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Abstract

We present a study of nonlinear localized excitations called discrete breathers in a superconducting array. These localized
solutions were recently observed in Josephson-junction ladder arrays by two different experimental groups [Phys. Rev. Lett.
84 (2000) 741; Phys. Rev. Lett. 84 (2000) 745; Phys. Rev. E 62 (2000) 2858]. We review the experiments made by Trias et al.
[Phys. Rev. Lett. 84 (2000) 741]. We report the detection of different single-site and multi-site breather states and study the
dynamics when changing the array bias current. By changing the temperature we can control the value of the damping (the
Stewart—-McCumber parameter) in the array, thus allowing an experimental study at different array parameters. We propose
a simple DC circuit model to understand most of the features of the detected states. We have also compared this model and
the experiments with simulations of the dynamics of the array. We show that the study of the resonances in the ladder and the
use of harmonic balance techniques allow for understanding of most of the numerical results. We have computed existence
diagrams of breather solutions in our arrays, found resonant localized solutions and described the localized states in terms of
vortex and antivortex motion. © 2001 Elsevier Science B.V. All rights reserved.

PACS: 05.45.-a; 74.50.4-1; 45.05.+x; 85.25.Cp

Keywords: Discrete breathers; Intrinsic localized modes; Josephson-junction arrays; Josephson ladder

1. Introduction

Linear models of crystals have been instrumental in developing a physical understanding of the solid state.
Thermodynamic properties such as specific heat, transport properties such as electron relaxation times or super-
conductivity, and even interactions with radiation can be understood by modeling a crystal as a lattice of atoms
with fixed harmonic coupling. This leads to the conventional phonon-like analysis with a basis of plane waves as
normal modes. However, certain properties of solids, such as thermal expansion, cannot be understood in this linear
model. For example, the elastic constants of the atomic interactions may depend on the temperature or the volume
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and so make the interaction nonlinear. This is termed an anharmonic effect and the usual approach is to use a more
generalized Taylor expansion for the lattice coupling that includes more than just the harmonic term.

Until quite recently anharmonic effects were only studied as perturbations to the fully solvable harmonic model.
Then it was discovered [4] and proved [5] that in classical Hamiltonian systems nonlinearity may lead to localized
vibrations in the lattice that cannot be analyzed using the standard plane wave approach. These intrinsic localized
modes are time periodic and spatially localized solutions and have been termed discrete breathers (DB). Their
amplitudes oscillate around a few sites in the lattice and they do not depend on impurities for their localization. The
study of DB has been extended to the dynamics of coupled rotor lattices [6] where the terms “rotating localized
modes” or “rotobreathers” were introduced. DB have also been proven to exist in the dynamics of dissipative systems
[7]. In this case chaotic localized solutions have been discovered [8]. DB have been found to play an important
role in conditions far from equilibrium [9] and recently have been studied in disordered systems [10,11]. Excellent
reviews on the topic are [12,13].

Because DB are generic modes in many nonlinear lattices, they are the object of great theoretical and numeri-
cal attention in many diverse fields like condensed matter physics [14—17], mechanical engineering [18-20] and
biophysics [21]. Only recently the first experiments have been performed which detect intrinsic localized modes
in quasi-one-dimensional charge-density-wave compounds [22], antiferromagnetic anharmonic crystals [23] and
superconducting arrays [1-3].

The existence of DB in a Josephson-junction (JJ) array was first proposed by Floria et al. [15] in the study of the
dynamics of an AC-biased anisotropic ladder array. Both, oscillating and rotating localized modes were simulated
and studied in this system [24,25]. Later, rotobreathers were also numerically studied in the dynamics of inductively
coupled junctions in DC-biased arrays [26,27]. Arrays were then designed, fabricated and measured and DB were
found [1-3].

The JJs studied in this article are made from a superconductor—insulator—superconductor (SIS) tunneling structure
that because of the Josephson effect behave as solid-state nonlinear oscillators. In the framework of the resistively
and capacitively shunted junction (RCSJ) model a single JJ is modeled by a parallel combination of an ideal junction,
a capacitor C, and a resistance R. The current of the SIS tunnel junction is then

av. Vv

I =C—+ — + 1. 1
a TR (1)

The ideal junction has a constitutive relation of Iy = I sin ¢ where ¢ is the gauge-invariant phase difference of the
junction and the voltage V across a junctionis V = (®¢/2m) dp/dt. Thus, the current of SIS junction, i, in reduced
units is given by

i=¢+T¢+sing =N(p). 2

This current is normalized by the junction’s intrinsic critical current I, and I, the damping, is usually referred to
as the Stewart-McCumber parameter S, = I'~2 = 27 I.CR?/®q (P is the flux quantum). Time is normalized
by T = «/®oC/2n I.. The RCSJ model equation is isomorphic to the equation of a driven pendulum. The mass is
normalized to one and the viscous damping is I".

Fig. 1 sketches a typical current—voltage (I-V) curve of a single junction. The junction is biased by a DC current
and the average voltage is measured. The I-V curve of a JJ presents two different physical states. The first is a
zero-voltage state, the so-called superconducting or quiet state; a current flows through the junction but no voltage
difference appears. This state exists for values of the current smaller than the junction critical current /.. At this value
of the current the junction switches to the superconducting gap voltage, V. The gap voltage results from the breaking
of Cooper-pairs and causes the junction’s resistance, and thereby the damping, to change in a complicated nonlinear
way. If we increase the applied current further, the junction reaches its normal state and it behaves as a resistor,
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Fig. 1. Sketch of the /-V curve of an underdamped JJ.

Ry . These resistive states are also called rotating or whirling modes. As the current decreases the junction returns
to the gap voltage and then to its zero-voltage state at the retrapping current, /;. Thus, the resistive state occurs for
values of the current above the junction retrapping current and coexists with the superconducting state for currents
between the critical and the retrapping values. The amplitude of this hysteretic loop is governed by the value of the
damping I". The behavior of the curve (Fig. 1) close to V, can be modeled using the RCSJ model with an appropriate
nonlinear voltage dependence for the resistance (see Section 5.2) or by using other more sophisticated models [28].

We can design JJ arrays of different geometries and parameters. Networks of junctions are valuable model systems
for the study of coupled nonlinear oscillators. For instance, solid-state physical realizations of the Frenkel-Kontorova
model for dislocations [29] and the two-dimensional X—Y model for phase transitions in condensed matter [30]
are two prominent examples. There has also been extensive studies on the soliton dynamics in one-dimensional
Josephson arrays [31]. The experimental advantage of Josephson networks is that there is good control over the
parameters because they are fabricated microelectronic solid-state circuits. Moreover, these networks can be designed
for a wide range of oscillator parameters from the extremely underdamped to overdamped limits.

Here we present an in-depth study of the experiments reported in [1]. In addition to the standard model of
Egs. (6), we use more complete models to understand the dynamics of the array. In particular we will not assume
uniform current bias, the effects of temperature will be discussed, a nonlinear junction resistance is added, and a
full-inductance matrix will be used. In the next section we introduce the governing equations and explain intrinsic
localization in the ladder. In Section 3 we will report on the experimental study of DB in our superconducting arrays.
We develop in Section 4 a simple circuit model which allows for the understanding of most of the experimental
findings. Numerical simulations will be shown in Section 5. In Section 6 we perform a linear analysis that yields
resonance frequencies and decay lengths of excitations. Section 7.1 is devoted to a numerical study of single-site
DB solutions in the ladder. There we compute regions of existence of DB at different array parameters, and we
will analyze typical simulated -V curves for the cases of type B and type A DB. We also study the vortex patterns
associated to both solutions. The major results are summarized in the final section.

2. Josephson ladders

2.1. Ladder equations

Fig. 2 shows the circuit diagram for the Josephson array in ladder geometry and with uniform current injection.
The junctions are marked by an “x”. Horizontal junctions have critical currents of /., while vertical junctions have
a critical current of I.,. Anisotropic arrays are fabricated by varying the area of the junctions. In our junctions,
the critical current and capacitance are proportional to this area. Due to the constant /. R, product, the normal
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Fig. 2. Anisotropic ladder array with uniform current injection. Vertical junctions (with superscript v) have critical current /., and horizontal
junctions (with superscript t and b) have a critical current Icp.

state resistance is inversely proportional to the junction area. The anisotropy parameter 4 can then be defined as
h = Ich/ley = Ch/Cy = Ry/Ry.

A ladder is a useful geometry to study DB because vertical junctions can play the role of pendula while the
horizontal junction can act as controllable nonlinear coupling. Thereby, a ladder can be roughly thought of as a
one-dimensional chain of pendula that are coupled by nonlinear springs. If the phases of the vertical junctions are
interpreted as particle coordinates, then the ladder is in essence a one-dimensional chain of particles with nonlinear
on-site potential as well as nonlinear interactions since the horizontal junctions are nonlinear Josephson elements. It
is known that lattices with nonlinear on-site potential or nonlinear interactions are needed to support DB excitations.

The junctions in the array are coupled by means of current conservation and fluxoid quantization. Kirchoff’s
current conservation law (KCL) at the top node yields

1;_1 4 Toxt — 1;. — 1} =0. 3)

A consequence of the open boundary conditions is that the current on the top horizontal junctions must be equal
but opposite to the current in the bottom horizontal junctions. Thus, I]m = —I; = I]b. We will normalize all the
currents by I.y. Also, we will refer to horizontal junctions by the superscript h (which is not to be confused with
the anisotropy) when we are dealing with either the top or bottom horizontal junction.

Fluxoid quantization causes the circulation of the gauge-invariant phase differences around a loop to be equal
to the flux of the total (external plus induced) magnetic field through the loop. When we impose this condition on
one of our cells and assume only external and self-induced fields, that is, we neglect mutual inductances between
different cells, we find

1,
(p;f—(p}f+]—(p}+g0?+2nf+xz?=0. 4)

Here, f = @exi/Po is the normalized applied flux per unitcell and A = @¢/2x Iy Ls where Ly is the self-inductance
of the loop and i}“ the normalized mesh current so that i;“ /A is the normalized self-induced flux of a cell.
The vorticity, n; is defined through the expression

[0}] = [0} 1] = [@}1 + (901 = 27 (n; — f — [, ()

where [¢] represents the phases modulus 27, and f }nd = i;“ /27 1. This expression is equivalent to Eq. (4) and thus
also referred to as fluxoid quantization.

We let the functional N (¢) = ¢ + I"¢ + sin ¢ represents the current through a junction in the RCSJ model. The
resulting set of nonlinear coupled equations can be written as

A
N = 710] = ¢j11 — @) + o) + 27/},
N@)) =Ml =207 + 0]+ 05 — 05| — ¢+ 1} +iext,

A
N =—110] — 0] — ) + ) + 27}, (6)
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We can identify in these equations a discrete Laplacian term V2<p)f = <p}f 1 Z(ij. + gojv-fl, which accounts for
the interaction between vertical junctions, and discrete first-order derivatives J, (p}f = gojv. - <p]V. and § x(p;?_l =
go? - <p5?_ 1» Which account for the interaction terms between vertical and horizontal junctions, respectively.

The external current is normalized as iext = lext/Icy- The damping is I' = /@o/27 Iy R%CV. We note that
because the anisotropy in our arrays is caused by varying the junction area, I” is the same for every junction in the
array.

InEq. (6), j =1, ..., N and at the open boundaries,

e=0nN=0,  @=9xy=0, @\, =¢y+21f @ =¢ —2af, ™

where the phases at j = 0 and j = N + 1 are for mathematical convenience and do not represent real junctions.

The physical currents through the junctions are I; = IN ((p;) = —I]l-’ = —IpN (go';) and I} = IwN @)).

