
Evolutionary games defined at the network mesoscale: The Public
Goods game
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The evolutionary dynamics of the Public Goods game addresses the emergence of cooperation

within groups of individuals. However, the Public Goods game on large populations of

interconnected individuals has been usually modeled without any knowledge about their group

structure. In this paper, by focusing on collaboration networks, we show that it is possible to

include the mesoscopic information about the structure of the real groups by means of a bipartite

graph. We compare the results with the projected (coauthor) and the original bipartite graphs and

show that cooperation is enhanced by the mesoscopic structure contained. We conclude by

analyzing the influence of the size of the groups in the evolutionary success of cooperation. VC 2011
American Institute of Physics. [doi:10.1063/1.3535579]

Evolutionary game dynamics on graphs has become a hot

topic of research during the last years. The attention has

been mainly focused on two-player games, such as the

Prisoner’s Dilemma game, since the pairwise interactions

can be easily implemented on top of networked sub-

strates. However, for m-player games, such as the Public

Goods game, the microscopic description about the pair-

wise interactions contained in the network is not enough,

since m-player game are intrinsically defined at the meso-

scopic network level. This mesoscopic level describes how

individuals engage into groups where the Public Goods

games are played. However, the actual group structure of

networks has not been considered in the literature, being

automatically substituted by a fictitious one. In this work,

we study the emergence of cooperation in collaboration

networks, by incorporating the real group structure to

the evolutionary dynamics of the Public Goods game.

Our results are compared with those obtained when the

mesoscopic structure is ignored. We show that coopera-

tion is actually enhanced when the group structure is

taken into account, thus providing a novel structural

mechanism, relying on the mesoscale level of large social

systems, that promotes cooperation. Moreover, we fur-

ther show that the particular characteristics of the group

structure strongly influence the survival of cooperation.

I. INTRODUCTION

Evolutionary game theory on graphs is recently attracting

a lot of interest among the community of physicists working

on complex systems.1,2 This is a very appealing research

topic because it combines two important ideas. First, interac-

tions take place on a (possibly complex) network,3,4 general-

izing the lattice perspective; second, that the dynamics taking

place on that substrate needs not be the traditional one, but

rather it can arise from an evolutionary approach.5 On the

other hand, from the applications viewpoint, studying evolu-

tionary games on graphs is one of the several avenues pro-

posed to understand the emergence of cooperation in

different contexts.6 This is a most relevant issue that arises,

for instance, in understanding the origin of multicellular

organisms,7 of altruistic behavior in humans and primates,8 or

the way advanced animal societies work,9,10 to name a few.

Research on evolutionary game theory on graphs

focused on the problem of the emergence of cooperation has

considered mainly the Prisoner’s Dilemma game (PDG).11,12

The Prisoner’s Dilemma game describes a situation in which

cooperation is hampered by the players’ temptation to defect

(defecting yields more payoff than cooperating when facing

a cooperator) and by the risk arising from cooperation

(cooperating with a defector yields the lowest payoff).13

This leads to a social dilemma because when players coop-

erate both the total benefit and the individual benefit are

higher than when mutual defection occurs. While evolution-

ary dynamics leads all the individuals to defection when

interactions take place in a well-mixed population (every

player interacts with every other one), the existence of a net-

work structuring the population can sometimes promote the

emergence of cooperation,14 but this depends strongly on

the details of the network and the dynamics.2,15

Much less attention has been paid to the m-player gener-

alization of the PDG, also called Public Goods Game (PGG)a)Electronic mail: gardenes@gmail.com.
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(Ref. 16): Cooperators contribute an amount c (“cost”) to

the public good; defectors do not contribute. The total contri-

bution is multiplied by an enhancement factor r<m, and the

result is equally distributed between all m members of the

group. Hence, defectors get the same benefit of cooperators at

no cost, i.e., they free-ride on the cooperators’ effort. This is

an alternative view of the social dilemma posed by the so-

called tragedy of the commons.17 As with the PDG, the evolu-

tionary outcome of the PGG differs if played on a well-mixed

population (where once again defection is selected) or on a

network structure. Thus, Brandt et al.18 showed that local

interactions can promote cooperation in the sense that full

cooperation is obtained for values of r well below the critical

value r¼m. This result, arising from simulation in a hexago-

nal lattice, was later generalized to other lattices in Ref. 19

and to scale-free graphs20 in Ref. 21.

In this work, we focus on the mesoscopic structure of

the networks and relate it to the situation represented by a

PGG. Applications of this game arise naturally when a num-

ber of people have to work together toward a common goal,

either to obtain some benefits or to avoid some negative

effects. While trying to stabilize the Earth’s climate is a dra-

matic example of the latter,22 coauthoring scientific papers is

a direct application of the PGG in the positive sense. This

provides a specific setting in which we can test the ideas

about the emergence of cooperation in PGG on real social

networks, as several collaboration networks have been

mapped and are publicly available.23–25 In this respect, it is

worth noticing that the asymptotic behavior of evolutionary

games in real social networks can be very different from that

observed in model networks, and, in fact, mesoscopic scales,

clustering, and motifs have been shown to play a key role in

governing the game dynamics.26–29 Therefore, it is important

to assess to which degree, if at all, is cooperation promoted

in PGG on collaboration networks. On the other hand, while

collaboration networks are in fact bipartite, as coauthors are

connected to papers, they are very often used in a projected

mode, by connecting directly coauthors among themselves.

