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Abstract. Congestion in transport networks is a topic of theoretical interest and practical importance. In
this paper we study the flow of vehicles in urban street networks. In particular, we use a cellular automata
model on a complex network to simulate the motion of vehicles along streets, coupled with a congestion-
aware routing at street crossings. Such routing makes use of the knowledge of agents about traffic in nearby
roads and allows the vehicles to dynamically update the routes towards their destinations. By implementing
the model in real urban street patterns of various cities, we show that it is possible to achieve a global
traffic optimization based on local agent decisions.

1 Introduction

Traffic optimization has always been a crucial issue in
the context of communication and transportation sys-
tems [1–5]. A transport network is a network of roads,
streets, pipes, power lines, or nearly any structure which
permits either vehicular movement or the flow of some
commodity. In most of the developed countries, trans-
portation infrastructures originally designed to carry a
defined amount of traffic are often congested by an over-
whelming request of resources: this is the case of railroads,
airplane connections and, of course, urban streets. A naive
solution to the problem consists in expanding the infras-
tructure to match the increasing demand. However, this is
not always possible due to limitations in available space,
negative outcomes or shortness of resources. A better ap-
proach is to carefully tune the behavior of the existing
infrastructures to efficiently exploit their actual structure
and accommodate the new traffic demands.

The study of congestion in complex networks has
mainly focused on information systems, such as grid-
computing networks or the Internet [4,6]. In such con-
text, diverse solutions have been proposed in order to
increase the network load avoiding the onset of con-
gestion [7]. In particular, congestion-aware routing, in
which the nodes of the network (the routers) redirect
dynamically the information packets across the less con-
gested paths, has proved to improve notably the capacity
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of the network [8,9]. Particularly, it has been shown how
a limited knowledge of local network structure can largely
improve routing and navigability [10,11]. It thus seems
possible to make use of similar kinds of routing strategies
in transport networks. On the other hand, transport net-
works present important features different from informa-
tion systems. First, in a transport network the links (i.e.
the roads) carry the flow of vehicles, whereas the nodes
are just intersections between links. Therefore, one can-
not neglect the dynamics that occurs along the links: the
quality of vehicle movement along the roads characterizes
the functioning of transport systems. Another important
feature is that, since transport networks are embedded
in the real space, congestion is not located at particular
nodes of the system (such as the hubs in information sys-
tems) [12] but it geographically spreads across the network
from bottlenecks and it may eventually affect a large por-
tion of the system. Therefore, to study congestion-aware
routing of vehicular traffic in transport networks it is nec-
essary to incorporate the above two ingredients.

In this paper, we focus on the realistic scenario in
which only a local knowledge of congestion is available and
used by the agents to modify their routes. Our model is im-
plemented in terms of vehicular traffic and we assume that
drivers know the shortest paths to their destinations and,
simultaneously, they are aware about the congestion of
nearby roads. Both informations are easily accesible nowa-
days from navigating systems, visual inspection and short-
range wireless communication with other vehicles [13]. We
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Table 1. City networks considered: N and K are the number of nodes and links in the network, W and 〈l〉 are respectively the
total length of the edges and the average edge length (both in meters) [14]. We report the value α∗ that maximizes the average
number of completed routes per vehicle (see text).

City N K W 〈l〉 α∗ α∗

(L = 0.06) (L = 0.1)

Barcelona 210 323 36179 112.01 0.63 2.04

Bologna 541 773 51219 66.26 0.87 1.54

Brasilia 179 230 30910 134.39 1.52 2.09

Los Angeles 240 340 38716 113.87 1.82 2.43

London 488 730 52800 72.33 1.02 1.26

New Delhi 252 334 32281 96.56 1.49 2.21

New York 248 419 36172 86.33 0.74 1.77

Washington 192 303 36342 119.94 1.33 2.14

show how, by conveniently controlling agent decisions, it
is possible to minimize the overall congestion of the sys-
tem and achieve performances at least as good as those
obtained with complete (global) traffic information.

2 The model

The three ingredients of the model are: (i) the sub-
strate graph, (ii) the vehicular dynamics along the streets,
(iii) the routing at street crossings.