We can use these governing equations to compare the ladder with a JJ parallel array, a system with broad interest.
In a parallel array the horizontal junctions of the ladder are replaced by superconducting wires which have a linear
current—phase relation. In the ladder, the dynamics of the horizontal junctions can also be described by a linearized
constitutive relation under some restricted circumstances. For instance, in the static case, when the horizontal
junctions have no time dependence then i" = / sin " &~ h¢". From the normalized equation (3),

.V . _ et .t
j—lext =1;_y — ;. (8)

The right-hand side is simply h((p}_l — (p;.) and we can find a similar relation for the bottom horizontal junctions.

We can substitute these linearized relations for ¢! and ¢ in Eq. (6) to get,

N} = V2V + dext. ©)

A
h+ 2\
This is the discrete sine-Gordon equation with a renormalized discreteness parameter of Aeir = hA/(h 4+ 2A) and is
equivalent to the governing equations of a JJ parallel array [31].

The difference between the parallel array and the ladder is obviously the existence of horizontal junctions in the
case of the ladder. The use of A¢f to map the ladder to the discrete sine-Gordon model is correct only for the study
of a reduced set of possible states of the array; those for which only the convex part of the inter-phase interaction is
relevant. If we can neglect the dynamics of the horizontal junctions (for instance when studying static properties)
then the above is a very good approximation as has been rigorously stated in [32]. The rotating DB states studied in
this paper are a good example of a set of solutions of the ladder which do not appear in the dynamics of the discrete
sine-Gordon model.

2.2. Localization in the Josephson ladder

In Fig. 1 we showed that the -V curve of an underdamped JJ has an hysteresis loop for current values between the
critical and the retrapping currents. In this current range the zero-voltage (V = 0) and rotating (V = V) attractors
coexist, and it is this hysteresis loop that allows for the existence of breathers in the ladder with DC bias current. In
the full ladder, the phase space is much more complex. However, when the vertical junctions are weakly coupled
then it is possible that each of the junction attractors is essentially independent. A breather is then a localized state
where one vertical junction is rotating while the others are in the zero-voltage state. Under general considerations of
N nonlinear oscillators, it is not obvious that the phase space of the coupled system supports attractors of localized
solutions. Indeed, in linear systems even when the oscillators are weakly coupled, the phase space does not support
stable localized solutions.
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Fig. 3. Different patterns for single-site DB solutions in the ladder. Each array is vertically biased by a constant DC current as shown in Fig. 2.

The coupling of vertical junctions occurs through horizontal junctions, geometrical inductances, and fluxoid
quantization. But the most important contribution is from horizontal junctions and their influence is measured by
the parameter 4. If the coupling is too strong, i.e. A is too large, then localized solution cannot exist. We numerically
found that small A and & = 0.25 are adequate values of the coupling parameters for studying DB [27].

Fig. 3 shows some of the possible configurations for single-site breathers in our ladders. The arrows indicate
voltage polarity. Junctions without arrows are in the zero-voltage state. The solutions in Fig. 3 are single-site
breathers because only one vertical junction is rotating. We also see that due to Kirchoff’s voltage law (KVL), there
must be at least one other junction rotating in each of the neighboring cells.

The actual number and pattern of rotating horizontal junctions will determine the type of breather. We call
breathers that have two rotating horizontal junctions, like Figs. 3(a) and (c), type A breathers. We see that in this
case the voltages of all the rotating junctions are the same and so the breather solution is highly constrained. We
will use the term asymmetric to refer to this set of type A solutions.

In the case of the type B solution, the four nearest horizontal junctions rotate as depicted in Fig. 3(b). We will use
the term symmetric to refer to type B solution. However, it is important to note that symmetric refers only to the
fact that top and bottom horizontal junction in the same cell rotate. It does not always correspond to true up-down
symmetric solutions. An up-down symmetric solution is a solution for which <p; (1) = —(p?(t) mod 27. This is a
solution of the system as can be inferred from Eq. (6), where it is clear that A/ (<p;) =-N (go'J?). However, for certain
values of the parameters, the underdamped character of the junctions allows for different solutions, such as the type
A breathers, that do not obey the up-down symmetry condition. Also, for most type B solutions the magnitude of
the voltage of a horizontal rotating junction is one half the voltage of the rotating vertical junction. Again, not all
type B solutions obey this condition.

Single-site breather solutions that have three horizontal junctions rotating such as those shown in Fig. 3(d) are
called hybrids of types A and B. The other possible single-site breathers that are not shown can also be classified
as either A, B or hybrid.

In the rest of this paper we will designate librating junctions as shorts and junctions that are rotating by a x as
shown at the top of Fig. 4. Each branch represents a junction, but only the ones with a cross are rotating. Fig. 4(a)
shows a type A breather and a plot of the numerically calculated DC flux per unit cells for a nine junction ladder
array. Fig. 4(b) shows the decay of the DC flux for a type B breather. The flux decays exponentially so that our
breather solutions are exponentially localized. In the case of the hybrid breather shown in Fig. 3(d), the decay of
the flux in the right side of the array is the same as for the type B shown in Fig. 4(b) and the decay on the left side
of the array is the same as the type A as shown in Fig. 4(a). Note that we have plotted the modulus of the flux. The
fluxes for all the cells of one side of the vertical rotating junction have opposite sign to the fluxes of the cells in the
other side.
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Fig. 4. Simulation of 9 x 1 array with A = 0.05, I" = 0.1 and 2 = 0.25. We have plotted the absolute value of the DC flux per unit cell at
I = 0.7. The flux decays exponentially with a decay length of 0.32 for both solutions.

Fig. 5 shows different type B breather solutions for which a set of contiguous vertical junctions are in the rotating
state. We call them multi-site or m-site solutions where m refers to the number of vertical junctions rotating in the
array. In general many different solutions are allowed where each vertical junction can be in the resistive or in the
superconducting state while one or both horizontal junctions between vertical ones in different states also rotate.

The above discussion focused on the existence of rotobreathers in DC-biased arrays. In the case of AC-biased
arrays the JJ ladder in addition to rotating localized modes also supports oscillating localized modes or oscillo-
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B6 8 X 3 ) K K h
B7 8 X K X K )
B8 h J X 2 X K )
AW X X 3 K K 3

Fig. 5. Schematic of the DB found experimentally in Fig. 8. Branches with x’s depict rotating junctions. B1-B8 represent type B breathers with
the indicated number of rotating vertical junctions. State W is the whirling state where all of the vertical junction are rotating.



E. Trias et al. / Physica D 156 (2001) 98—138 105

breathers where one vertical junction describes a large amplitude oscillation when comparing with other vertical
junctions. Such modes were studied in [15,24,25] for non-inductive arrays. These modes persist when inductances
are added to the model and also different type B and type A families of AC-biased rotobreathers can be identified
[33].

3. Experiments
3.1. Experimental observation of breathers

We have designed and measured several anisotropic ladders. The inset of Fig. 6 shows a schematic of the measured
arrays. The junctions are fabricated using a Nb—Al,O,—Nb tri-layer technology with a critical current density of
about 1 KA/ cm? [34]. The current is injected and extracted through bias resistors in order to distribute it as uniformly
as possible in the array. These resistors are large enough so as to minimize any deleterious effects on the dynamics.
Our ladders have 3 x 3 wm? horizontal junctions and 6 x 6 wm? vertical junctions. Vertical junctions have been
designed with four times the area of the horizontal ones. Thus, the anisotropy ratio % is approximately 0.25. The
bias resistors are 25 €.

There are voltage probes in the fourth, fifth, sixth and ninth vertical junctions to measure V4, Vs, Vg and Vo. The
voltage probes can also be used to measure the top horizontal junctions in the middle, which we denote as V41 and
Vst, or any other combination of terminals.

From the measured normal state resistance we calculate I, = 360 pA and I, = 90pA at T = 0K. The
dimensionless penetration depth A, which measures the inductive coupling in the array, is defined as @y /27 L1y .
We estimate the mesh inductance Ly = 30.2 pH from numerical modeling [35] so A = 0.04 at T = OK.

To determine I” we need to measure the subgap resistance. Different approaches can be used. One possibility is
to calculate this damping from the measured return current of the junction. The model used for the return current
determines the subgap dissipation and resistance [36—39]. We will estimate the value of I" in our experiments from

I, (mA)

V, (mV)

Fig. 6. Current—voltage characteristic of an anisotropic JJ array when no breathers are excited. The hysteresis between the depinning current
(1gep ~ 2mA) and the retrapping current (/; ~ 0.2mA) is shown. Inset: schematic of the anisotropic ladder array showing the bias circuit. I,
is the total applied current and Ry, the bias resistances are 25 2.
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the retrapping current /. by the relation I;/N I, = (4/m)I", where N is the number of vertical junctions. This
expression can be found from a simple energy argument valid for small values of the damping. The energy injected
into the system by the applied current must equal the energy to “rotate” the junction one full period [28]. Thus from
the experiment shown in Fig. 6 we infer a value of I" ~ 0.08 (8. ~ 160) at T = 5.2 K.

We show a typical I-V curve of a ladder without DB in Fig. 6. We measure the time-averaged voltage of the
ninth vertical junction as a function of the uniformly applied current. The junction is in a zero-voltage state as we
increase the applied current from zero. When the applied current reaches the depinning current /4ep at about 2 mA
the junction switches from zero-voltage state to the superconducting gap voltage, V,, which at this temperature is
2.5mV. If we increase the applied current further, the junction reaches its normal state and it behaves as a resistor,
Ry, of 5 Q. As the current decreases the junction returns to the gap voltage and then to its zero-voltage state at the
retrapping current, Iy ~ 0.2 mA.

Sometimes, when we sweep the applied current we find that DB solutions appear spontaneously; they can be
thermally excited when the applied current is close to /q4ep. However for our experiments, we have developed a simple
reproducible method of exciting a breather: (i) bias the array uniformly to a current below depinning current; (ii)
increase the current injected into the middle vertical junction (Vs) until its voltage switches to the gap; (iii) reduce
this extra current in the middle junction to zero. Other procedures are possible. For instance, we can increase the
current for the middle vertical junction first until it rotates and then increase the array bias current as was described
in [2]. We could also inject this extra current into a horizontal junction. All of these methods produce breathers in
our arrays and thereby hinting at the generic nature of breather solutions in our ladders

Fig. 7 shows the result after we have excited the breather and we have increased the array current. The breather
is excited at I, & 1.4mA and then the junction voltages are measured as the applied current is increased. We
simultaneously measure the voltages of the vertical junctions (V4—Vs) and the two horizontal junctions, Vst and
Vsg. The DB is localized in the fifth vertical junction and is a type B breather since the top, VsT, and bottom, Vsg,
horizontal junctions have opposite voltage. We also find that the horizontal voltages are half in magnitude to the
rotating vertical junction V5. This is the B1 breather state shown in Fig. 5.