Thus, the question arises as to the relevance of the meso-

scopic structure (as defined by the papers) and the possible

differences it may give rise to when the original bipartite or

the projected network are considered. This is the sense in

which the present work contributes to the advancement of

our knowledge of the PGG on graphs, going beyond the

results on model networks19,21 to an analysis in depth of the

effects of the group/mesoscopic features of real networks,

which, to our knowledge, have never been studied in the con-

text of PGG. On the other hand, as the group features of real

collaboration networks can be easily captured by model bi-

partite graphs, our approach paves the way to a more careful

study about the impact of the mesoscopic structural patterns

on the evolutionary success of cooperation.

This paper is structured as follows: In Sec. II, we intro-

duce the usual formulation of the PGG on complex networks

and present the new formulation based on bipartite graphs,

incorporating the interaction groups, i.e., the mesoscale

structure of the population. Besides, in this section, we

briefly introduce two different versions of the PGG and the

different evolutionary rules we will use. In Sec. III, we focus

on scientific collaboration networks to show the different

evolutionary outcomes of the projected and the bipartite

representations. Namely, we show that the mesoscopic struc-

ture composed of the interaction groups plays a relevant role

in the promotion of cooperation. In Sec. IV, we focus on the

structural characteristics of the mesoscale. In particular, we

analyze the role of the size of the interaction groups. The

general conclusion of our analysis is that the larger the inter-

action groups, the more difficult is the cooperation promoted.

Finally, in Sec. V, we summarize the main results and pose

some relevant questions that arise from them.

II. MODELING EVOLUTIONARY DYNAMICS OF
PUBLIC GOODS GAME

A. The evolutionary Public Goods game

The classical setting of a PGG models an economic or

social group of m agents whose strategies can be cooperation

(C) or defection (D). As explained above, if an agent cooper-

ates, she invests a quantity c into the public pot whereas

defectors do not contribute. Therefore, in a group with x
cooperators (and m� x defectors), the total amount of invest-

ments is xc. This amount is then multiplied by an enhance-

ment factor r> 1 so that the total investment increases to

rxc. This amount is then distributed among all the partici-

pants of the PGG regardless of their contributions. Therefore,

the benefit of each defector will be

f D ¼ rxc

m
; (1)

while for a cooperator the benefit decreases to f C¼ f D� c.

From these benefits, it is obvious that defectors will earn

more than cooperators, f D� f C. Moreover, while f D � 0,

cooperators only have positive benefits when rx>m. This

means that a lonely cooperator playing with a group of

defectors will always lose (f C< 0) whenever r<m. There-

fore, the Nash equilibrium of a PGG with r<m is a full

defection situation (i.e., a group in which all players defect).

However, this equilibrium is not Pareto optimal since full

defection yields zero total reward whereas if everyone con-

tributes to the PGG (full cooperation) the group will obtain

the maximum total reward. Thus, here is where the social

dilemma lies.

In an evolutionary context, individuals are not consid-

ered fully rational, so that they do not necessarily play a

Nash equilibrium found from a rational analysis of the PGG.

Besides, agents are not organized into a single group but in

general a large population of N�m agents is allowed to

organize into a large number of groups with m agents. The

relevant difference with the classical setting is the introduc-

tion of a dynamical evolution: Agents play the game several

times, and they are allowed to change their strategy after

each round of the game. These strategy changes obey certain

evolutionary rules by which agents evaluate their perform-

ance comparing their fitness with those of the rest of the pop-

ulation (see Sec. II D).

In a well-mixed population, the agents play within

several groups during the different rounds of the game. In
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particular, before each round of the PGG, the groups are

formed randomly. Under this well-mixing assumption, it can

be shown that the evolutionary dynamics ends up in full

defection whenever r<m. Therefore, defection again domi-

nates over cooperation as in the (static) classical setting.

Driven by the abundance of examples in which cooperation

is observed in social, economical, and biological situations

similar to those defined by the PGG, it is clear that some

mechanisms beyond irrationality and evolution are at the

core of the survival of cooperation. In this line, several

mechanisms have been proposed such as the influence of

human beliefs,30–32 the addition of costly punishment,18,33

meaning the possibility of punishing defectors after a round

of the PGG, or the addition of reputation18 to agents, which

signals the behavior of these players in past rounds of the

game. These social-based mechanisms allow to enhance the

contributions to the PGG, thus favoring the survival of

cooperative behaviors.

B. The Public Goods game on complex networks

The aforementioned mechanisms (punishment and repu-

tation) are clearly based on human behaviors that are plausi-

ble to appear in social systems. However, cooperation in the

PGG can also be promoted by taking into consideration the

structure of interaction between players. To this aim, one

leaves out the well-mixing assumption and works with a

static substrate of interactions. As introduced above, in Ref.