2.1 Urban graphs

The dynamics of vehicles takes place on top of urban
graphs. We consider the street patterns of a city as a
weighted graph with N nodes and K edges. Each edge of
the network represents a street, along which vehicles move,
whereas nodes account of intersections between streets.
The weight of each edge is proportional to the length of
the road [14]. Here we assume for simplicity that each
edge allows movement of vehicles in both directions. We
have considered eight networks representing 1-square mile
samples of urban street patterns of real cities [14] (see
Tab. 1 for details). The above city set ranges from self-
organized cities, such as Bologna, Barcelona and London,
grown through a continuous process out of the control of
any central agency, to grid-like cities such as Los Angeles,
New Delhi and Washington, realized over a short period
of time as the result of urban plans, and usually exhibiting
grid structures.

2.2 Model of vehicular dynamics

The vehicular dynamics along the links of the urban
graph is simulated by means of cellular automata [15–17].
In particular we use the Nagel-Schreckenberg (NaSch)
model [18]. To this end, every link (street) of the city graph
is divided into a sequence of cells of equal length (5 m)
so that no more than one vehicle can occupy a cell at
every time step. Each vehicle is assigned a velocity of v

cells per time step [19] in the range v ∈ [0, vmax]. We set
vmax = 3, corresponding to the typical maximum velocity
of about 50 Km/h inside urban areas. According to the
NaSch model, vehicles accelerate (decelerate) when the
next cells are empty (occupied). Additionally, the intersec-
tions between streets (the nodes of the graph) also allow
only one vehicle at a given time, so that several vehicles
coming from different adjacent streets may compete for
the same intersection [20]. For this reason, vehicles expe-
rience a slow down while approaching a road intersection,
as if the end of the lane presented a hindrance, so that
they arrive at the last cell of the edge with v = 0. At this
point, a vehicle waits to enter into the node [21], where
it gets stuck until the first cell of the edge in the proper
outgoing direction is free. This waiting locks the incoming
flows from the edges. Therefore, bottlenecks are created
from the nodes and spread along the edges (roads) of the
graph.

2.3 Routing strategy

How vehicles decide their outgoing direction when leaving
a node? Here we implement a congestion-aware routing as
a minimization problem that takes into account the length
of the path and also the traffic along the outgoing edges.
When a vehicle is at a node i it needs to choose a new
node n in its neighborhood Γi as the next hop on its path
towards the destination t. For each of the neighbouring
nodes n, a penalty function Pn is defined as:

Pn = (din + dnt)(1 + cin)α , n ∈ Γi (1)

where din is the distance between nodes i and n, and cin

(cin ∈ [0, 1]) represents the congestion of the link i → n,
measured as the fraction of occupied cells in the link. The
exponent α ≥ 0 accounts for the weight given to the local
congestion in the drivers decision. The vehicle chooses the
node n with the minimum penalty Pn. If cin = 0 the
penalty function Pn is nothing else than the length of the
shortest path to t, passing by node n. When cin ≥ 0 the
entire shortest path length is corrected by the factor (1 +
cin)α. In this way, we assume that the vehicle projects
the congestion cin of the link i → n on the entire path
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(a) (b) (c)

Fig. 1. Urban street network of Bologna (one-square-mile sample). Links are drawn with a thickness proportional to their
congestion c: from (a) to (c) a more congestion-aware strategy rules the same amount of traffic, which progressively flows in
a larger number of streets. The traffic load is fixed at L = 0.2, while the values of α considered are respectively equal to 0, 1
and 2.

(a) (b) (c)

Fig. 2. Urban street network of London (one-square-mile sample). Links are drawn with a thickness proportional to their
congestion c: from (a) to (c) a more congestion-aware strategy rules the same amount of traffic, which progressively flows in
a larger number of streets. The traffic load is fixed at L = 0.2, while the values of α considered are respectively equal to 0, 1
and 2.

i → n → t. Note that, when α = 0, local congestion plays
no role in the routing and vehicles follow the shortest paths
to their respective destinations.

3 Results

We evaluate our model through computer simulations.
First, we investigate how local knowledge can be exploited
by a congestion-aware routing strategy; then, we report
how the availability of global knowledge about congestion
affects the traffic optimization.

We initially place a number of vehicles proportional to
the number of cells in the network, so that the network
load, L = V

C (i.e. the ratio between the number of vehi-
cles V in the network and the total number of cells C), is
the same for all the cities considered. Initially, the vehicles
are assigned a random source (their initial location) and
a random destination node. At each time step, vehicles
move (if possible) in the system according to the NaSch

rules and the congestion-aware routing, equation (1). Fi-
nally, when a vehicle reaches its destination it is randomly
assigned to a new destination node, so that L is constant
in time. After an initial transient dynamics, the system
reaches a steady state in which data is collected.