The breather exists until a maximum current /1 & 1.95 mA is reached. If the applied current is further increased
then Fig. 7 shows that the voltages of the fourth and sixth vertical junctions jump to the gap voltage while those of

2.4}
A V5.6
2.2f wi
g
;—q“ 1.8'
B1
1.6f 1
vsn V4,6 Vs'r Vs
14¢
-1 0 1 2 3
V (mV)

Fig. 7. Measurement of the time-averaged voltages of five junctions of the array with the breather as the applied current is increased at T = 5.2 K.
We first biased the ladder at 1.4 mA and excited a breather as indicated in the text. Then, the applied current is increased. Below 7 ~ 1.95mA
we see the signature measurement of the breather and above the breather becomes unstable and the array switches to the whirling state.
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V (mV)

Fig. 8. Measurement of time-averaged voltages as the applied current is decreased at T = 6.0 K. We show the voltages of three vertical junctions
(V4—Vs) and the voltage measured in the top branch between the middle and one of the edges of the array (Viop). We first biased the ladder at
1.25mA and excited a breather as indicated in the text. Then, the applied current is decreased. The nine steps corresponds to different type B
m-site breathers. The dashed lines are the expected minimum currents based on a retrapping model (Eq. (17)). The inset shows the Ry, values
used to fit the minimum currents.

the horizontal junctions go to zero. In fact all the vertical junction have jumped to the gap voltage, The ladder has
now all of the vertical junctions rotating and it is in the “whirling” state. The state is depicted as W in Fig. 5. In
Section 4 we will present a circuit model that will relate /4 to the array depinning current.

In Fig. 8 we measure the voltage as the applied external current is decreased. We excite the breather at [, ~
1.25 mA and then the voltages are measured as the current is decreased. We have measured vertical junctions 4,5
and 6. We have also measured the total voltage of the horizontal junctions 5 through 8 and this sum voltage is
referred as Viop. This allows us to reconstruct the m-site breather state in terms of the rotating junctions of the
array.

Our experiments show that as we decrease the applied current the single-site breather will usually decay into an
m-site breather state. From [, &~ 1.25 mA to I; &~ 1.05 mA the vertical voltages V4 = Vg = 0. This is the single-site
type B breather, the state depicted as B1 in Fig. 5. If we further decrease the applied current from /_ = 1.05mA,
V4 jumps from zero to the gap voltage. This is a two site breather shown schematically in Fig. 5 as B2. As we
further decrease the current we can count nine discontinuous curves, each one corresponding to the switching of a
vertical junction. At 0.3 mA all of the vertical junctions return to their zero-voltage state via a retrapping mechanism
analogous to that of a single pendulum.

From these experiments we conclude that this shifting of the voltage corresponds to at least one vertical junction
switching from the zero-voltage state to the rotating state. If we assume that only consecutive junctions switch, then
every curve in the measurement can be associated with one m-site breather. Since we have measured Vo, we can
reconstruct the ladder solutions. Fig. 5 shows a schematic of the states measured in Fig. 8.

The shapes of the I-V curves in this multi-site breather regime are influenced by the junction nonlinear resistance
and the redistribution of current when each vertical junction switches. This redistribution may also govern the
evolution of the system after each transition to one of the other possible breather attractors in the phase space of the
array.

Fig. 8 shows a measurement at 7 = 6.0K and we find 10 different states can be distinguished (eight m-site
breather states, the whirling state, and the zero-voltage state). In general we only see three or four m-site breathers
as we decrease the current, and often we see different ones even under similar experimental conditions.
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Fig. 9. I-V showing type B1 and type A breather at 4.9 K. Dashed line at I, &~ 2.3 mA is the maximum current for the type B breather and
I, ~ 0.7 mA is the maximum current for the type A breather.

Fig. 9 shows an I-V which includes a type A breather. First, a type B breather is excited at I, & 0.9 mA and the
current is decreased. As we decrease the current V4 and Vg have zero-voltage while Vs = 2Vst. At I, & 0.58 mA
the type B breather becomes unstable. In most of our measurements, the array will then suddenly switch to an m
site breather as shown in Fig. 8, but in this case we find a new switching behavior: the type B breather switches
to a type A solution. This state is a type A breather because the voltage Vs = Vst and V4 and Vg are zero. As the
current decreases the type A breather disappears at I; & 0.53 mA and the array is in the superconducting state.
In our experiments, the ladder always returns to the superconducting state whenever a type A breather reaches its
minimum current.

As the current decreases the type A breather is only accessible for a small current range of 0.05 mA. However,
it is possible to bias on the type A breather and increase the current to trace out the hysteresis loop. The tracing of
the type A breather voltage step is also shown in Fig. 9. We see that the type A breather exists up to a current of
~ 0.7mA. Once it becomes unstable the array dynamics usually jumps back to the B1 breather.

3.2. Temperature and magnetic field dependence

By sweeping the temperature and magnetic field we can study how the current range in which our breather
exists is affected by a change of the array parameters. We define and study the evolution of four current values of
importance; the current when the array returns to the zero-voltage, I;; the maximum zero-voltage state current, /qep;
and the maximum and minimum current for a breather state, 7, and 7_.

Fig. 10 shows the typical dependence of I and /_ for a B1 breather as a function of applied magnetic field. The
I-V curves were measured by applying a perpendicular magnetic field of 0-300 mG using a magnetic coil that is
mounted on the radiation shield of our probe. There is some f dependence. This can be expected since I is related
to the array depinning current. But at this temperature A = 0.06 so we expect to have a large Meissner current and
a correspondingly relatively flat /. dependence versus f. If A were larger then the breather dynamics and the I
should show a stronger magnetic field dependence.

We can study further the existence region of the breather by changing the temperature of the sample. In this way,
we can vary the parameters to a certain degree. The temperature causes the I.y of the junction to change and hence
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Fig. 10. I and I_ for B1 breather as a function of the applied magnetic field at 7 = 6.0 K.

change I" and A. For our arrays, the junction parameters can range from 0.031 < I < 0.61 and 0.04 < A < 0.43
as the temperature varies from 4.2 to 9.2 K.

Fig. 11 shows how the maximum and minimum current of both type A and type B breathers are affected
as we vary I'. In Fig. 11 I" < 0.2 corresponds to 7T < 6.7K and A ~ 0.05. At these low temperatures,
Iy essentially remains constant so A does not vary. However, the subgap resistance varies substantially as can
be seen from the retrapping current measurements in Fig. 11. Therefore, there is a larger variation in I". Fig-
ure also shows a nice agreement in between the experiments (points) and the theory (lines) except for the case
of the maximum current of the type A solutions. Also, experimentally we did not find breathers for
I' >0.2.
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Fig. 11. Maximum (solid squares) and minimum (solid circles) currents for type B breathers, and maximum (open squares) and minimum (open
circles) currents for type A breathers. Triangles are the ladder retrapping current. Lines through the solid and open circles are the expected
minimum current /_ from Eq. (17). The dashed line is the expected uncorrected maximum current from Eq. (18) while the solid line above it is
the corrected value.
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4. Circuit model
4.1. Introduction

In this section, we will develop a simplified DC circuit model of our array in order to understand the region of
existence of the breather solutions in our experiments. Also, this model will allow for evaluating the effect of the
bias resistors in the dynamics of the array.

In the experiment we apply the external current through bias resistors as shown in the inset of Fig. 6 in order
to distribute it uniformly. If the resistors are very small, the horizontal junctions are effectively shunted by a small
resistance and no DB solutions can be excited. If the resistors are large so that they dominate over every other
impedance, then applied current will be almost uniform throughout the array. However, one drawback of using large
bias resistors is that they will create local heating of the sample and affect the measurements.

Thus, when studying DB, there are at least two complications with the bias resistors. The first is that when we excite
a breather state, the applied current is not completely uniform. So questions arise about how this non-uniformity
affects localization. Also as we decrease the current we see transitions between different m-site breather states. In
each of these transitions vertical junctions switch from the zero-voltage state to the rotating state. This switching
causes a change in the junction impedance and thereby affects the current distribution. This redistribution might
be important to understand the dominant drive of the pattern selection process between m-site breathers. Also, we
will show below that the effect of the bias resistors only adds a small correction to the calculation of the existence
region of breather states.

To get some physical intuition we will use a simple model where rotating vertical junctions have a resistance of
R, and rotating horizontal junctions have a resistance of R}. Librating junction will be modeled as shorts. We will
reduce the array to a simple network of resistors and calculate DC properties. The equivalent resistor network for a
single-site symmetric breather located on junction 5 in our nine junction array is shown in Fig. 12.

When the array is in the superconducting or in the whirling states, the applied current distributes uniformly
across the vertical junctions. This will not be the case when we have a breather since some junctions are in the
resistive state while others are superconducting. Moreover, when we have a breather and we measure the voltage
of the fifth vertical junction (Fig. 8), we find that its voltage shifts to a higher value when new vertical junctions
switch to the rotating state. These shifts are identified as jumps in the effective current biasing the junction due

@

Ry Ry /4
Ry
@§ R,
Ra R
Ry Ry /4

Fig. 12. Equivalent DC circuit for single-site type B breather located at vertical junction 5 in a 9 vertical junction array. Nodes are labeled as a,
bandc.
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to the redistribution of currents in the array. Roughly speaking, most of the applied current wants to flow through
the superconducting junctions. Whenever a vertical junction switches from a superconducting to a resistive state
there is some extra current that is distributed throughout the array and thereby the effective bias of the fifth junction
becomes a little larger. This extra bias results in a jump of the measured voltage to a larger value. The size of the
voltage jump is dependent on the nonlinear subgap resistance and is usually large even for small changes of the
effective bias current.

4.2. I-V curves and current distribution

In this section we will focus on interpreting this redistribution and shifting of the voltage by using a simple
DC model of the ladder. We use I, to represent the total applied current in the array. This is the current of the
experimental current source. The current applied to a particular junction through the bias resistors, i.e. the current
through the bias resistor, will be designated ;. We will use /; to denote the current from node a to node b in Fig. 12.
This current [; is the sum of the currents I;—1I4. Also, because all of our bias resistors are the same and due to KVL
Iy = I = I3 = 14. So, I} = 414 for instance. The current through node a to node c is /5 since the breather is located
in junction 5.

For the type B breather we measured, the voltage is twice as large as the voltage of the horizontal junction

2Vh = Vs (10)
Therefore
R
Iy =220 p, (11)
R

v

and we will assume that Ry = hRy,.

The circuit has left-right symmetry so the current through the right branches must equal the current through the
left. KCL at node a yields I, = 21I; + I5 where I, is the total current applied, and at node c yields Is = 21, + I.
KVL on the top left mesh gives }‘Il Ry — IRy — Is Ry, = 0. Combining the equations results in

I, 2 1\ Ry

N:{Z—i—z—l—(l—N)R—b}Ih. (12)
To generalize to type A breathers we just note that the horizontal junction voltage is the same as the vertical junction
voltage V,, = V. We can write sV, = V,, where s = 1 for type A breathers and s = 2 for type B breathers. We can
also generalize for m-site breathers by modifying the equivalent DC circuit accordingly. For instance, when m = 2
both rotating vertical junctions can be lumped into an equivalent impedance of %RV. Generalizing our circuit results

in!

o 2+s+(1 m)R" i (13)
N \m ' n N R ™
We can also calculate the I-V curve of a vertical rotating junction by substituting Iy, = (h/s)Iy = (h/s)Vy/Ry in

Eq. (13). The result is

I, 2h m\ hRy | Vy
— =114+ — 1——=)— . 14
N { + sm + ( ) } (14

! These equations are valid for type A and type B solutions with m consecutive rotating vertical junctions and with junction 1 and N in the no
rotating state. In a similar way, we can compute the equations for the case when junction 1 or N is rotating, for hybrid breathers, or for multi-site
breathers for which the rotating junctions are not consecutive.
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Another important variable is the amount of effective current biasing a vertical rotating junction, say Is,

é={1+m—h(1—ﬂ)&}15. (15)
N 2h + sm N/ Ry

From our experiments Ry/Rp ~ 0.8, h = 0.25 and N = 9. Thus for the case of a type B single-site breather
m=1,s =2)wegetls = %Ia and [; = %Ia (j # 5). Thus the vertical rotating junction is biased by a
smaller DC current than the quiet vertical junctions. Also this non-uniformity disappears as the bias resistance is
made larger.