18, it was shown that, in the case of the PGG, cooperation

was significantly promoted when considering Euclidean latti-

ces. The importance of the structure of interactions in the

success of cooperation in the general context of evolutionary

game theory is underlined by the term network reciprocity.6

The interaction backbone of real social systems is how-

ever far from Euclidean structures. In particular, many stud-

ies in the last decade have addressed the characterization of

such social systems as complex networks.3,4 These networks

are a collection of N nodes (accounting for each agent of the

system) and L links (describing the interaction between pairs

of agents). Complex networks typically display structural

patterns that are absent in regular geometries, such as the

small-world property34 or scale-free patterns for the number

of connections of the agents.20 On the other hand, real com-

plex networks are sparse (L�N) meaning that the well-

mixed assumption (which would imply that L�N2) does not

hold. Thus, it is necessary to study how the structure of these

networks affects the evolution of cooperation. As in the case

of regular lattices, the first evolutionary social dilemma to be

studied on top of networks was the PDG. The main result of

these studies is that, under certain conditions,2,15 cooperation

is further enhanced with respect to the case of regular latti-

ces. Moreover, it was observed that the degree-heterogeneity

of scale-free networks significantly increases the survival of

cooperation with respect to random complex networks,35–37

as was subsequently shown21 for PGG, thus reinforcing the

message that scale-free structures are natural promoters of

cooperation.

The implementation of the PGG on top of complex net-

works is, however, not as straightforward as in the case of

the PDG. The reason is clear: While the PDG is defined for

pairwise interactions and thus the possible games are

dictated by the collection of links of the network, for

m-player groups (m>2), we do not have the information

about how to engage players in groups. Therefore, some a
priori assumptions about the inner group structure of com-

plex networks have to be made. In particular, most of the

works in the literature about the PGG on networks21,38–46

overcome this lack of information about their group struc-

ture, by assuming that a complex network automatically

defines N different groups of players. Namely, each of these

groups is defined by considering one agent i and her ki neigh-

bors as dictated by the network topology (see Fig. 1). Obvi-

ously, the size of these groups is not regular since the

number of neighbors each agent has can fluctuate around the

average connectivity of the complex network. In scale-free

networks, these fluctuations diverge since the probability of

finding an individual with k neighbors follows a power-law,

P(k)� k�c with 2� c� 3. Thus, one finds a large number of

small size groups (those centered around agents with small

connectivity) and a few of them composed of many agents

(corresponding to groups formed around the hubs of the sys-

tem). On the other hand, since each individual i participates

in kþ 1 groups, the hubs participate in a large number of

groups.

Given the above definition for the group structure, the

implementation of the evolutionary PGG is as follows. At

each time step of the evolutionary dynamics, each player i
plays the PGG within the kiþ 1 groups she belongs to (using

the same strategy in each PGG). Once all the games are

played, each agent i collects the total benefit, fi, obtained. If

the agent plays as a cooperator, she pays a cost, ci, for partic-

ipating in each of the kiþ 1 groups. Here we will consider

two situations for assigning the value of the investment

made in each of the PGG she participates (as introduced in

Ref. 21). First, we consider that a cooperator agent pays a

fixed cost ci¼ z per game (FCG) played; thus, her total

investment raises to (kiþ 1)z. The second option is to assume

a fixed cost z per individual (FCI) playing as cooperator.

FIG. 1. Schematic representation of the usual way for defining the interac-

tion groups of the PGG on complex networks. Each of the four agents

defines a group composed of her and its neighbors. As a result, the above

graph contains three groups composed of two nodes and a big one containing

the four nodes of the graph.
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Therefore, in this latter scenario, the quantity z is equally dis-

tributed by contributing a quantity ci¼ z =(kiþ 1) to each

group she participates. The convenience of using either the

FCG setting or the FCI one depends on the particular sce-

nario of the PGG. For instance, the FCG setting deals with

accumulative costs, such as the taxes associated to each fi-

nancial activity. On the other hand, the FCI setting addresses

situations in which the cost is associated with a finite

resource equally distributed among individuals, such as the

available time to distribute among parallel tasks.

Having in mind the above two settings for deciding the

contributions of cooperator players, we can write the benefits

of each agent given her strategy and those of her first and

second neighbors. If we denote by xt
i the strategy of agent i

during round t of the PGG, so that xt
i¼1 when playing as

cooperator and xt
i¼0 if defecting, the benefit fi(t) obtained

after the round reads

fiðtÞ ¼
X

j ¼ 1NAij

r
�PN

l¼1

Ajlx
t
lcl þ xt

jcj

�
kj þ 1

� kix
t
ici

þ
r
�PN

j¼1

Aijx
t
jcj þ xt

ici

�
ki þ 1

� xt
ici : (2)

In the above equation, we have made use of the adjacency

matrix of network whose entries are Aij¼Aji¼ 1 when i and

j are connected and Aij¼ 0 otherwise, with Aii¼ 0 (no self-

links). Note that the first two terms of Eq. (2) correspond to

the PGG played within the groups formed around the neigh-

bors of i while the last two terms account for the game

played by i and her neighbors.

