hubs can be asymptotically stable,
for which it is enough to find one network generation recipe.
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Fig. 1: (Colour on-line) Cooperation levels at the end of the
growth process and after letting the network relax as a function
of b. The original network was grown up to 4000 nodes with
ǫ= 0.99 and the asymptotic cooperation levels are computed
107 time steps afterwards. The networks generated are scale-
free networks with an average degree 〈k〉= 4. Full circles
show the cooperation level when the network stops growing.
The other curves show the asymptotic cooperation when the
network has been randomized (triangles), when the strategies
have been randomized (squares) and with both randomizations
(diamonds).

the structure of the cooperative organization rather than
on the structure of the network itself since we will consider
the already grown graph following [24] as the starting
point of our numerical experiments. As a reference, fig. 1
shows the average cooperation level in the steady state of
the network resulting from our model for different values
of the temptation parameter b (full circles), where it can
be seen that the cooperation level is quite large even for
large b.
In order to gain more insight in the relation between

network topology and the supported level of cooperation,
we studied how strategies evolve after the attachment
process is stopped. To this end, in fig. 1, we also show the
asymptotic behavior of the network when it is randomized
by reshuffling its links while preserving the degree of
each node (network randomization) and when the network
is kept constant but the strategies of the nodes are
reassigned at random, i.e. assigning nodes’ strategies with
a probability equal to the final density of cooperators
(strategy randomization). As can be seen from the plot,
the responsible for the cooperation increment is the
network structure, as its randomization leads to a decrease
of cooperation at levels far away from those of the original
one or even of a Barabási-Albert SF model network [10].
Note that strategy randomization does not prevent high
levels of cooperation, thus confirming that the governing
factor of the network behavior is the structure arising
from the co-evolutionary process. Moreover, we will see
later that the correlation between topological features
of the nodes and the strategies that occupy them is
high and thus destroying this correlation via the strategy
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Fig. 2: (Colour on-line) Cooperation levels in Erdős-Reńyi,
Barabási-Albert, and evolutionary preferential attachment
network models, as a function of the temptation parameter
b. The EPA network is built up using the model described in
the main text for b= 2.1 and ǫ= 0.99.

randomization affects strongly the asymptotic level of
cooperation. As further evidence supporting the fact that
the structure of the networks supports high levels of
cooperation, fig. 2 shows an example in which one of our
model networks, grown with b= 2.1, is used as a static
substrate for the evolutionary game dynamics. The plot
shows that these networks, resulting from the evolutionary
preferential attachment process, are remarkably more
favorable to cooperation than the Barabási-Albert SF
networks analyzed in prior studies [11,13,21].
We have further analyzed this issue in more details

looking at the distribution of cooperators with a given
degree. Networks are grown as discussed before, but once
they reach the size N , the evolutionary dynamics proceeds
without growth. The distribution of cooperator by degrees
is calculated at two later times. The results are shown in
fig. 3. In particular, we have computed the probability that
a node with degree k acts as a cooperator, Pc(k) (see foot-
note 3). Filled circles show the structure of cooperation
for the resulting network as a function of the degree of the
nodes, making it clear that the growth process leads to a
concentration of cooperators at intermediate degree nodes.
This comes from the fact that while the network is grow-
ing, newcomers join it with the same probability of being
cooperators or defectors. In this situation, defectors have
an evolutionary advantage as they get higher payoffs from
cooperator newcomers. Although these cooperators would
subsequently change into defectors and stop providing
payoff for the original defector, the stable source of new
cooperator nodes entering the network compensates for
this effect. Upon stopping the growth while letting strate-
gies continue evolving, we observe that low degree nodes

3Note that Pc(k) is assigned a value between 0 and 1 only
when nodes of degree k are present in the networks. Otherwise the
corresponding value of Pc(k) does not appear in fig. 3a. Therefore,
Pc(k) = 0 means that there are nodes with that degree, but they are
not cooperators.
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Fig. 3: (Colour on-line) (a) Cooperator distribution as a func-
tion of the degree at the end of the evolutionary preferential
attachment process (t= 0), t= 104 time steps later, and t= 107

time steps later, for b= 2.2, as indicated. Cooperators invade
almost all lowly connected nodes once the network stops grow-
ing. Note, additionally, that there are hubs playing as defectors
(the ones for which Pc(k) = 0) see footnote