4.3. Estimation of 1_

To calculate /_, we assume that the instability that destroys an m-site breather is due to a junction retrapping
mechanism. Even if it appears that some other mechanism is important, like a resonance, this instability occurs in
the subgap region of the junction where the voltage varies rapidly while the current remains relatively constant.
Therefore, a retrapping current should give a good estimate of /_ regardless of the physical mechanism.

From simple energy consideration of an isolated junction, the retrapping current can be estimated as 41" I /7. Then,
when the horizontal junction reaches its retrapping current Iy = 41" I, /7. Thus, Iy, = 4T I.ps/th = 41 Ioys /7,
and the vertical junction is at s times the junction retrapping current. Conversely, if the vertical junction is at the
retrapping current, then the horizontal junction is at 1/s of the junction retrapping current. Therefore, as the applied
current decreases, the horizontal junction always reaches the retrapping current first for a type B breather and both
the horizontal and vertical junctions reach the retrapping at the same time for a type A breather. This is the reason why
type B breathers can decay into m-site breathers while type A breathers apparently decay into the superconducting
state. When a type A breather reaches /_ all of the rotating junctions retrap and the resulting state is more likely
to be the superconducting state. On the other hand, when a type B breather reaches /_ only the horizontal junction
retraps while the vertical junctions remain whirling.

From Eq. (13),

I_ 2 S m\ R, | 4
e FR S (O a5
when Iy, reaches its retrapping value.

To use this formula we need the horizontal junction parameters. We can estimate Cy, from the specific capacitance
of the tri-layer and the junction area. We find C, = 300 fF. From the constant /. R;, product, we find that /., = 90 pA.
However, the remaining parameter Ry, is more difficult to estimate since it depends highly on the nonlinear subgap
region. Instead of trying to calculate Ry directly, we will fit Eq. (16) to our measured /_ using Ry, as our fitting

parameter. We include the effect of Ry}, through the definition of I =,/ ®@¢ /27 I, R}Z1 Ch. Then from Eq. (16),

I_ 2 s m\ Ry 4 D
~ =i+ (1= ) 2 = s (17)
N m h N/ Ry) m 27w R Ch

and Ry as the only free parameter. This is how we estimate Ry, or equivalently I”, for a given temperature.

The inset of Fig. 8 shows the fitted values for R, and the dashed lines in Fig. 8 show the resulting /_. We note
that for solutions B7, B8, and W we used a different equivalent circuit based on the schematic of Fig. 5. We see that
Ry, is approximately 50 2 for all m. This value is not totally unexpected. Roughly speaking, the horizontal junctions
are shunted by two bias resistor of 25 €2 each and the retrapping current depends strongly on the equivalent junction
impedance. Since the subgap resistance for our junctions can be several k2 the equivalent horizontal junction
impedance will be dominated by the shunts which add up to 50 €2.
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We can also easily understand why /_ decreases as m increases. For a constant array bias at m = 1 some fraction
of the current will flow through both horizontal junctions. At the same bias current for m = 2, there is a horizontal
junction that is not rotating in between the rotating horizontal junctions. By symmetry considerations there is no
current flowing through this quiet horizontal junction. Since the applied bias current is the same, this implies that
a larger fraction of the applied current must flow through the rotating horizontal junctions when m = 2 than when
m = 1. Thereby, I_ is smaller for m = 2.

4.4. Estimation of 1+

To calculate 7+ we look for the librating junction that supports the maximum current. When this junction reaches
I, the breather has reached its maximum current. It is straightforward to find that the critical junction is the first
vertical junction that is not rotating (the one nearest to the rotating ones). Let /* be the current through the junction.
KCL at node b of the array yields I* = I, + I4. Here we have assumed that there is not current in the horizontal quiet
junctions. Since I; = 414 we can substitute for the currents to solve for * in terms of 7,. We can also generalize to
m-site breathers. The result is

Iy 2h/m+s+h(1—m/N)Rn/Ryp I

A _ 18
N h(l1+2/m)+ s+ hRn/Ry (18)
The maximum applied current /4 occurs when I* = [.y. In the limit Ry, > Ry,
1 2h + sm
+ Ioy. (19)

ﬁ:h(m—i—Z)—i—sm

This current will underestimate the actual value for 7. This is because we have not taken into account any of the
horizontal junction currents that are in the quiet state.

The effect of fluxoid quantization is to redistribute the currents of the quiet junctions. The currents in the bias
resistors and the rotating junctions will remain unaffected. If we consider the effect of the next nearest mesh to
the breather, then KCL at node b will be Iy + I, = I* + I, sin(ky). Here, I, sin(ky) is the current in the next
horizontal junction. Fluxoid quantization in this quiet mesh yields k* — ky — 2k, = 0 when f = 0 and we neglect the
self-induced field. Here k* = sin™! (I* /1.y) and ky is the phase of the next quite vertical junction. Adding self-fields
will tend to decrease I, sin(ky) because smaller screening currents are needed as the inductance becomes larger.
This correction will then tend to overestimate /. We note that to calculate I we set I* = I, so k* = 7 /2.

With fluxoid quantization ky, = 7 /4 — ky/2 at I, = 1. To first order we expect the current in the quiet vertical
junction to be I,/N and k, = sin~! (Iy/Nl.y). For consistency, we apply KCL so I3 + Iy sin(ky) = Iy sin(ky).
Again, we neglect the current of the next quiet horizontal junctions. We can solve for &y in terms of &y, and substitute

back into the fluxoid quantization condition. Using sin x &~ x and cosx ~ 1 — %xz we can get a closed expression,

ky = 1 _h-}-\/hz—{—S(l — I3/1y). .

This expression is only valid when I, ~ 1.
The current /3 equals Iy = ;1111 and can be calculated from Fig. 12 and is simply

B 2/m+s/h+ Ruy/Ry I,
" 2/m+s/h+ (1 —m/N)Ry/Ry N
In the limit Ry > Ry, I3 = I,/N.

The maximum current will now be Eq. (18) when I'* = I, + Iy, sin(ky) with ky defined in Egs. (20) and (21).
The resulting equation is transcendental. But we know the correction due to k, should be small so we can linearize

I 2
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the sine term. The equation then has dependencies of I, on both sides but can be solved by isolating the square
root and squaring. This results in a quadratic equation in 7, with easily extractable roots. The equation can also be
solved iteratively. One iteration usually results in a good approximation. Hence, if 12 is the uncorrected value from
Eq. (18) when I'* = Iy, then the first correction 1}r can be calculated when I* = Iy + I, sin(ky) with I, = 12
substituted in Eq. (21).

4.5. Comparison with the experiments

The result of the simplified DC circuit model is compared to the measurements in Figs. 8 and 11. We used
the measurement in Fig. 8 to estimate the values of Ry, and we use Eq. (17) to calculate /_ for the types A and B
breathers. In Fig. 11, we see that the result agrees quite well for /_. We have also calculated 7 from our uncorrected
expression Eq. (18) and with the correction due to Meissner currents. The measured and expected results agree for
type B breathers. However, the measured I for the type A breathers is much lower than what our circuit model
predicts.

We also note that the effect of the bias resistors and Ry, is essentially to provide an offset to the quasi-linear slope
in Fig. 11. In the limit Ry, >> Ry, the predicted values for /_ would intersect (0, 0). The bias resistor, then, only
provide a small correction by allowing a better fit to the measurements.

Finally, there appears to be a maximum amount of damping where breathers can exist in the ladder. This maximum
I' occurs when Iy coincides with /_ which occurs at = 0.2. This can be expected from the fact that the DB discussed
in this paper require hysteresis in the /-V curves.

5. Simulations at the experimental values
5.1. Introduction

In Section 2.1 we derived the standard model for the dynamics of the array. This model assumes the RCSJ
for the junction dynamics, uniform bias condition, and the effect of mesh self-inductances. We will use numerical
simulations of the governing equations to provide for detailed analysis of the DB solutions. We numerically integrate
Eq. (6) using a fourth-order Runge—Kutta method. The initial condition is found via a similar procedure as in the
experiments. We first bias the array near the depinning current. Then we increase the current of the middle vertical
junction until it starts to rotate and finally we decrease this extra current to zero. Usually the resulting solution is
periodic and we verify that it is stable by calculating Floquet multipliers. If the solution is not stable we integrate the
equations of motion for a long time with an added small current noise source in every junction. In this way we perturb
the solution and sample nearby trajectories in phase space. Usually the final result is a new periodic stable solution.

Sometimes, and usually close to the destabilization points, when we integrate the equations we find aperiodic
solutions that appear stable. We again add some noise to check the stability of the solution against fluctuations and
use standard methods like Poincaré section analysis or study of the Lyapunov exponents of the system to gain more
information about the behavior of the solution.

5.2. Numerically integrated I-V curves with a nonlinear resistance
We will present numerical simulations of the dynamics of the ladder. In our samples 4 = 0.25 and the damping

and the penetration depth vary with the temperature. Thus when the temperature varies from 4.2 to 9.2 K, I" varies
from 0.03 to 0.6 and X from 0.04 to 0.4. However, experimentally we only find breathers for T < 6.7 K and that
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Fig. 13. Simulation of type B breather with a subgap resistance modeled by Eq. (23). From bottom to top gsz = 0.1, 0.15, 0.25, 0.4 and 0.5.
I' = 0.18 and A = 0.05. When decreasing the current the type B breather destabilizes to a type A when gs; = 0.5. Inset shows the plot of 1_.
Solid circles are from simulations and the line is from Eq. (16).

corresponds t0 0.03 < I' < 0.2 and 0.04 < X < 0.05. We will then mostly present simulations at 4 = 0.25,
A = 0.05, however the dynamics of the array is very rich and multiple transitions between different attractors occurs
when changing the parameters.

Fig. 13 shows simulated I-V curves of single-site type B breather solutions. These simulations were done with a
fixed A = 0.05 and values of I"gs; = 0.018, ..., 0.09. We have included a subgap resistance in this simulation in
order to compare with the experimental measurements more closely. We use the usual approach to extend the RCSJ
model where now R depends on the junction instantaneous voltage V (¢). We define a conductance such that

if |[V(@)] < Vg,
R (T)
G(V(@1)) = | (22)
— otherwise.
Ry

Here Ry (T) is taken to be only a function of temperature so for a given set of parameters it is constant. Our
functional AV (¢) now becomes ¢ + I'g(v)¢ + sin ¢, where g(v) = Rn/Rse(T) and I' is calculated from Ry,.
A simple approach is to model g as a continuous hyperbolic tangent. We will use

g(v) = gg + (1 — g 3(1 — tanh K (1 — v)). (23)

In our simulation, we take the value of K = 100. Thereby Eq. (23) approaches a piecewise linear function with a
conductance gz at v < 1 and 1 whenv > 1.

We find that the simulated curves are similar to the experimentally measured arrays. The inset compares /_ of the
simulation to the prediction of the circuit model Eq. (16) when Ry, > Ry. The deviation is due to inductance effects.
Our simple circuit model neglects the effects of the inductances. We have also verified that I in the simulations is
within 99% of the adjusted I of our model equations (18) and (21). We have found similar results for numerically
computed type A breathers.