C. The Public Goods game on bipartite graphs

The definition of the groups where the PGG takes place

as the sets formed by each agent and her network neighbors

arises from using the network of contacts as the map of agent

interactions. However, most social networks are constructed

from real data containing information about the groups

formed by individuals. The well-known examples are collab-

oration networks in which agents can be scientists collabo-

rating to perform research.23–25 In Fig. 2, we plot how

collaboration data are usually collected to form a projected

(or one-mode) complex network of the interactions among

agents (the coauthor network). The central plot corresponds

to the original data containing several collaboration groups

among six agents. These groups are then translated into a

complex network by projecting the original data (left plot).

The collection of groups then transforms into a starlike graph

in which there is a central hub (node 6) with five neighbors,

some of them connected and thus forming triangles with the

central hub. One easily realizes that groups defined on the

projected network itself (following the definition given in

Sec. II B) are rather different from the original ones.

On the other hand, one can take advantage of the

information available in collaboration data by constructing a

bipartite graph.47–49 The structure of this bipartite graph is

represented in the right plot of Fig. 2. As observed, the bipar-

tite representation contains two types of nodes denoting

agents (left column of round nodes) and collaborations (right

column of squared nodes), respectively. It is clear that

connections are restricted to link nodes of different types

(i.e., belonging to different columns). Thus, such a bipartite

representation preserves the information about the group

structure of the original data and constitutes a well-suited

framework for studying dynamical processes intrinsically

defined at a system mesoscale50 (in our case defined by the

collaboration groups) as is the case of the PGG.

Let us now formalize the bipartite graph in which the

evolutionary dynamics of the PGG takes place. The graph will

be composed of N agents playing the PGG within P groups.

The particular way agents engage into groups will be encoded

by a P�N matrix Bij usually called biadjacency matrix.

Given the bipartite structure of the graph, the i-th row

accounts for the individuals participating in group i, so that

agent j is engaged in group i whenever Bij¼ 1 while Bij¼ 0

when she is absent (note that now Bii needs not be zero as

rows and columns represent different entities). Alternatively,

the i-th column contains the information about the groups con-

taining agent i: Bji¼ 1 when agent i participates in group j and

Bji¼ 0 otherwise. Given the biadjacency matrix we can

calculate the number of groups agent i takes part, qi, as

qi ¼
XP

j¼1

Bji; ði ¼ 1;…;NÞ : (3)

Alternatively, the number of participants contained in group

i, mi, reads

FIG. 2. (Color online) Schematic repre-

sentation of the two different forms of

encoding collaboration data. In the cen-

tral plot several collaboration groups

represent the original data. The interac-

tions among agents can be translated

into a projected complex network (left).

However, if one aims at preserving all

the information about the group struc-

ture, a representation as a bipartite graph

(right) is more appropriate.
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mi ¼
XN

j¼1

Bij; ði ¼ 1;…;PÞ : (4)

Having introduced the structure of the bipartite graph

describing the relations between agents and groups, we

model the PGG. At each time step, each player i (i ¼ 1, …,

N) plays a round of the PGG each at every group she partici-

pates in as defined by the biadjacency matrix of the bipartite

graph, Bji ¼ 1 (j¼ 1,…,P). Obviously, the benefit obtained

by the agent depends on both her strategy and those of the

agents participating in the same groups. The net benefit after

playing round t of the PGG now reads

fiðtÞ ¼
XP

j¼1

rBji

mj

XN

l¼1

Bjlx
t
lcl

" #
� xt

iciqi_ (5)

Note that the sum in the above expression accounts for qi

PGGs played by i while the last term is for the cost associ-

ated to participating as cooperator.

D. Strategy update: Evolutionary dynamics

After a round of the PGG is played, agents update their

strategies. This update is driven by the benefits obtained by

the agent and her neighbors in the last round of the game.

Thus, the update stage keeps the local character by restricting

the information available to agents about the benefits of other

players to their local (one-mode) network neighborhoods.

Note that the group structure described in the bipartite repre-

sentation plays no role in this stage, as update rules make use

of the network of contacts. Thus, the update process takes

place in the same way regardless of the representation (one-

mode network or bipartite graph) of the PGG we are using.

In this work, we will use three different update rules in

order to test the robustness of the results obtained. In all the

update rules, each agent decides to use the strategy of a given

neighbor j in the next round of the game (xtþ1
i ¼ xt

j) or to stay

the same (xtþ1
i ¼ xt

i). The three update rules work as follows:

• Unconditional Imitation (UI):14 agent i compares her pay-

off with her neighbor with the largest payoff, say agent j.
Agent i will copy the strategy of agent j provided fi < fi.
Otherwise, agent i will remain unchanged. The probability

of copying agent j is given by

Pj ¼ Hðfj � fiÞ with fj ¼ maxffljAil ¼ 1g ; (6)

where H(x) is the Heaviside step function, H(x)¼ 1 when

x > 0 and H(x)¼ 0 for x�0.
• Fermi rule:51,52 agent i chooses one neighbor at random,

say agent j, and compares their respective benefits. The

probability that i copies the strategy of the chosen neighbor

obeys a saturated Fermi function of the benefit difference

fi � fj Thus, the probability that i decides to take the strat-

egy of an agent j reads

Pj ¼
Aij

ki
� 1

1þ ebðfi�fjÞ
: (7)

where b is a free parameter of the model.

• Moran rule (MOR):15,53 agent i chooses one of her neigh-

bors proportionally to her payoff. Subsequently, agent i
adopts automatically the state of the chosen neighbor.