3. In (b) we show
the running averages of the values Pc(k) in order to remove
the noise of the curves in (a). We have also included other
distributions Pc(k) taken at t= 0, 10

2, 103, 104, 105, 106 and
107. From the negative slope of Pc(k) for large values of k it
becomes clear that large degree individuals play as defectors
with high probability.

are rapidly taken over by cooperators, and after 104 time
steps they are majoritarily cooperators. On the contrary,
hubs are much more resistent to change, and even after 107

time steps not all of them have changed into cooperators.
We now come to the main novel dynamical feature of

this work. As shown in fig. 3 there are defector hubs at
very long time scales. The persistence of hub defectors
is a very intriguing observation, in so far as it is in
contrast with the arguments in [11,13,16] that show that,
in scale-free networks, hubs should be cooperators (i.e.,
a defector hub is unstable). In a few words, this occurs
because a defector sitting on a hub will rapidly convert its
neighbors to defectors, which in turn leaves it with zero
payoff; subsequently, if one of its neighbors turns back
to cooperation, the hub will eventually follow. It seems,
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Fig. 4: (Colour on-line) Average payoffs of cooperators and
defector nodes at the end of network growth (t= 0) as a
function of their degrees, k, for a realization of the evolutionary
preferential attachment model with b= 1.8. Note that the
similarity between cooperators’ and defectors’ payoffs implies
that imitation events take place on a long time scale.

however, that the coupling of evolutionary game dynamics
with the network growth leads to a configuration (both
structural and dynamical) that stabilizes the defectors on
hubs. Indeed, we have observed in our simulations that
hubs are defectors for as long as evolutionary preferential
attachment proceeds. The unexpected result that fig. 3
shows is that defector hubs can also be asymptotically
stable once the network growth has ceased, i.e., it became
static. It is important to stress that not all realizations of
the process end up with defector hubs; for low values of b,
this is practically never the case and almost no realization
produces defectors at the hubs. However, as b increases,
the percentage of realizations where this phenomenon is
observed increases rapidly.
The fact that defector hubs may have very long lives

may be the relevant feature for the behavior of the
network resulting from the growth process. Therefore, it
is important to understand the reason for such a slow
dynamics. We claim that it can be traced back to the
payoff structure of the network. In fig. 4, we present an
example taken from a single realization of the process. Had
we plot results of payoffs averaged over realizations, we
would not have been able to obtain this picture, because
in that case payoffs are seemingly very different in the
region of large degree, as a consequence of the statistical
properties of our networks, in which hubs do exist but
their degree and payoff depend on the specific realization.
As can be seen, the payoff grows approximately as a power
law; however, the key point here is not this law but the fact
that the payoffs for defectors and cooperators of the same
degree are very similar. In view of the strategy update
rule, eq. (1), it becomes clear that the evolution is very
slow and, if on top of that we take into account the role
of the degree in that expression, we see that hubs have a
very small probability to change their strategies, whatever
they are.
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Fig. 5: (Colour on-line) Degree-degree correlations of the
underlying networks. We plot the average nearest-neighbors
degree knn(k) of a node of degree k for several values of
the parameter b used to generate the networks. The rest of
parameters are the same used in fig. 1. Note that negative
correlations imply that hubs are not likely to be connected to
each other. See the text for further details.