There is little effect of the subgap resistance in our simulations besides changing the shape of the I-V curve.
Instead of using a subgap resistance, we can redefine I" so that it includes the effects of g. Then, I" is calculated
from Ry, and N (¢) = ¢ + I'¢ + sin ¢ as before.
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5.3. Breather instabilities and switching mechanism

Another aspect of Fig. 13 is the resulting state of the array once the single-site type B breather becomes unsta-
ble. Some insight can be gained by first studying how the single-site breather destabilizes. Fig. 14(b) shows the
distribution of the Floquet multipliers at several values of the applied current close to /_ for the type B breather
when gg; = 0.5 in Fig. 13. We use Iexe = 0.36,0.35975, ..., 0.3425. The voltage of the vertical junction Vs is
approximately 0.55V} in this small range of currents. Correspondingly, the voltage of the top horizontal junction
is Vs = %VS = 0.275V;. In our normalization, the fundamental frequency of the type B breather is then w =
Vst/I' = 1.53. Most multipliers lie on a circle of radius e =7/ '¢/® 2 .83 and this can be verified in Fig. 14(b).

In Fig. 14(d) we decrease the current and show the value of the voltage and the modulus of the Floquet multipliers
(only for periodic solutions). This is the typically observed bifurcation scenario for small X. It seems that for small
A and underdamped junctions, this instability introduces more frequencies in the solution. When the periodic type
B breather losses stability at I = 0.3425, the solution becomes a quasi-periodic type B breather similar to the one
shown in Fig. 23. This quasi-periodic type B solution persists up to a current value of 0.33775 when the array jumps
to a periodic type A solution.

For large A, however, we usually observe a period-doubling bifurcation where a multiplier crosses the unit circle
at —1, though the behavior also depends on the damping.

Our simulations in Fig. 13 show that the array sometimes switches to the superconducting state when the type B
solution ceases to exist. The bifurcation scenario for the different subgap resistances is similar to Fig. 14(b).

At gsg = 0.5, on the other hand, when the single-site type B breather becomes unstable, the array switches
to a single-site A breather. This type A breather exists for a range of currents. Fig. 14(a) shows the Floquet
multipliers for a type A breather at current values: 0.27, 0.26975, .. ., 0.2495. The voltage of the vertical junction

Fig. 14. Floquet multipliers of type A (a) and type B (b) periodic DB for decreasing currents above and at /_ of the simulation shown in Fig.
13 when gy; = 0.5. Figures (c) and (d) show as a function of the current the value of voltage (solid circles) and the modulus of the Floquet
multipliers whenever the solution is periodic (open circles).
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Vs is approximately 0.33V; in this range of current. In our normalization, the fundamental frequency of the type
A breather is then w = V5/I" = 1.81. Most multipliers lie on a circle of radius e ™" /'¢2/® ~ (.85 and this can be
verified in Fig. 14(a).

In Fig. 14(c) we decrease the current and show the value of the voltage and the modulus of the Floquet multipliers
(only for periodic solutions). Below I = 0.2495 the DB is unstable and the solution switches to the superconducting
state.

The selection rules between different m-site type B solutions shown by the experiments is an important feature
that cannot be explained in the framework of the DC circuit model and also is not well predicted by our simulations
of the array. Once the breather solution reaches a critical value of the current the system chooses between many
different attractors that have complex boundaries. In this process randomness and thermal fluctuations play a role as
it is shown by the different switching patterns under similar experimental conditions. In our experiments we usually
observe transitions from an m-site type B solution to an (m + n)-site type B. However sometimes we find jumps
from type B to type A in the experiments (Fig. 9) The simulations (like in Fig. 13) show more frequently transitions
from a type B solution to a type A solution and then, by decreasing the current, to the superconducting state.

To try to understand this switching process of the cascade of m-site type B breathers, we have introduced
more elaborated models to (i) include the bias circuit in our simulations, (ii) study the effect of external fields, (iii)
introduce a full-inductance matrix formalism, (iv) take into account the nonlinear character of the junction resistance,
(v) include disorder randomizing the junctions critical currents and (vi) include thermal effects by adding a noise
term to the junction currents. However, none of these simulations reliably predicts the observed cascade of m-site
type B breathers found in our experiments as the current is decreased.

The bias resistors can be added to the model by rewriting the KVL and KCL for the new circuit. We have also
included an external magnetic field. However at small values of A the field is expelled from the array because of
strong inductive effects and does not affect the /-V curves. This was also found experimentally in Fig. 10.

It also relatively straightforward to use a full-inductance matrix. We find that the additions of extra coupling
changes significantly the decay of the fields within the array. For instance, due to the non-local coupling the breathers
are no longer exponentially localized, and the field decay is algebraic away from the breather. Nonetheless, the I-V
remains relatively unaltered.

Finally, thermal effects may play an important role, especially if the attractors have complex boundaries. We use
the standard Langevin approach and replace the resistor of the RCSJ model by a noiseless resistor in parallel with
a Johnson current noise source,

Civj+ L 4 [ sing; = Ioxe + 1V (24)
jUj R c @j = lext i
J

where ([ JN nl1 ]gv (t")) = (2kT/R;)8(t —t")8j. This results in the usual current noise spectrum density S; = 2kT/R;.
We normalize our equations as in Section 2.1 and N (¢;) = ¢; + I'¢; + sing; + i’; and the spectrum of i’} is
S; = 2kTh;I"/Ey, where the Josephson energy Ey = (®o/2m)I.y and hj = ch/lcv.

Our dimensionless temperature is then 7 = kT/Ej. At 4.2K our vertical junctions have I, = 345 pA so that
Ej = 8.2 x 10° K. With this normalization 4.2 K equals T ~51x107% Similarly, for the maximum temperature
we observe breathers, 6.7 K, T~13x 1073,

Our simulations were done at & = 0.25 and A = 0.05. At these values of the parameters, we generally find in
our simulations with Johnson noise that when a type B breather becomes unstable it jumps to a type A breather.
Sometimes when a type B breather becomes unstable an m-site B breather will form as in our experiments, but this
is much less common. However, we have found that at other values of the parameters (typically larger & and 1)
different switching scenarios occur. We have run several simulation that include thermal noise, the full-inductance
matrix, bias resistors, and possible stray fields. All these effects result in a very detailed model for the dynamics of
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Fig. 15. Simulation of a cascade of 1-site, 4-site and 6-site type B breathers in up-down symmetric ladder with I" = 0.07 and » = 0.05. Each
curve is the average of the indicated vertical junction.

the array and different breather solutions are found. Also, adding inhomogeneities, like a distribution of junction
critical currents, or a magnetic field does not seem to change the fact that in the array simulations when most type
B breather solutions become unstable a type A breather solution is formed.

To investigate the experimentally observed cascade of m-site type B solutions we study a toy model that allows
for only type B breathers. The simplest model with this characteristic is a variation of the standard model where

an up-down symmetry for the superconducting phases is assumed, thus (p;. ) = —go'; (#) (this was also assumed in
[26,40]). We remove the bottom branches of the full ladder, since their dynamic is by definition identical to the top
horizontal junctions. Also, fluxoid quantization, Eq. (4), is modified since (p; = —w'j?,
Y — ¢! —2t+2nf+l'm—0 (25)
Pj = Pjr1 729 =Y

This along with KCL yields a nonlinear coupled system that can be obtained from Eq. (6) defining (p;’ = 0 and
changing (p; — Z(p; on the right-hand sides.

Fig. 15 shows a simulation of the up-down symmetric ladder with I = 0.07 and A = 0.05. The curves are the
average voltages of each vertical junctions. We start at I.xc = 0.7 with a single rotating junction. As we decrease
the current, the single-site breather becomes unstable at Iox; = 0.32 and a 4-site breather is created. This solution
persists until Iex; = 0.23 when a 6-site breather is formed and finally at lox¢ = 0.15 the arrays switches back
to the zero-voltage state. These current values are estimated well from our circuit model equation (16) and the
discrepancies are due to the effect of the inductances.

The up-down symmetric ladder only allows up-down symmetric solutions such as a type B breather. When the
single-site breathers becomes unstable the array can no longer jump to an A type breather. It appears that this
constraint is enough to allow the formation of m-site breather when the single-site breather becomes unstable. This
toy model, thus allows for the study of some of the switching events seen in the experiments, though it is not clear
the physical relation of this model to the experiments.

6. Linear analysis

6.1. Resonances in a ladder

Before we embark on an analytical study of the different localized solutions in the ladder we first need to
understand the basic linearized excitations that can occur.



E. Trias et al. / Physica D 156 (2001) 98—138 119

An important characteristic frequency of the ladder occurs when the frequency of a junction resonates with the
lattice eigenmodes. To calculate the resonant frequencies, we linearize Eq. (6) around a solution. Every breather
solution is approximately up-down symmetric far from the rotating junctions. Therefore we make the approximation
cp} = —(p}? and let (p} =@+ 6(,0; and ¢} = g + 8¢} . The resulting linear equations are

h(c?gb;- + FSgb;- + cos(go(t))&p;) = M=8¢j | +d¢] — 28@3),
8GY + '8¢} + cos(gy)8p) = A(8pY, | — 260} +8¢)_, +28¢% — 25¢%_,). (26)

If the ladder is in the uniform whirling state then the approximate solution is ¢f, = 0 and ¢§ = wt +zj where z is the
wavelength of the vortex train. To calculate the dispersion relation we let S(p;. = et el@teD and Spj =¢€" el@ten,
We substitute in Eq. (26) and take the I" = 0 limit since our junctions are underdamped and it can be shown that
for I' < 1, the damping terms are only small corrections to the frequency. The cos(¢g )6(,0}’ results in terms of
iwt

2wt

coefficients of e2' and e and all other terms have coefficients of ¢/®’. We only keep terms of ¢/®’. The resulting

matrix equation is

—R 142 &(eiz—l)
e | )L
- . (27)
Z €y 0

2= 1) —w? + 44 sin? (§>

The solution to Eq. (27) is @*> = F £ +/F2 — G where F = 1(1 4+ 24/h + 44sin(z/2)?) and G = 42sin(z/2)>.
From physical grounds we expect the wavelength to be well approximated by z = 2 f, i.e. the average distribution
of vortices in the array. The resulting resonant frequencies are important when studying properties of moving vortices
in the ladder. Then, there is a traveling wave of vortices with density f that can resonate with the lattice modes.

Our breathers solutions are clearly not uniform. So the above result, while instructive, is of limited value. We can
think instead of a solution that is valid far from the localized breather core. Far from the breather core, the solution
to first order is

oh=nf, @y =sin i (28)

and this satisfies the ladder equations, Eq. (6). Since the core junctions in the breather are rotating, they will induce
librations in all of the junctions in the array [26]. After substituting the first-order solution into Eq. (26) and expanding
the perturbations as plane waves, we are left with the following matrix that must have a zero determinant to allow
for non-trivial solutions:

2 . 2A A iz
207~ 1) —w? + il + p + 44 sin (%) €v 0]’

where p = /1 — (iext)2. We set f = 0 as in the simulations and z represents the wavelength of the perturbations.
This dispersion relation describes the linearized frequencies that can resonate with a breather. In the case where p
is approximately 1 and I" = O the eigenvalues have a particular simple form,

67
w+=\/1+7+4xsin2 (%) o =1. (30)

We note that w; > w_ and that w_ is associated with the LjC resonance of the ladder and w, with the L C
resonance. We will show that this is a good approximation for our simulations.
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A more generalized resonance condition can be calculated by using a harmonic balance technique. For the added
complexity of the harmonic balance analysis, it only yields a result that is very similar to the linearized calculations.
However, the harmonic balance approach can also be used to calculate the I-V curve.

6.2. Decay length

To calculate a resonance frequency we substitute into (30) the appropriate wavelength. For instance, the resonance
of largest frequency occurs when z = m. However, whenever our frequency or wavelength falls outside of the
dispersion relation then any linearized excitations must decay. In general we should let our wavelength be a complex
number z = k + i where £ represents the decay length.