Therefore, the probability of choosing agent j is given by

Pj ¼
AijfjPN

l¼1

Ailfl

: (8)

These three update rules contain different evolutionary

ingredients. In particular, UI and MOR use global knowl-

edge about the benefits of the neighbors since they evaluate

all of them. On the contrary, the Fermi update chooses one

neighbor randomly. Concerning the stochastic character of

the agent’s decisions, we note that both Fermi (for small

and moderate values of b) and MOR updates are purely

stochastic and they even allow mistakes, i.e., it is possible

to copy the strategy of a neighbor with smaller benefit. In

contrast, UI is purely deterministic and errors are not

admitted. Note that when b� 1 (strong selection limit) the

saturated Fermi function turns into a Heaviside step func-

tion thus mimicking the behavior of UI. However, the dif-

ferences in the degree of knowledge about neighbors of

both setting persist. In the following, we will use b¼ 1 for

the Fermi update since the results are quite robust around

this value.

III. COOPERATION IN SCIENTIFIC COLLABORATIONS:
PROJECTED VERSUS BIPARTITE NETWORKS

In this section, we implement the PGG on top of a real

collaboration network. The network is composed by

N¼ 13861 scientists and the collaboration data are obtained

from P¼ 19465 papers appeared in the cond-mat section of

the arXiv preprint server.23 This collection of papers is

obtained after computing the giant connected component of

the (projected) coauthor network of the original data set that

has 16726 authors and 22015 papers. In Fig. 3, we plot the

degree distribution of the coauthor network and those of the

bipartite (authors–papers) graph. Both the probability of

finding one author with k coauthors, P(k), and that of having

an author collaborating in q papers, P(q), have broad profiles.

On the other hand, the probability that a paper is coauthored

by m researchers, P(m), shows an exponential decay. This

homogeneous distribution for the number of authors coau-

thoring one paper is a very important difference arising

when comparing the (one-mode) coauthor network with the

bipartite representation of the collaboration data.

The structural differences between the coauthor network

and the bipartite graph imply that the dynamical processes

implemented on top of them can yield different results. In

particular, modeling the PGG without any knowledge of the

real group structure will give as a result the definition of

large groups centered around hubs of the coauthor network

[see Fig. 3(a)]. However, this definition strongly contrasts

with the homogeneous distribution P(m) for the number of

authors collaborating in one paper. Thus, we will compare

the outcome of the PGG evolutionary dynamics using the

one-mode coauthor network, as originally proposed by
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Santos et al. in Ref. 21 and subsequently widely used in the

works on the subject, with our new results obtained by work-

ing with the real collaboration data, i.e., with the bipartite

graph, in which the group structure arises in a natural manner

as defined by the set of papers.

We will focus on the evolution of the asymptotic value

of the cooperation level, hci, as a function of the enhance-

ment factor r. The cooperation level usually represents the

fraction of the N individuals that cooperate in the stationary

regime. Thus, in our simulations, we start by assigning ran-

domly the initial strategies of the players, fx0
i g, so that half

of the population plays initially as cooperators and the other

one as defectors. Then, we let the evolutionary dynamics

evolve for s¼ 105 rounds of the PGG and measure the

stationary value of the cooperation level during T¼ 104 addi-

tional rounds. Thus, the final value of hci is computed as

hci ¼ 1

T � N
XsþT

t¼sþ1

XN

i¼1

xt
i

 !
: (9)

The above definition of hci assumes that the evolutionary dy-

namics ends up in a dynamical equilibrium in which cooper-

ators and defectors coexist. However, for the Fermi and

MOR updates, depending on the precise values of r, this is

not the case. Quite on the contrary, each run of the evolution-

ary dynamics for the same value of r (corresponding to a dif-

ferent set of initial conditions) ends up into either full

defection or full cooperation. The strong stochasticity of the

evolutionary dynamics, produced by the Fermi and MOR

updates rules, drives the system evolution into one of those

two absorbing states. Therefore, it is mandatory to perform a

large number (at least 103 in our case) of different realiza-

tions (corresponding to different initial conditions) of the ev-

olutionary dynamics. Obviously, in those cases, where the

dynamical evolution always finishes in one of the two

absorbing states, the reported value of hci is defined as the

fraction of realizations in which the dynamics ends up in full

cooperation.

Figure 4 shows the function hci(r) for both the (one-

mode) coauthor network and the bipartite graph in six differ-

ent scenarios. Namely, plots 4(a)–4(c) show the results for

the PGG played with FCG, while in plots 4(d)–4(f), we show

the case of the PGG played with FCI. As introduced in Sec.

II D, for both the FCG and FCI versions of the PGG, we

show the outcomes of the evolutionary dynamics when three

update dynamics are at work. Namely, in plots 4(a) and 4(d),

we use the MOR (strongly stochastic and using global

knowledge) scheme, in plots 4(b) and 4(e) the Fermi rule

(slightly stochastic and with limited knowledge), and finally,

plots 4(c) and 4(f) correspond to UI update (purely determin-

istic and using global knowledge).