Having identified the coexistence of cooperator and
defector hubs, we next find out whether this configuration
is asymptotically stable and why the hubs are not invaded
by opposite strategies. The reason is rooted in the struc-
tural properties of the network: cooperator and defector
hubs can coexist when they are not directly linked. This is
shown in fig. 5, where we have plotted the average degree
of the nearest neighbors of a node with connectivity k, i.e.,
the degree-degree correlations of the networks. As can be
seen from the figure, the networks are disassortative, i.e.,
with negative correlations in which highly connected nodes
are more likely connected to poorly connected nodes and
vice versa. Therefore, not only the hubs are not linked to
each other, but they share a set of poorly connected indi-
viduals. Due to the high payoffs obtained by the hubs, the
poorly connected individuals attached to the hubs expe-
rience cycles of cooperation and defection, which are, in
fact, the effect of the competition for invasion among the
two non-neighboring hubs. If such a local strategic config-
uration arises, as it is indeed the case discussed here, then
neither of the two hubs will take over the set of fluctu-
ating individuals, nor the latter will invade the hubs as
they are mainly lowly connected nodes with small payoffs.
This can be understood in terms of the so-called dipole
model [16,25], that shows analytically that two hubs with
opposite strategies can coexist as we have just described.
In particular, it can be argued that, in addition to fluc-
tuating nodes, cooperator hubs should also have a set of
cooperators linked to them, for this will provide the hubs
with a stable source of benefits. On the contrary, defector
hubs survive even if they are only connected to the set of
fluctuating individuals.
In order to test if the grown networks exhibit local

dipole-like structures, we have measured the connectivity
of the neighbors of defector and cooperator hubs, which
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Fig. 6: Connectivity matrix of cooperators and defectors (up)
and of cooperators with themselves (down). The element (i, j)
is set to 1 (dot in the figure) when a link between a defector
(cooperator) of degree i and a cooperator (cooperator) of
degree j exists.

we represent in fig. 6. The figure undoubtedly shows that
highly connected nodes playing as defectors are mainly
connected to poorly connected cooperators (the fluctuat-
ing strategists), whereas cooperator hubs are connected
to each other and also to a significant fraction of lowly
connected nodes. This fully confirms that, in contrast to all
previous results, there is a structure allowing the resilience
of defector hubs that is similar to the dipole model.
In summary, we have shown that the coupling of

evolutionary game dynamics with network growth gives
rise to novel population structures on scale-free networks,
characterized by the dynamic stabilization of defectors
on hubs. We have shown that these defector hubs can
be extremely long-lived due to the similarity of payoffs
between cooperators and defectors arising from the co-
evolutionary process. Moreover, we have been able to
link the payoff distribution to the network structure.
To our knowledge, this is the first time that the payoff
structure is invoked to understand evolutionary dynamics
on graphs, and we envisage that its use may lead to
more insights in future works. In addition, the fact
that the network self-organizes creating local dipole-like
structures during growth shows the relevance of the dipole
model [25] to understand how other naturally occurring
SF networks behave. For application to social issues, this
implies that structures in which highly connected agents
exploit less connected ones are dynamically possible,
closely resembling real but undesirable situations such as,
e.g., exploitation by a few privileged individuals or in
pyramid scams. In this respect, only stopping the growth
network would put an end to the exploitation process
in the context of this model, and even this would not
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always be enough in view of the stability of some defector
hubs. On the other hand, our simulations of the random
reshuffling of strategies on the final network provide
more constructive conclusions as well: in many cases,
resulting networks are very supportive of cooperation
and outperform other models such as, e.g., the Barabási-
Albert model. This may be of relevance to design of
organizations in order to improve their performance.
Finally, the phenomenon of dynamical stabilization of
unstable states may be more general, and it would be
worth exploring it by studying network coevolution with
different dynamical systems, such as, e.g., oscillators or
excitable media. This research would certainly be relevant
to address the question of how physical, chemical or
biological systems arise and perform.
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[8] Sysi-Aho M., Saramäki J., Kertész J. and Kaski K.,
Eur. Phys. J. B, 44 (2005) 129.

[9] Roca C. P., Cuesta J. and Sánchez A., Phys. Rev. E,
80 (2009) 046106.

[10] Bocaletti S., Latora V., Moreno Y., Chavez M.
and Hwang D. U., Phys. Rep., 424 (2006) 175.
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