We first define sin®(z /2) = x + iy and substitute into the determinant of matrix equation (29). We expand terms
and solve for x and y,

4 A PP
- . (31)

4r(w? — 1) AT\ [x}
A
2Fa)3—F<1+p+ZZ)a)

4o —dr@*—1) | LY

Here, the first row are the real components and the second row are the imaginary ones. This equation can be solved
for x and y,

_ he® +[I2h—2).— 2+ p)hlw* | [h(1+2p) +24(1 + p) — Ihp — 2T %A ]w? — [2). 4 h]p

32
4hd[w* + (I? = 2)w? + 1] 4hrow* + (I = 2)w? + 1] (32)
and
I'ow F'o(p—1)

=—— ) 33
Y= T T U T M= e £ 1] (33)

The solution simplifies drastically when p =1,

ho? — 2% —h Tow

=— =——. 34
* 400 AT 4

With these formula we can calculate the decay length. We use the fact that cos(k+i§) = cos k cosh & —isink sinh €.
Then,

x = R{sin*(z/2)} = 1(1 — coskcosh&), y = J{sin®(z/2)} = L sinksinh&. (35)

We can now solve for the k and &£. The solution is not simple in the general case but when y = 0, it simplifies
considerably. When £ is zero,

£ = cosh™!|1 — 2x| (36)

and the solutions decay exponentially. When & = 0 we recover the normal modes of the system and the frequencies
are given by the dispersion relation Eq. (30).

When y # 0 the solutions decay exponentially for all frequencies. This is due to the damping and is crucial for
the existence of the resonant breather and chaotic breather solutions found in Sections 7.2 and 7.3.

Fortunately, our ladders are underdamped so the I" — 0 limit is appropriate. Then, from Egs. (32) and (36),

—ho* + @A+ h(p + 1) + 20 @? — 24h — 2Ap — ph
20h(w? — 1) ’

£ =cosh™! (37)
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As p — 1, this simplifies to

2uh+1)+h  o?

&= cosh™! .
2\h 2

(38)

In the opposite limit of I" — oo, 1/& approaches 0.

Eq. (37) gives the result for the decay length of linearized excitations in the ladder when I" = 0. Another limit
where the equations simplify occurs when w — O.

In the limit of w — 0 we get

20k + p(2h + h))

21h (39)

&= cosh™! (
and it can be verified that this result is independent of I".
We have taken the @ — 0 and the I" — O limits. There is one other important limit when inductances can be
neglected (A — o0). Then, with A — oo and p — 1, the decay length is

£ =cosh™! (%) (40)

and it can also be verified that this is independent of I". Also as A — 0, 1/& approaches 0.

The decay length given by Eq. (39) describes the decay of the DC flux in the array. For instance, using the
parameters in Fig. 4 we calculate that 1 /& = 0.32 and this agrees with the simulations. This results also implies that
the decay is exponential and that this exponential localization has an upper bound. The decay length 1/£ is always
less than 1/ cosh™ {(i + p)/h}if & > h or 1/ cosh™{(2x + p)/2A} if h > A.

7. Numerical and analytical study of single-site DB solutions
7.1. Regions of existence of single-site DB solutions

In Section 5 we numerically simulated the behavior of the DB solutions found in the experiments. Such experi-
ments were done at moderate to small values of the damping, anisotropy and penetration depth (1" ~ 0.1, h ~ 0.25
and A ~~ 0.05). It is also important to study the existence and behavior of the localized solutions at other values of
the parameters and to estimate the critical values at which DB solutions destabilize. Varying the temperature we
studied experimentally the behavior of the solutions at different values of the damping I". The results were presented
in Fig. 11, where & >~ 0.25 and A >~ 0.05. For these values of the parameters good agreement was found with the
theoretical predictions.

The equations found in Section 4 allow for a calculation of the /-V curves and the maximum and minimum values
of external currents supporting DB. For Ry, > Ry and single-site breather solutions we find

I 2
_a:(l_i__h)& 41)
s / Ry

for the I-V curves and

1_
NIy

1+ _ 2/’Z+S
Nloy  3h+s

—@htoir, (42)
T

for the currents.
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Fig. 16. Prediction of Eq. (42) for I, and /_ as a function of / for single-site type A (left) and type B (right) solutions and two values of the
damping. Lightly hatched region corresponds to I” = 0.08 and the densely one to I" = 0.2.

Figs. 16 and 17 show the predictions given by the circuit model. The size of the existence regions decrease rapidly
when the damping or the anisotropy increase. On the other hand, if the damping is small enough we should find
localized solutions at large values of 4. Also, the existence region is larger for type A solutions.

This simple model, however, does not account for any dependence of the curves with the parameter A. This is
an important limitation of the model and we have been unable to develop a more complete, yet still simplified,
approach which incorporates A. We have confirmed in the numerical simulations that A affects our predictions in
two important ways. First, it affects the value of the array retrapping current. The value used in our circuit models
has been calculated from a single junction and should be corrected by A in the case of the array. Indeed, some of the
curves shown below can be fitted assuming a simple linear dependence of the retrapping current with A. Second, as
studied in the previous section, it governs the values of the voltage at which resonances between the breather and
the normal modes of the array play an important role. Roughly speaking, the resonances split the diagrams into two
different regions: the small and the large A regions. When A is small, the resonance frequency is smaller than the
DB frequency, and when A is large the resonance frequency is larger. Thereby, complications of damped resonances
between the DB and the lattice eigenmodes are avoided in these limits.

Far from the resonance values the effect of A is a small correction to our /-V curves. This is shown by the numerical
simulations. See for instance Figs. 21 and 26, where [-V curves numerically integrated agree quite well with the
predictions of the model, Eq. (41).

We have done numerical simulations based on Eq. (6) with f = 0 in order to study the A dependence of the
breather existence region. The results are presented in Figs. 18 through 20. In these diagrams we show the maximum
and minimum values of the parameters for which a localized solution has been numerically found. As we will see,
in some cases the characterization of the solutions inside the existence regions is quite complex in which several
resonances and transitions between periodic and aperiodic states appear. In these figures we have also marked the
values of the parameters at which the experiments were done, all far from these problematic areas and belonging to
a region of the diagram where both type A and type B breathers are predicted to exist.

0.5

Fig. 17. Prediction of Eq. (42) for I, and I_ as a function of I" for single-site type A (left) and type B (right) solutions and two values of the
anisotropy. Lightly hatched region corresponds to # = 0.25 and the densely one to & = 1.0.
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Fig. 18. Numerical calculation of the existence region of single-site DB when A = 0.04 and I = 0.6. Open circles correspond to type A and
solid circles to type B solutions. Vertical lines correspond to cuts show in Fig. 20 and the asterisk to the experiments.

The data were calculated by integrating the governing equations with a small quantity of noise. We start with a
type B rotobreather and & ~ 0.001. As we increase &, type B solutions become unstable and the solution evolves
to a type A rotobreather. As we further increase / this rotobreather becomes unstable and the system usually jumps
to either a superconducting or a whirling state. To verify that our method is accurate, we have calculated Floquet
multipliers for periodic rotobreather solutions and found results consistent with those shown.

Fig. 18 shows the existence regions in the anisotropy versus damping plane when A = 0.04 and / = 0.6. When h
is large the agreement with the predictions of Eq. (42) is good. There is an abrupt deviation of the curve for type B
solutions at small values of # and a region at larger I" where new type B solutions appear. Vertical lines correspond
to I"' =0.08 and I" = 0.2, studied in Fig. 20. The asterisk corresponds to the experimental parameters.

Fig. 19 shows the existence regions in the current versus A plane when I" = 0.08 and & = 0.25. These are
the values of & and I" in our experiments. We can see that Eq. (42) gives a good estimation of the maximum and
minimum values of the current for localized solutions, except for the case of the minimum current with a moderate
A. In this case, resonances and other dynamical effects cause a substantial deviation from our simple model.

Fig. 20 shows the diagram in the anisotropy versus A plane for / = 0.6 and I" = 0.2 (left) and 0.08 (right). As
expected from Fig. 16 localized solutions exist at larger values of 2 when I" is smaller. Unexpectedly, at I" = 0.2
and small values of A type B solutions exist only for small values of /. This behavior is also described in Fig. 18.
The asterisk in the I" = 0.08 figure approximately correspond to the value of the parameter where our experiments
were done.

Fig. 19. Numerical calculation of the existence region of single-site DB when I" = 0.08 and & = 0.25. Open circles correspond to type A and
solid circles to type B solutions. Horizontal lines correspond to the predictions of the circuit model and the asterisk to the experiments.
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Fig. 20. Numerical calculation of the existence region of single-site DB when I = 0.6 and I" = 0.2 (left) and I" = 0.08 (right). Open circles
correspond to type A and solid circles to type B solutions. Horizontal lines correspond to the predictions of the circuit model and the asterisk to
the experiments.

Clearly, the existence diagrams are complex and further research is necessary to fully understand them. However,
these diagrams show that DB solutions might be understood within our simple model at limiting values of small
and large X. We will use these limits in the numerical and analytical analysis of type B and type A solutions in the
following sections.

7.2. Type B breathers

7.2.1. Simulations

Fig. 21 shows typical simulated /-V’s at different A’s for single-site type B breathers. The horizontal dashed line
is the minimum retrapping current expected from Eq. (16) when R}, >> Ry, in the circuit model. The vertical dashed
lines are the two resonant voltages of the ladder as approximated with Eq. (30) when z = 7 (the largest lattice
frequency). As can be seen in the I-V’s, w4 gives a good approximation of the location of the resonant structure.
Also, wy is always larger than w_. The diagonal dashed line is the expected voltage of the fifth vertical junction
calculated from the DC circuit model, Eq. (14) with R, >> Ry. The voltages of the fifth vertical junction and the
fifth top horizontal junction are plotted and are usually related by V5 = 2Vst. Here, we have used the simple RCSJ
model without a subgap resistance and we have set I" = 0.1, the experimental value measured from the subgap
resistance.

0.5

[

1
0.5; !
[
]

Fig. 21. Simulated /-V’s for 9 x 1 ladder of type B breather as a functionof A; h = 0.25,I" = 0.1, f =0and(a) A =5,(b) A =2,(c) A = 0.8,
and (d) 2 = 0.5. The labels indicate different type B breather solutions. The vertical dashed lines are w4 (1) and w_ = 1 from Eq. (30). The
horizontal dashed line is /_ from Eq. (16) when Ry, > Ry and the diagonal dashed line is from Eq. (14) when Ry, > Rp.



E. Trias et al. / Physica D 156 (2001) 98—138 125

e e A
OF - 6 .
v A=5.0 v A=0.5
4 4
L NN S e N
5T
> >
0 0
-2t sB -2F 5B
AT e W Wy R i
4 4
1000 1002 1004 1000 1002 1004
time time

Fig. 22. Time evolution of the time derivative of the phase, v(t) = dg/dt, for the large A type B solution labeled Ble in Fig. 21(a) and the small
A type B solution depicted as B1 in Fig. 21(d). We plot v(¢) for the rotating vertical junction (5V) and two neighbor horizontal junctions (5T
and 5B). Here, h = 0.25, " = 0.1 and I = 0.8.

Fig. 21(a) shows an I-V when A = 5. It corresponds to the large A regime. At these parameter values the
upper resonance is above any of the junction voltages. However, we still see some resonant behavior at I ~ 0.9.
The solution when I = 0.8 is shown in Fig. 22 (left). This type B breather is fully up-down symmetric in that
q)} ) = —<p? (). Also, the averaged voltage of the horizontal junction is always half of the voltage of the vertical
junction. We will label this type of solution as Bla. As we decrease the current, the breather becomes unstable at
I = 0.32 as predicted by the retrapping model, Eq. (16), and a type A breather forms which itself becomes unstable
at [ = 0.26.