As can be seen from the plots, the average level of coop-

eration hci increases from hci¼ 0 to hci¼ 1 when the value

of r exceeds some threshold rt. The precise value of this

threshold and the velocity of this transition depend strongly

on the particular dynamical rule and the substrate of interac-

tions used. It is clear that our main interest here is to confront

the results of the PGG obtained using the one-mode network

and the bipartite graph. The plots corresponding to the PGG

with FCG clearly show that the cooperation level is always

larger (meaning that it sets on for lower values of r and

increases faster) when the structure of groups is that of the

real collaboration data, i.e., of the bipartite representation. It

FIG. 3. (Color online) Structural analysis of the cond-mat scientific collabo-

ration network. In (a), we plot the degree distribution, P(k), of the projected

(one-mode) network (coauthor network). This distribution display a long tail

decaying as P(k) � k�3. The average connectivity is hki ¼ 6.44 as indicated

(in this and subsequent plots) by a red vertical line. Plots (b) and (c) show

the connectivity patterns of the associated bipartite graph. In (b), we show

the degree distribution of authors, P(q), i.e., the probability of finding an

author contributing to q papers. The behavior of this distribution denotes a

sharp decay, thus indicating that the initial power-law behavior truncates for

large q and, as indicated in the plot, the distribution behaves as

PðqÞ � q�1:5e�1:5q2=103

. The average number of papers per author is hqi
¼ 3.87. On the contrary, in (c), we plot the probability that a paper is coau-

thored by m authors, P(m). In this case, P(m) decays exponentially (note

normal scale on x axis) as P(m) � e�0.57m, so that, on average, papers are

coauthored by hmi ¼ 2.76 researchers.
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is also clear that the MOR update rule [plot 4(a)] gives rise

to larger differences between the two substrates. Interest-

ingly, we observe that the curve hci(r) corresponding to the

bipartite graph is much more stable under update rule

changes than its one-mode counterpart. On the other hand,

for both the one-mode and the bipartite substrates, the onset

of cooperation delays progressively as the stochastic charac-

ter of the update rule increases, i.e., going from UI to the

Fermi rule and from the Fermi rule to the MOR update.

As discussed above, the FCI setting is the most appropri-

ate version of the PGG to model a scenario in which the

resource associated to the cost is finite, and it is equally dis-

tributed among players. This ingredient applies in the case of

scientific collaborations. The reason is clear, researchers

have a limited amount of time=resources to invest in collabo-

rating and it has to be partitioned among all the collabora-

tions they share. In general, researchers participating in a

large number of projects tend to contribute less (in terms of

time and lab work) to each paper in which they appear. On

the other hand, those researches involved in a few collabora-

tions tend to assume the largest part of the work to do. In the

plots of Fig. 4 corresponding to the PGG in its FCI version,

we find the same result as for the PGG with FCG: the group

structure (contained in the bipartite graph) promotes cooper-

ation. Again, the differences between both substrates are

larger when using the MOR update while the stochasticity of

the update rules delays the onset of cooperation in both

cases.

Our findings yield several main conclusions about the

role played by the mesoscale in the promotion of coopera-

tion. The most important conclusion is that by considering

the real group structure, i.e., playing the PGG within the bi-

partite representation, we obtain a larger degree of coopera-

tion than in the case of the PGG played in the projected

network. This result is robust under variations of the PGG

formulation and the update dynamics at work. The roots for

such an enhancement of the cooperation are actually found

on the small and homogeneous group sizes [see P(m) in Fig.

3] of the groups in which the PGG is played. Note, also in

Fig. 3, that this homogeneous distribution for the size of the

groups, P(m), is combined with an heterogeneous one for the

number of groups in which an agent engages, P(q). This

combination allow the existence of a significant number of

players with large payoffs (those with large values of q)

while the groups are small enough for being far from a well-

mixed situation. This is not the case for the PGG played in

the usual way,21 i.e., in the one-mode projected network,

since the degree distribution P(k) automatically constrains

the existence of a significant number of players participating

in a large number of groups with the existence of the same

quantity of large groups, in which cooperation is less

favored.

Finally, the mesoscale properties contained in the bipar-

tite graph also have important consequences for a well-

known effect:21 the promotion of cooperation when passing

from the PGG with FCG to the PGG with FCI. As noted in

Ref. 21, the increase in the degree of cooperation when play-

ing with FCI has to do with the enhancement (with respect to

the FCG case) of the payoff obtained by those nodes partici-

pating in a large amount of groups (i.e., those players having

a large degree k in the one-mode projected network). For the

bipartite representation, this payoff enhancement also applies

FIG. 4. (Color online) Cooperation level hci as a function of the enhancement factor r for the PGG played on top of the one-mode (projected) coauthor net-

work and the bipartite graph preserving the original group structure. The first three plots (a), (b), and (c) correspond to the PGG with FCG, while the plots (d),

(e), and (f) account for the PGG with FCI. For each of the two versions of the PGG, we show the evolution of the curves hci(r) for three different update rules:

(a) and (d) MOR update, (b) and (e) Fermi rule, and (c) and (f) UI.
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to those players having a large q when playing within the bi-

partite representation. Thus, the increase of cooperation

when playing the PGG with FCI in both representations

relies in the two long-tailed distributions for P(k) and P(q) as

shown in Fig. 3. On the other hand, this boost of the coopera-

tion is more apparent when dealing with the projected net-

work setting than in the bipartite case. The reason for this

different behavior is rooted in the distributions P(k) and

P(q). In the projected network each node of degree k partici-

pates in k þ 1 groups. Thus, even for those nodes with k¼ 1,

the transition from the FCG setting to the FCI represent a

change in their contribution. However, in the bipartite repre-

sentation, the individuals are engaged in q groups. Thus,

those individuals with q¼ 1 do not change their contribution

when passing from FCG to FCI. Moreover, from Fig. 3, we

observed a large number of individuals sharing only one col-

laboration in the bipartite representation (more than the 40%

of the population) in contrast to the smaller amount of leaves

(less than the 10% of the nodes) in the one-mode network.

