SOCIAL SCIENCES

Humans display a reduced set of consistent behavioral phenotypes in dyadic games

2016 © The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. Distributed under a Creative Commons Attribution NonCommercial License 4.0 (CC BY-NC). 10.1126/sciadv.1600451

Julia Poncela-Casasnovas,¹ Mario Gutiérrez-Roig,² Carlos Gracia-Lázaro,³ Julian Vicens,^{1,4} Jesús Gómez-Gardeñes,^{3,5} Josep Perelló,^{2,6} Yamir Moreno,^{3,7,8} Jordi Duch,¹ Angel Sánchez^{3,9,10}*

Socially relevant situations that involve strategic interactions are widespread among animals and humans alike. To study these situations, theoretical and experimental research has adopted a game theoretical perspective, generating valuable insights about human behavior. However, most of the results reported so far have been obtained from a population perspective and considered one specific conflicting situation at a time. This makes it difficult to extract conclusions about the consistency of individuals' behavior when facing different situations and to define a comprehensive classification of the strategies underlying the observed behaviors. We present the results of a lab-in-thefield experiment in which subjects face four different dyadic games, with the aim of establishing general behavioral rules dictating individuals' actions. By analyzing our data with an unsupervised clustering algorithm, we find that all the subjects conform, with a large degree of consistency, to a limited number of behavioral phenotypes (envious, optimist, pessimist, and trustful), with only a small fraction of undefined subjects. We also discuss the possible connections to existing interpretations based on a priori theoretical approaches. Our findings provide a relevant contribution to the experimental and theoretical efforts toward the identification of basic behavioral phenotypes in a wider set of contexts without aprioristic assumptions regarding the rules or strategies behind actions. From this perspective, our work contributes to a fact-based approach to the study of human behavior in strategic situations, which could be applied to simulating societies, policy-making scenario building, and even a variety of business applications.

INTRODUCTION

Many situations in life entail social interactions where the parties involved behave strategically; that is, they take into consideration the anticipated responses of actors who might otherwise have an impact on an outcome of interest. Examples of these interactions include social dilemmas where individuals face a conflict between self and collective interests, which can also be seen as a conflict between rational and irrational decisions (*1*–3), as well as coordination games where all parties are rewarded for making mutually consistent decisions (*4*). These and related scenarios are commonly studied in economics, psychology, political science, and sociology, typically using a game theoretic framework to understand how decision-makers approach conflict and cooperation under highly simplified conditions (*5–7*).

Extensive work has shown that, when exposed to the constraints introduced in game theory designs, people are often not "rational" in the sense that they do not pursue exclusively self-interested objectives (8, 9). This is especially clear in the case of prisoner's dilemma (PD) games, where rational choice theory predicts that players will always defect but empirical observation shows that cooperation oftentimes occurs, even in "one-shot" games where there is no expectation of future inter-

*Corresponding author. Email: anxo@math.uc3m.es

Poncela-Casasnovas et al. Sci. Adv. 2016;2:e1600451 5 August 2016

action among the parties involved (8, 10). These findings beg the question as to why players sometimes choose to cooperate despite incentives not to do so. Are these choices a function of a person's identity and therefore consistent across different strategic settings? Do individuals draw from a small repertoire of responses, and if so, what are the conditions that lead them to choose one strategy over another?

Here, we attempt to shed light on these questions by focusing on a wide class of simple dyadic games that capture two important features of social interaction, namely, the temptation to free-ride and the risk associated with cooperation (8, 11, 12). All are two-person, two-action games in which participants decide simultaneously which of the two actions they will take. Following previous literature, we classify participants' set of choices as either cooperation, which we define as a choice that promotes the general interest, or defection, a choice that serves an actor's self-interest at the expense of others.

The games used in our study include PD (13, 14), the stag hunt (SH) (4), and the hawk-dove (15) or snowdrift (16) games (SGs). SH is a coordination game in which there is a risk in choosing the best possible option for both players: cooperating when the other party defects poses serious consequences for the cooperator, whereas the defector faces less extreme costs for noncooperation (17). SG is an anticoordination game where one is tempted to defect, but participants face the highest penalties if both players defect (18). In PD games, both tensions are present: when a player defects, the counterpart faces the worst possible situation if he or she cooperates, whereas in that case, the defector benefits more than by cooperating. We also consider the harmony game (HG), where the best individual and collective options coincide; therefore, there should be no tensions present (19).

Several theoretical perspectives have sought to explain the seemingly irrational behavior of actors during conflict and cooperation games.