Fig. 21(b) shows an I-V when A = 2. We see that the Vs branch is now separated into two parts by the w
resonance while Vst is still below the resonance. The solution when all the voltages are below the resonance is still
Bla. We will label as B1S the breather solution where Vst is below and Vs is above the resonance. There is also a
hysteresis loop that forms at the resonance that is not shown in the figure. We find that, as the Bla, the B1 solution
is also up-down symmetric, but in the case of the B18 there exists a phase difference in between the velocity of the
vertical and the horizontal junctions.

When 1 = 0.8 we see the I-V shown in Fig. 21(c). We find that we can interpret the 8 solution as a resonant
type B breather. Below the resonance, there is a small remnant of the o breather. When the 8 solution becomes
unstable but Vst is still below the resonance, there is another type B breathers which we have labeled Bly. An
unusual signature of this breather is that V5 # 2Vst. Further analysis shows that the y solution is an aperiodic type
B breather. There is also a hysteresis loop at the resonance that, depending on the parameters, might surround the
aperiodic breather. This hysteresis would make it difficult to experimentally access this attractor by only using the
applied current.

We can continue to decrease A. Fig. 21(d) shows an I-V when A = 0.5. The upper resonance has now divided
the voltage of Vs into two branches. Below the resonance we get the solutions described above. We see that the 8
solution is getting “squeezed” by the w, resonance and the retrapping current. Indeed, there is a critical value of A
where the type 8 solution disappears.

Above the resonance, we find a solution labeled B1. This small A regime is the same as in the experiments.
The single-site breathers measured in our ladders are of this B1 type while the other breathers described above
were only found numerically. In Fig. 22 (right) we see that this B1 solution is not up-down symmetric although
Vst = %Vs = —Vsp.

We have done a Poincaré section analysis of the aperiodic solution B1y at the same parameter values as Fig. 21(d).
In Fig. 23 we show the value of ¢ versus ¢ at times equal to 7o + nt where t = 2w/ V5. The simplest periodic type
B solutions have a period T = 27 since horizontal junction is half the voltage of the vertical junction. The solution
shown in Fig. 23 seems to be quasi-periodic with two incommensurate frequencies, one of which seems to have a
period equal to 4T .
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Fig. 23. Poincaré sections of the third top junction (3T) for a B1y solution. The phases are shown at times ¢ = fo + nt where T = 27/ Vs and
h=025T=0.1,A=0.5,and I =0.7.

There are many other type B breathers that were found numerically at other values of the parameters but are not
discussed here. For instance, there is a family of solutions which is not left-right symmetric. However, we shall
focus our discussion to left-right symmetric solutions that have the above characteristics.

At other values of the parameters, the I-V curves show chaotic localized solutions. Fig. 24 shows Poincaré section
for vertical phases in the case of a chaotic localized type B solution. The values of the parameters for this solution
are h =0.15,A = 0.2, I' = 0.2 and I = 0.6. Such chaotic region can be located in the central part of Fig. 20.

7.2.2. Analysis

In this section, we will use a harmonic balance technique to derive some analytical descriptions of our DB. When
studying periodic solutions it is almost always easier to work in Fourier space. Harmonic balance is a technique
where the variables are decomposed into their Fourier components and substituted back into the governing equations.
This creates a large set of coupled algebraic equations. If the governing equations are linear then each resulting
algebraic equation is independent and the full system is easily solved. However, nonlinearities tend to mix harmonic
components. If the mixing effect is large then the resulting set of algebraic equations is usually intractable. However,
in our underdamped Josephson arrays the capacitances act as filters that allow the transmission of only a few
frequencies. Typically it is only one frequency. In this case, we can truncate the set of algebraic equations and a
harmonic balance technique can provide useful approximations.
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Fig. 24. Poincaré sections of the fourth and fifth vertical junctions for a type B chaotic solution. The phases are shown at times t = 1y + nt
where 1 = 27/Vs and h = 0.15, " = 0.2 and A = 0.2 and I = 0.6. (a) Shows the sections for the rotating vertical junction 5 and (b) for its
first neighbor 4.



E. Trias et al. / Physica D 156 (2001) 98—138 127

From simulations almost all breather solutions have left-right symmetry (and this is always true for average
voltages). We can then make a transformation from the full ladder to what we call a half-ladder. A half-ladder is
ladder where the breather is now on the first junction and we assume left—right symmetry.

To make a mapping of the equations from a half-ladder to a full ladder we first consider placing a breather in
junction 5 of a 9-junction ladder. Current conservation at that node yields

L=1—-1+1° (43)
Mirror symmetry implies that 15t = —I; thereby current conservation becomes
=20+ 1° (44)

If we have a half-ladder, current conservation at the first node (labeled 5 for comparison) yields
=14 10 “45)

To make a mapping between the circuit equations, we need to multiply 15t by 2. Since I' = hN (), this is equivalent
to setting Analf-ladder = 2M1adder- HOWever, we want to maintain the same flux pattern in the half-ladder so fluxoid
quantization must remain unchanged. This is simply done by setting Anaif-ladder = 2*ladder-

Since the breather solution is highly localized we can, as a first approximation, neglect every cell except the first
one. The resulting reduced system of equations can be written as

N = —N(g"), (46)

heN (@) + N (1) = iext, (47)

—he N (@) + N (@) = iext, (48)
he

—p' P+l — g = —N@Y, (49)

where h. = 2hjadder and Ac = 2Aladder-
Most type B breathers have two voltages in the system corresponding to two frequencies. Our simulations indicate
that the voltage of the horizontal rotating junction can be approximately decomposed as

pithh = :I:%a) + gt cos(%wt + 0Py 4 pltd) cog(wr + Qgt’b}). (50)
Similarly for the rotating vertical junction,

V' =w+d cos(%a)t + 9;) + b cos(wt + 9&). (€28
For the librating junction,

V' =a' cos(3ot + 6}) + b' cos(wt + 6p). (52)

We integrate to get the phases and use exponential notation. Our phases are then

ot = D‘i[gt—i—kt + % At e/t _iBteiwt] ’ (pb _ m{—%t yLI % _iAb e/ _iBbeia)t} ,
o' =R for++ % —ialeded—ipleir) gt =k —areler —ipreier) (53)

where A* = (2a*/w)e'®% and B* = (b*/w) e% with x = t,b,1and . By convention we will take the real parts
for the actual variables. Also, the integration constant has been taken to be k{“?!I} 4 7 /2 for the rotating junctions.
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To substitute into our governing equations we must linearize the sine term. Substituting our phase ansatz into the
sine term would yield an infinite Fourier series whose coefficients are Bessel functions of the amplitudes. In this
sense the sine terms mix all of the harmonics. In the present case, our amplitudes are small and we can linearize
cosx = | and sinx = x. The sine for the top rotating phase is approximated as

sin gt = m{ei((w/Z)l+k[) _ %At e ik 4 %At (@K _ %Bt ei((w/Z)tfk‘)} (54)
and for the bottom phase

sin (pb _ m{efi((a)/Z)tfkb) + %Ab eikb . %Ab ei(wszb) + %Bb ei((a)/Z)tJrkb)}. (55)
The sine of the vertical rotating phase is approximated as

sin (pl _ m{ei(wt+kl) _ %Al efi((wt/2)+kl) . %Bl efik‘}. (56)
For the librating phase

sing" = R{—iek —i(A" el @D 4 Brel®) cosk"). (57)

We have neglected all terms of frequencies not equal to £w or :t%a).

If we substitute our ansatz into our governing equations and expand the sine terms as indicated above, we transform
the original four differential equations into a linear system of 20 equations with 21 unknowns. This extra degree of
freedom is associated with the time translational invariance of the equations.

In principle it is possible to solve the full algebraic system by fixing one of the unknowns, but here we will
just estimate the amplitude oscillations of the breather. To make headway, we will use some trends found in the
simulations to reduce the number of unknowns and take the limit I” = 0.

We first calculate |A'| and approximate the phases from the numerical simulations. From simulations, we find
that as A — oo, the phase difference of the %a) harmonic between the waveforms of ¢' and sin ¢' is 7. We also
find that the phase difference of the %w harmonic between the waveforms of ¢! and ¢! is zero and between the
waveforms of ¢! and ¢" is 77. These phase relations can be used to reduce the number of unknowns in the algebraic
system.

One solution to Eq. (46) obeys the up-down symmetry: B' = —B® and A' = —AP. We can combine the %a)
harmonic parts of Egs. (47)-(49) and solve for | A'|. This yields

Qhehe — he(@/2)?

Al = . 58
A= /272 @e + 2hete — hew/2D) o9
Using the same technique to approximate phases using simulations for the w harmonics, we find
1
B'| = 59
5] @?(2+2/he — 0?/Ac) >9)
with 1| BY| = | BY|. We can then find all of the amplitudes of the harmonics in terms of w.

As X decreases the breather enters a resonant regime. In this regime the phase relationships change from the above
limit. We now find the phase difference of the %a) harmonic of the waveform of ¢* and sin ¢! is zero, the phase
difference between the waveforms of ¢! and ¢! is 77, and between the waveforms of ¢! and ¢" is also 7. Substituting
the new ansatz in the governing equations results in the same equation as Eq. (58) but with an overall negative sign.
The same occurs with the B" amplitude. In the resonant regime Eq. (59) just changes sign.

In the A — 0, the equations simplify. From Eq. (49) we see that A/ (¢') must tend to zero. This implies that

1
" (/2

t
|A7]

(60)
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This also puts strong constraints on A" and A'. One possible solution is A" = 0 and A' = 0. Then to satisfy Eq. (49),
A! = AP contrary to the expected up-down symmetry. However, this solution is consistent with Eq. (46) and it is
the stable solution we find numerically for small X.

Fig. 25 shows a summary of the analytical results and how they compare to the simulations. The top graph is a
simulation for a cell while the bottom graphs shows results for our ladder. Both system have I = 0.1. For each
system, we have excited a type B breather atiex; = 0.5 and A = 10. We plot the value of |A'| and w as we decrease A.

As expected, both graphs are very similar when Ace)] = 2Ajadder- The top solid line is from the simulated frequency
of the rotating vertical junction. The bottom solid line is from the simulated frequency of the horizontal junction
which is precisely half of the vertical frequency. The dashed line shows the w_ resonance. Because there are two
frequencies, the resonance divides the solution space into three regions that result in the three different solution
found in Fig. 21 and studied analytically using harmonic balance.

The solid circles in Fig. 25 are the simulated A' and the dashed lines are the analytical estimate. For small A we
have the B1 solution whose amplitude is given by Eq. (60) and the predicted amplitude lies on top of the simulated
values. For the resonance regime of solution B1g the amplitude is given by Eq. (58), and for the large A regime the
amplitude is also given by Eq. (58).

For the simulations of a single cell, the harmonic balance gives a very good approximation. This is not too
surprising, since the analysis was performed for a single cell. However, the bottom of Fig. 25 shows that the analysis
is also valid for the full ladder as long as we transform A and 4.

7.3. Type A breathers

Fig. 26 shows typical simulated /-V’s as a function of A for type A breathers. As in the previous discussion,
the horizontal dashed line is the expected retrapping current while the vertical dashed lines are the two resonant
voltages from Eq. (30). Here the voltage of the fifth vertical junction and the fifth horizontal junction are the same
and this makes the analysis of the solutions much simpler. There are basically just two solutions.
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and the diagonal dashed line is from Eq. (14) also as R, > Ry.