These differences again confirm that the structural patterns

encoded in the mesoscale of the network play a key role in

the evolutionary success of the cooperation.

IV. INFLUENCE OF GROUP SIZE IN THE PROMOTION
OF COOPERATION

Having shown that the mesoscopic group structure of

collaboration networks strongly affects the promotion of

cooperation, we now abandon the projected representation

and focus on the bipartite one. In particular, we will address

the issue of the influence of the size of the groups in the evo-

lutionary dynamics of the PGG. To this end, and inspired in

the model introduced by Ramasco et al.,47 we propose the

following way for constructing synthetic collaboration

graphs. We start with an initial core of m nodes that defines

the first group of our bipartite graph. At each time step of the

growth process we add a new element that will define a new

group of size m. To do this, the newcomer chooses one of

the nodes already present in the graph. The probability Pi

that a node i receives the link from a newcomer is propor-

tional to the number of groups it belongs to, gi,

Pi ¼
giP

j
gj
: (10)

Once the newcomer has chosen the first node, say with node

j, it closes the group by choosing other (m � 2) nodes ran-

domly from the neighbors of j, i.e., among those nodes that

participate in one or more groups with j. The above process

is iterated until the graph contains N nodes (and N � m þ 1

groups). The above model, being extremely simple, allows

to reproduce two main structural features observed in collab-

oration networks: the scale-free distribution for the number

of contacts each individual has in the projected (coauthor)

network and the nearly constant value for the number of

authors appearing in a paper. In fact, this latter feature is

used as a tunable parameter, m, in our network model, allow-

ing us to explore the effect that this size has on the evolution

of cooperation. In the following, we will fix the size of the

network to N¼ 5000, and we will work with m¼ 3, 5, and 7.

Following the same strategy as in the previous section,

we will compare the outcome of the evolutionary dynamics

making use of three update rules (MOR, Fermi, and UI), and

we will also analyze the PGG in both its FCG and FCI ver-

sions. In Fig. 5, we show the six plots corresponding to these

scenarios. The initial setup and the numerical procedure are

identical to those used in the previous section. The only nov-

elty is the use of the rescaled enhancement factor, r0 ¼ r=m,

so to compare the outcome of the PGG dynamics in different

network topologies (they depend heavily on m)21,38 here

labeled by the group size m.

Let us start by analyzing the case of the PGG played

with FCG. In this case, the curves hci(r=m) in plots 5(a) and

5(b), corresponding to the MOR and Fermi (stochastic)

updates, behave as expected: Cooperation dominates for

r=m>1 (i.e., when the enhancement factor is larger than the

group size) while for r=m<1 it decays fast toward full defec-

tion. The decay becomes sharper as m increases so that we

conclude that small groups benefit cooperation. The case of

UI [plot 5(c)] confirms this conclusion about the negative

effects of large groups. However, in this case, the curves

hci(r=m) for m¼ 5 and 7 point out a dramatic scenario for

the survival of cooperation. While for the rest of the curves

r=m¼ 1 represent the point beyond which full cooperation

dominates in those curves corresponding to UI with m¼ 5

and m¼ 7 the transition is very slow. Therefore, the effects

of enlarging the group size in the mesoscopic structure of

collaboration networks seem to have negative effects over

cooperation, especially in the case when UI is the update

mechanism at work.

Now we turn our attention to the PGG played wit FCI.

As before, we first focus on the stochastic update rules

(MOR and Fermi). In the corresponding plots [5(d) and

5(e)], we observe that, for the same value of the group size

m, cooperation is significantly enhanced with respect to the

case of the PGG with FCG. In the case of the MOR update

we also observe again (as in the PGG with FCG) that by

increasing the group size the cooperation level decreases.