3.1 Local knowledge

We report the dynamical behavior of the model in the
different cities considered as a function of the routing, α,
and the network load, L. First, in Figures 1 and 2 we show
the congestion pattern across the streets of Bologna and
London for a load L = 0.2, and for three different values
α = 0, 1, 2. It is clear that the larger the value of α, the
more homogeneously distributed is the traffic. We have
found similar results in all the cities under analysis. In or-
der to study and quantify the effects of congestion in the
vehicular motion we analyze the so-called fundamental di-
agram [18]. The fundamental diagram represents the net-
work mean flux f (the average value of fluxes on streets)
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as a function of the traffic load L. This is shown in Fig-
ure 3a for different values of α. Each of the curves f(L)
exhibits the two typical traffic phases: free-flow (in which
the flow increases as a function of the load) at low L,
and congested-flow (the flow decreases as a function of the
load) at higher values of L. Interestingly, both the value of
maximum flow and the transition point from the free-flow
regime to the congested-flow regime increase with α.

In particular, when the vehicles follow shortest paths
(α = 0), they tend to concentrate in nodes and link with
high betweenness, thus, even a small density of vehicles
can result in a heavy load at high betweenness streets.
This gives rise to the formation of clusters of jammed ve-
hicles that cannot easily move and, although large regions
of the city are quite uncongested as shown in Figures 1a
and 2a, the overall flux of the network is largely reduced.
We observe similar behavior in all the other cities under
analysis.

The above result is confirmed by the sharp decrease of
the average vehicle speed v as a function of L for α = 0
shown in Figure 3b. On the other hand, as the routing
strategy becomes more congestion-aware, the traffic is di-
verted from shortest path to free (and longer) paths caus-
ing that both the mean speed of the vehicles and the mean
flux on the streets are largely increased with respect to the
case α = 0, since more vehicles are now able to reach their
destinations without being blocked in congested nodes.
More interestingly, we observe in Figure 3b that for α = 2
and 3 the average velocity v does not decrease monotoni-
cally as a function of L but it reaches a maximum vmax(α)
at some load L∗(α). However, having a larger average ve-
locity does not imply that the network is working in a
more efficient way. In fact, for large values of α, the ve-
hicles can move faster running across longer paths at the
expense of delaying the arrival to their destinations.

A measure of the efficiency of the routing is the aver-
age number of routes r completed by a vehicle during one
hour. The value of r is reported in Figure 3c as a function
of L. The results indicate that, because of congestion, the
number of completed routes decreases when the number
of vehicles in the city increases. The precise dependence
of r on the load is related to the value of α. For α = 0, the
average vehicle speed has a very sharp drop as the load
increases. For the congestion-aware strategy with α = 1
the decrease is smoother than for α = 0, while for α = 2
(α = 3) the value of r is smaller than that of α = 1 when
L < 0.1 (L < 0.14), but larger when L > 0.1 (L > 0.14).
In practice, for a given load L, the function r(α) shows a
maximum at some α∗ (see inset in Fig. 3c). The value of α∗
is seen to increase with the load L, pointing out that the
more congested the network is, the more congestion-aware
has to be the routing to reach the optimal functioning. On
the other hand, the maximum value of r, r(α∗), decreases
with L. Similar results as those shown for Bologna have
been found for the other cities studied. The best routing
exponents α∗ obtained for two realistic values of the vehi-
cle density, namely L = 0.06 and L = 0.1 [3], are reported
in Table 1. It is clear that the optimal value α∗ depends
strongly on the particular topology of the urban graph,

(a)

(b)

(c)

Fig. 3. (Color online) Average street flow (a), average vehicle
speed (b), and average number of completed routes per vehicle
per hour (c) as a function of the network load L.The network
considered is that of the city of Bologna.

since cities with similar number of nodes, links and av-
erage link length exhibit different values. Particularly, we
note that self-organized cities such as Bologna, Barcelona
and London exhibit smaller values of α∗ both for L = 0.06
and L = 0.1 with respect to other cities, whereas grid-like
cities as Los Angeles, New Delhi and Washington are char-
acterized by the largest values of α∗. The city of New York
does not fit well in this classification, mainly because its
network is heavily affected by the shape of the island of
Manhattan.