A harmonic balance technique can be used to calculate the amplitudes of the oscillating parts of the breather. We
use a similar approach to Section 7.2.2 but approximate the phases with one frequency instead of two. Our phases
are then,

gpt:m{wl—f—kt—i-%—iAteiwt}, gDbZSR{kb_iAbeia)t}’
(Pl = %{wt + K+ % — iAleiwt}, o' = R{K* _iAreiwf}_ 1)

When w, is above the junction voltages, as in Fig. 26(a) the solution is up-down symmetric with respect to the
amplitudes: A' = —AP, and A" ~ A'. This means that all of the core junctions of the breather have a small oscillating
amplitude. As A decreases the breather can resonates with the lattice eigenmodes as shown in Fig. 26(b). When A
is so small that e is below the breather frequencies we find a solution with A® ~ 0 and A" ~ 0.

The analysis of the amplitudes is straight forward and similar to what is done in Section 7.2.2. We substitute the
ansatz in the governing equations and keep only DC and w harmonics. We then use simulations to approximate
some of the phase relations and thereby reduce the number of equations.

In the A = 0 limit, we have from Eq. (49) that A/ (¢") = 0. If we set I" = 0, this implies that

¢ 1
AT = ek (62)
In the opposite limit, we can again use Eq. (49). We substitute the ansatz found in the simulations of A' = —AP
and approximate A" as A', then
h/A
|AY = _hA | (63)
3 — haw? /)

Fig. 27 shows a comparison the analytical results and how they compare to the simulations. The top graph is a
simulation for a cell while the bottom graphs shows results for the ladder. Both system have I = 0.1. For each
system, we have excited a type A breather at iexy = 0.4 and A = 10. We plot the value of |A'| and w as we
decrease A.
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As expected, both graphs are very similar when Ace] = 2A1adder- The solid line is from the simulated frequency
of the rotating vertical junction. The dashed line shows the w, resonance and we see that there are two types of
solutions: breathers with frequencies above w, and breathers with frequencies below w_ .

The solid circles in Fig. 27 are the simulated A and the dashed lines are the analytical estimate. For small A
the amplitude is given by Eq. (62) and the predicted amplitude match the simulated values. For the large A regime
the amplitude is given by Eq. (63) and the approximation breaks down at the resonance. In any case, we see that
comparing a breather in one cell to the breather in a ladder works quite well.

7.4. Vortex patterns in breathers

The DB that we observe in the ladder can also be understood as bound vortex states. In Eq. (5) we define the
vorticity n; in a cell as

1 .
nj = o—-Alejl = o] 1= [+ [gjl + /™, (64)

where [¢] represents the phases modulus 27, and f Ji.“d = i;“/ 2w A. As we will show, n; changes in time differently
for the three analyzed solutions. However, we want to stress that the magnetic field flux, which is due to the mesh
currents in the ladder, librate around a mean value as shown in Fig. 4 and do not circulate. Only the fluxoid, or
vorticity, which is the quantized quantity, moves from cell to cell. This behavior is different for the cases of type B
or type A solutions and in the case of type B solutions for small or large values of A.

7.4.1. Large A type B solutions

In Fig. 28 we show a sequence of time snapshots of the ladder for a type B breather in the large A limit when
f = 0. There is one vertical junction rotating and four horizontal rotating junctions. The voltage of the vertical
junction is twice of the horizontal junction. For every full rotation of a horizontal junction, the vertical does two
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Fig. 28. Vortex pattern of type Bl breather (defined in Fig. 21) for large 1 at f = 0.

full rotations. The solid circle is a vortex and the x is an antivortex. In this large X case, the solution is completely
up-down symmetric (see Fig. 22). Thus (p}?(t) = —<p; (1).

At the initial condition (a) there are no vortices in the ladder. As soon as the vertical junction goes over  then
a vortex—antivortex pair is created as shown in (b). This pair remains pinned in the ladder even though the applied
current is large enough to depin isolated vortices. When the horizontal junctions go over & then they create two
vortices or antivortices as shown in (d). The result is as if the vortex and antivortex pair change cells. This solutions
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remains until the vertical junction rotates through 7. Then, another vortex—antivortex pair is created that annihilates
the pair of opposite polarity that was in the ladder. Now, there are no vortices in the ladder and the sequence repeats
itself. The period double nature of the solution is evident. The vertical junction both creates a vortex—antivortex
pair, and also annihilates the vortex—antivortex pair created by the horizontal junctions.

7.4.2. Small A type B solutions

Fig. 29 shows a type B breather in the small A limit at f = 0. This solution is similar to Fig. 28 but we no longer
have up-down symmetry. Instead, the top and bottom rotating horizontal junctions have a & phase difference (see
Fig. 22). We again start when the ladder has no vortices in (a). The vertical junction goes over w and creates a
vortex—antivortex pair. Then in (c) the bottom horizontal junctions go over 7 and annihilate the vortex—antivortex
pair. After some time, the vertical junction again creates a vortex—antivortex pair that disappears when the top
horizontal junctions go over 7 and annihilate the vortex—antivortex pair.

In the small A limit vortex—vortex interactions are large. Therefore, vortices prefer not to enter through the top
and bottom horizontal junctions at the same time. In order to minimize this repulsive interaction, vortices and
antivortices enter the cells at different times when A is small and the up-down symmetry of the solution is broken.

7.4.3. Type A solutions

Fig. 30 shows a type A breather for f = 0. The solution in this case is easier to interpret that the type B
solutions since every junction rotates at the same voltage. First, the vertical junction goes over w and creates a
vortex—antivortex. The horizontal junctions then rotate over 7 and annihilate the vortex—antivortex pair as shown
in (c).
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Fig. 30. Vortex pattern of type A breather at f = 0.
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If we apply a field, then a phase difference develops between the horizontal junctions. For instance, in the
appropriate field the right horizontal junction can go over m first, thereby injecting a vortex to the right cell of the
rotating vertical junction. Then, the vertical junction goes over & creating a vortex—antivortex pair. The antivortex
is created in the right cell and the vortex on the left. Since there was already a vortex on the right cell, the antivortex
annihilates this vortex. The resulting state is as if the vortex moved from the right cell to the left cell. Then, the
left horizontal junction goes over 7 creating an antivortex in the left cell and thereby annihilating the vortex. This
results in the ladder having no vortices. The full process can be interpreted as a rotating vortex around the common
node of the rotating junctions. Therefore, type A breathers in a magnetic field are rotating vortices.

8. Discussion and conclusions

Nonlinearity can cause localization in otherwise perfectly periodic systems. We have fabricated an experimental
system to study these types of localized solutions called DB. We have experimentally detected different one-site
and multi-site DB states in a superconducting Josephson ladder network. DB can be excited and annihilated in a
controlled way in the ladder by using a local bias current. Then, by varying the external current and temperature we
have studied the domain of existence and the instability mechanisms of these localized solutions. Experimentally
we find two families of DB: type B and type A solutions. In the case of type B, four of the horizontal junctions in the
array are in the resistive state, while for type A only two horizontal junctions are in the resistive state. We find that
some of the type B and all the type A breathers do not obey the natural up-down symmetry of the ladder equations.
The existence of type A solutions was predicted in [27] and recently has also been reported measurements showing
a diversity (type B, type A and hybrid) of DB in an open JJ ladder array [3].

We have developed a series of models and done theoretical analysis and simulations to explain much of the
behavior of the experimental data. At the simplest level, we have developed a DC circuit model for the system. In
this model the junctions in the resistive state are studied as linear resistors and the junctions in the superconducting
state as shorts. This model allows for evaluating the effect of the bias circuit and computing /-V curves. We can
estimate the minimum current for which both type A and B breathers can exist by using this model and assuming
that the minimum applied current is determined by a single junction retrapping mechanism. We can also predict the
maximum current for which type B breathers can exist by using the junction’s critical current. All these predictions
agree with the experimental results. However, the type A maximum current found in our experiments is lower than
predicted and is not yet understood.

Using numerical simulations we have found the existence of many different DB attractors. We find periodic,
quasi-periodic and chaotic type B solutions. Such solutions are identified with different regions in the numerically
computed /-V curves, and when we vary the parameters we find many different scenarios for the behavior of the
solutions. The DB also excite waves in the ladder. We have calculated the frequencies of these small waves by using
a linear analysis of the system equations. A resonance can occur when the DB frequency matches a frequency of the
linear wave. We have numerically verified that these resonances can cause instabilities in the localized solutions,
but in most of the cases the resonances are not strong enough for destroying the localization of the breather. We
have also performed a harmonic balance approximation which allows the characterization of the amplitudes of type
A and type B breathers.

Since DB do not exist for all the values of the model parameters, we have studied the regions of existence of
localized solutions when these parameters vary. This study showed good agreement with the predictions of the
simple model in many cases. In brief, DB exist at small values of the anisotropy, but the underdamped character
of the junctions is crucial. In general, a smaller I" results in a larger existence region. Thus, for small values of
the damping DB are predicted to exist even at high values (> 1) of the anisotropy parameter. However, we find
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a complicated dependence of the DB instabilities with respect to A which is only partly explained by resonances
between DB frequencies and the lattice linear waves.

When varying A we find different physical behaviors for large and small values. At large values of A, type B
solutions are up-down symmetric, and at small values of X this up-down symmetry is broken. In the intermediate A
regions the resonances between the breather frequency and the linear modes are important and the behavior is much
more complex. It is in this region where we found chaotic localized solutions.

One important conclusion of these simulations at different values of A is the observation of resonances in the I-V
curves which do not destroy the DB solution. This can be understood after the analysis presented in Section 6.2.
For the existence of DB, in the case of a forced and damped system the non-resonance condition is not necessary,
because for any frequency the decay length is different from zero.

The induced magnetic fluxes in the cells of the array librate around non-zero DC values and have different
signs in opposite regions of the array with respect to the localization of the breather. To complete the physical
picture of the dynamics of the DB we also analyzed the type B and type A solutions in terms of the vortex—
antivortex behavior in the array. Briefly, vortex—antivortex pairs are created in the center of the array and de-
stroyed when new vortices and antivortices enter the array through the horizontal junctions. In the case of a type
A solution with an applied external magnetic field, this vortex picture corresponds to the presence of a rotating
vortex.

Many of the aspects of the behavior of the solutions, including ranges of existence, were understood using simple
models. However transitions between different states when decreasing the external current is not fully understood.
Although different behaviors have been found, a typical experimental result is that type B breathers become unstable
through a cascade of switching events to multi-site type B solutions. To understand this phenomenon we have done
more detailed simulations of the dynamics of the array. These simulations are based on the RCSJ model and we
have numerically studied the effect of the bias circuit, the nonlinear resistance, full-inductance matrix, thermal
fluctuations and inhomogeneities in the junction parameters. Although sometimes a switching to a multi-site state
was found, the typical numerical result for small A and 7 = 0.25 shows destabilization from type B to type A
solutions. Another aspect is that all these transitions occurs close to the region of the gap voltage where it might be
necessary to used models more sophisticated than the RCSJ one.

We have also studied a reduced model where up-down symmetry in the system is imposed by setting
go;. @ = —(p'/?(t). Then, transitions to multi-site states are typically found. However this model is unable to ex-
plain the existence of type A solutions and the transitions from type B to type A solutions that have been reported
here and in [3]. This approach using a reduced model has been used in [26,40] to study the dynamics of the
array.

DB and vortices are two examples of localized excitations in a Josephson array. Future work will explore the
interplay between DB and vortices (kinks or solitons) solutions which can coexist in the array [41]. Another
interesting direction is an experimental study, DB solutions in other geometries such as triangular arrays, and the
excitation of breathers by AC driving currents.

After this article was accepted we learnt of [42] which reports on numerical work of switching mechanisms in
rotobreathers at & = 0.44 and A ~ 0.21.
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