However, for the Fermi rule, this is not the case (at variance

with the PGG with FCG) and the curves hci(r=m) collapse in

the transition region, placed around r=m ^0.2. The case of

the UI turns to be the most intriguing as in the PGG with

FCG. However, in the case of the FCI version, the effects of

enlarging the size of the groups have worse consequences as

observed from the plot 5(f). As expected, for a group size of

m¼ 3 cooperation is enhanced with respect to the FCG situa-

tion; however, for m¼ 5 and m¼ 7, both curves are nearly

the same, and the situation is completely different to that

observed for m¼ 3. First, for low values of r=m, the coopera-

tion levels observed for m¼ 5, 7 are rather large compared

to the case m¼ 3 and the other curves corresponding to dif-

ferent update rules. This sudden onset of cooperation is how-

ever followed by an extremely slow increase of the

cooperation level. We have checked the roots of this behav-

ior by looking at the dynamical evolution of the fraction of

cooperators for several realizations of the dynamics. The

result is that, despite the deterministic character of UI
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dynamics, we observe that the dynamics behaves as in the

stochastic settings, i.e., the dynamics always ends up into

full defection or full cooperation. This convergence, at var-

iance with the stochastic settings, is achieved in few rounds

of the PGG, thus pointing out that the dynamical outcome is

strongly dependent on the initial conditions. For UI updates,

the influence of the most connected players, here represented

by those agents participating in a large number of groups, is

the key role driving the evolution of the system. Therefore,

the existence of large groups enhances both the ubiquity of

those players and their benefits. The imitation process pro-

vides with an efficient way to spread their initial strategy and

trap the system dynamics in one of the two absorbing states.

As shown in Fig. 5, for large values of r, the fraction of real-

izations in which full cooperation is achieved saturates

around 0.5, thus pointing out the strong dependence on the

initial strategy of hubs.

V. CONCLUSIONS

Summarizing our main results, we have shown that is of

utmost importance to include the mesoscopic details about

the real group structure when dealing with the PGG on net-

works. The intrinsic group structure (described by means of

a bipartite graph) promotes cooperation in PGGs, this being

a new mechanism for this phenomenon beyond the scale-free

character21 and other features39–46 of the one-mode (pro-

jected) complex network. Regarding the size of the groups in

which the PGG takes place, we have shown that they affect

the outcome of the evolutionary dynamics in an important

way: In most of the cases, increasing the number of the

participants in each of the groups leads to a decrease of the

cooperation level. However, this decrease is influenced by

the update rule used. While for MOR and Fermi updates the

influence of the size of the groups is quite soft for the case of

UI we have shown that large group sizes slow down the de-

velopment of cooperation due to the large influence of those

players participating in a large number of groups.

Our work allows us to draw important conclusions

regarding the application of these models and the corre-

sponding research. Thus, looking again at the difference in

the behavior observed on the bipartite network and on the

projected one, it is clear that the fact that the mean group

size in both settings is different plays a role in the promotion

of cooperation: Indeed, as is known for PGGs, smaller group

sizes require smaller values of r for cooperation to become a

profitable strategy. This obvious fact does not decrease the

relevance of our conclusions, because what we are showing

is that considering a projected network leads to an overesti-

mating of the amplification factor needed for cooperation,

arising from the artificially increased group size. The results

in the FCG setting demonstrate that amplification factors

between 1 and 2 already lead to cooperation, which are rea-

sonable values in the context we are dealing with, namely

collaboration in research and paper-writing. On the other

hand, the large value obtained for the MOR rule indicates

that this is not likely to be a good model of human behavior

in this context, while local imitative rules like Fermi or UI

yield lower estimates for the critical r, probably closer to

reality. Note also that we have seen important differences

between a setup in which the amount one can invest is

unlimited (FCG) or bounded (FCI). This latter scenario,

FIG. 5. (Color online) Cooperation level hci as a function of the rescaled enhancement factor r=m for the PGG played on top of three synthetic collaboration

networks with different group sizes m ¼ 3 , 5, and 7. As in Fig. 4, the first three plots (a), (b), and (c) correspond to the PGG with FCG, while the plots (d), (e),

and (f) account for the PGG with FCI. For each of the two versions of the PGG, we show the evolution of the curves hci(r=m) for three different update rules:

(a) and (d) MOR update, (b) and (e) Fermi rule, and (c) and (f) UI.
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which is closer to reality in the sense that we all have limited

time and energy to devote to collaborative work, gives rise

to very low (or even smaller than 1) critical values for r.

This might seem strange at first glance, but when considering

this issue on the light of the structure of the bipartite net-

work, one realizes that even with the bipartite description

there are authors with a large number of collaborations, i.e.,

there are hubs. These hubs invest very little on every collab-

oration they are involved in and in practice become free-

riders. However, imitative update rules forces their neighbors

to be cooperators as well, because they observe the large

payoff received by the hub (arising from his many collabora-

tions), and only under MOR dynamics larger values of r are

needed to support cooperation.

On a different note, our research confirms the intuition

that the larger teams are, the more difficult it becomes to fos-

ter collaborative work. This is a very relevant insight in so

far as it cannot be obtained by looking at the projected net-

work, where the information about group size is lost. Our

simulations on a simple model of collaborative network lead

to the prediction that, generally speaking, group sizes around

m¼ 3 are best to promote cooperation. Note, however, that

under Fermi dynamics, the group size is not that important,

particularly in the more realistic FCI scenario, for which the

critical value of r appears to be linearly dependent on m, thus

making the group size lose influence. The opposite case

arises when UI is used to update strategies, showing that it

might be impossible to reach full cooperation even for very

large values of r. It is then clear that accurately modeling the

collaboration structure is a key issue when trying to under-

stand why people work together in small groups, with group

size and the bipartite character of the network being particu-

larly relevant aspects. Further research is needed to ascertain

the way in which individuals update their strategies to com-

plete this incipient modeling toolbox.
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