S. Scellato et al.: Traffic optimization in transport networks based on local routing 307

Fig. 4. (Color online) Ratio between the average edge be-
tweenness of the road where the vehicles are moving and the
average edge betweenness of the city as a function of the net-
work load L and for different values of the parameter α. The
network considered is that of the city of Bologna.

We report in Figure 4 the ratio b between the aver-
age edge betweenness of the roads where the vehicles are
moving and the average edge betweenness of the whole
network, for different values of L and α: when this value
is higher than 1, vehicles are moving in streets with high
betweenness, while if this value approaches 1 vehicles are
more evenly distributed across the network. We observe
that when α = 0 vehicles are more likely to use streets
with high betweenness while, on the contrary, when α > 0
is adopted the average betwenneess of the used roads is
lower, since vehicles spread also in less central routes in
order to avoid congestion in central areas. Finally, when
the load is high the vehicles are moving so slowly that
they occupy, on average, the whole city and the differ-
ences between the various strategies disappear. This anal-
ysis shows that a more congestion-aware routing strategy
diverts vehicles on roads with lower betweenness.

3.2 Global knowledge

Even though a precise information on global congestion
is in practice rarely available, we finally study the case
in which each vehicle knows exactly the congestion in ev-
ery link of the network. Namely, we compare the results
obtained with equation (1) with those obtained with the
penalty function

Pn = (din + dnt)(1 + 〈cint〉)α, (2)

where 〈cint〉 accounts of the average road congestion along
the path from i to t passing by n. Therefore, we now
project the effect of the average congestion of the path (ob-
tained from the global knowledge) on the path distance.

The average number r of completed routes per hour
is reported in Figure 5. The figure shows that the rout-
ing with global knowledge does not perform much better
than that of equation (1). Additionally, at large loads, lo-
cal knowledge outperforms global knowledge in terms of r.
Moreover, when global information is taken into account,
the optimal routing α∗ increases. This is related to the

Fig. 5. (Color online) Average number of completed routes per
vehicle for the global-aware strategy. In the insets we report r
as function α. The network considered is that of the city of
Bologna.

fact that, since congestion in links close to vehicle loca-
tion is always up-to-date and therefore accurate, routing
based on local congestion needs lower values of α∗ to di-
vert vehicles on free streets.

4 Conclusions

Congestion in transportation and communication net-
works is a serious problem for both public goods and users
time. In this paper we have integrated the three essential
ingredients of vehicular traffic in urban settings, namely
the graph structure of urban patterns, a cellular automata
model for vehicular dynamics along the links and the use
of a congestion-aware routing inspired to data traffic in the
Internet. We have provided a simple and feasible model
where only local information about traffic congestion is
used to route vehicles. Our results show how each indi-
vidual agent can better organize its motion based on its
limited local knowledge of traffic and, at the same time,
achieve optimal performances at the global system level.
We have implemented this model in several real cities with
different structural properties showing how the optimal
vehicle routing strategy depends on the network topology.
Finally, we have shown that, counterintuitively, a (unfea-
sible) routing based on a global knowledge of congestion
is not suited when the load of vehicles is large. The pro-
posed routing model is general enough to be applied to
several types of human transport networks. Moreover, the
dynamic and distributed nature of the model allows sev-
eral applications to be built which may implement the
congestion-aware strategy to improve the available vehi-
cle’s navigation systems.
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financial support from the MICINN (Spain) through
Grant FIS2008-01240.



308 The European Physical Journal B

References

1. J.G. Wardrop, Some theoretical aspects of road traffic re-
search (Institute of Civil Engineers, 1952)

2. D. Helbing, Rev. Mod. Phys. 73, 10067 (2001)
3. D. Chowdhury, L. Santen, A. Schadschneider, Phys. Rep.

329, 199 (2000)
4. R. Pastor-Satorras, A. Vespignani, Evolution and

Structure of the Internet: A Statistical Physics Approach
(Cambridge Univ. Press, Cambridge, 2004)

5. D. Belomestny, V. Jentsch, M. Schreckenberg, J. Phys. A
36, 11369 (2003)

6. S. Boccaletti, V. Latora, Y. Moreno, M. Chavez, D.U.
Hwang, Phys. Rep. 424, 175 (2006)
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