¹Departament d'Enginyeria Informàtica i Matemàtiques, Universitat Rovira i Virgili, 43007 Tarragona, Spain. ²Departament de Física de la Matèria Condensada, Universitat de Barcelona, 08028 Barcelona, Spain. ³Institute for Biocomputation and Physics of Complex Systems (BJFI), University of Zaragoza, 50018 Zaragoza, Spain. ⁴Applied Research Group in Education and Technology, Universitat Rovira i Virgili, 43007 Tarragona, Spain. ⁵Department of Condensed Matter Physics, University of Zaragoza, 50009 Zaragoza, Spain. ⁶UBICS Universitat de Barcelona Institute of Complex Systems, 08028 Barcelona, Spain. ⁶Department of Theoretical Physics, University of Zaragoza, 50009 Zaragoza, Spain. ⁸Complex Networks and Systems Lagrange Laboratory, Institute for Scientific Interchange, 10126 Turin, Italy. ⁹Grupo Interdiscipilinar de Sistemas Complejos, Departamento de Matemáticas, Universidad Carlos III de Madrid, 28911 Leganés, Madrid, Spain. ¹⁰UC3M-BS Institute of Financial Big Data, Universidad Carlos III de Madrid, 28903 Getafe, Madrid, Spain.

RESEARCH ARTICLE

Acknowledgments: We thank P. Brañas-Garza, A. Cabrales, A. Espín, A. Hockenberry, and A. Pah, as well as our two anonymous reviewers, for their useful comments. We thank K. Gaughan for his thorough grammar and editing suggestions. We also acknowledge the participation of 541 anonymous volunteers who made this research possible. We are indebted to the BarcelonaLab program through the Citizen Science Office promoted by the Direction of Creativity and Innovation of the Institute of Culture of the Barcelona City Council led by I. Garriga for their help and support for setting up the experiment at the Dau Barcelona Festival at Fabra i Coats. We specially want to thank I. Bonhoure, O. Marín from Outliers, N. Fernández, C. Segura, C. Payrató, and P. Lorente for all the logistics in making the experiment possible and to O. Comas (director of the DAU) for giving us this opportunity. Funding: This work was partially supported by Mineco (Spain) through grants FIS2013-47532-C3-1-P (to J.D.), FIS2013-47532-C3-2-P (to J.P.), FIS2012-38266-C02-01 (to J.G.-G.), and FIS2011-25167 (to J.G.-G. and Y.M.): by Comunidad de Aragón (Spain) through the Excellence Group of Non Linear and Statistical Physics (FENOL) (to C.G.-L., J.G.-G., and Y.M.); by Generalitat de Catalunya (Spain) through Complexity Lab Barcelona (contract no. 2014 SGR 608; to J.P. and M.G.-R.) and through Secretaria d'Universitats i Recerca (contract no. 2013 DI 49; to J.D. and J.V.); and by the European Union through Future and Emerging Technologies FET Proactive Project MULTIPLEX (Multilevel Complex Networks and Systems) (contract no. 317532; to Y.M., J.G.-G., and J.P.-C.) and FET Proactive Project DOLFINS (Distributed Global Financial Systems for Society) (contract no. 640772; to C.G.-L., Y.M., and A.S.). **Author contributions:** J.P., Y.M., and A.S. conceived the original idea for the experiment; J.P.-C., C.G.-L., J.V., J.G.-G., J.P., Y.M., J.D., and A.S. contributed to the final experimental setup; J.V., J.D., and J.P.-C. wrote the software interface for the experiment; J.P.-C., M.G.-R., C.G.-L., J.G.-G., J.P., Y.M., and J.D. carried out the experiments; J.P.-C., M.G.-R., C.G.-L., and J.G.-G. analyzed the data; J.P.C., M.G.-R., C.G.-L., J.G.-G., J.G.-G., J.G.-G., J.P., Y.M., J.D., and A.S. discussed the analysis results; and J.P.-C., M.G.-R., C.G.-L., J.V., J.G.-G., J.P., Y.M., J.D., and A.S. wrote the paper. **Competing interests:** The authors declare that they have no competing interests. **Data and materials availability:** All data needed to evaluate the conclusions in the paper are present in the paper and/or the Supplementary Materials. Additional data related to this paper may be requested from the authors.

Submitted 1 March 2016 Accepted 2 July 2016 Published 5 August 2016 10.1126/sciadv.1600451

Citation: J. Poncela-Casasnovas, M. Gutiérrez-Roig, C. Gracia-Lázaro, J. Vicens, J. Gómez-Gardeñes, J. Perelló, Y. Moreno, J. Duch, A. Sánchez, Humans display a reduced set of consistent behavioral phenotypes in dyadic games. *Sci. Adv.* 2, e1600451 (2016).