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Abstract

The model proposed by Shliomis and Stepanov (J. Magn. Magn. Mater. 122 (1993) 176) to describe the low field
magnetic response of a solid dispersion of noninteracting nano-sized particles has been used to calculate the temperature
dependence of the AC susceptibility of a particle system with a known particle size distribution. A comparison with
experimental AC susceptibility results shows the necessity of including both an inter-potential- and an intra-potential-
well contribution to the magnetic response. Moreover, different relaxation times need to be assigned to the two

contributions.

PACS: 75.50.Mm; 75.70.Tt
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1. Introduction

The magnetic response of single-domain mag-
netic particles has been in focus since the pioneer-
ing work of Néel [1]. In a noninteracting particle
ensemble, with uniaxial magnetic anisotropy and
the easy axes of the magnetic particles distributed
at random, it was found that the low field equilib-
rium susceptibility does not depend on the mag-
netic anisotropy of the particles [2]. Hence, the
susceptibility corresponds to that derived in

* Corresponding author. Tel.: + 46 18 18 2500; fax: + 46 18
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a simple superparamagnetic model where the an-
isotropy is neglected. The main effect of the mag-
netic anisotropy is to introduce energy barriers that
the particle magnetic moments need to overcome
before equilibrium is reached, implying that the
particle ensemble could, depending on the experi-
mental observation time, display magnetic relax-
ation. The relaxation mechanism corresponds to an
orientational redistribution of the particle magnetic
moments according to conditions set by the mag-
netic anisotropy, applied magunetic field and tem-
perature. The relaxation can be envisaged as
a two-stage process: firstly, the magnetic moments
redistribute inside the potential wells with a relax-
ation time of the order of the inverse of the
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precession frequency of the magnetic moments in
the anisotropy field (~10~°-10712 s); secondly, the
equilibration between the potential wells, which is
a thermally activated process, proceeds. This latter
mechanism can result in exceedingly slow magnetic
after effects since its characteristic time, which es-
sentially follows the Néel-Brown theory [1, 3],
ranges from picoseconds to geological time scales
depending on the anisotropy energy barrier, tem-
perature, and applied magnetic field.

Recently, several experimental methods using re-
sults obtained from AC susceptibility [4, 5] and
magnetic relaxation measurements [4, 6-8] have
been developed to extract information about the
distribution of energy barriers in nano-sized mag-
netic particle systems. The developed methods
make certain assumptions concerning the equilib-
rium magnetic response and the relaxation mecha-
nisms responsible for the observed frequency or
time-dependent properties of the magnetic particle
system. Consistency of the methods requires that
the extracted energy barrier distribution, when in-
serted in the model used to obtain the barrier
distribution, should be able to reproduce the ex-
perimental results. For instance, using the out-of-
phase component of the AC susceptibility to deter-
mine the distribution of energy barriers [4], con-
sistency requires that the extracted distribution
should be able to reproduce both the in-phase and
out-of-phase components of the AC susceptibility.
Having proved consistency, it is also possible to
assert that the model employed is a reliable model.

In this paper we present AC susceptibility results
of a frozen ferrofluid having the easy axes of the
magnetic single-domain particles oriented at ran-
dom. The experimental results are modelled using
the previously determined [4] energy barrier distri-
bution. It is shown that in order to be able to model
both the in-phase and out-of-phase components of
the AC susceptibility, inter-potential as well as
intra-potential-well contributions to the magnetic
response have to be included in the theoretical
model. Moreover, different relaxation times have to
be assigned to the two responses.

The structure of this paper is as follows: in Sec-
tion 2 some experimental details are described; in
Section 3 expressions for the low field magnetic
response of a solid dispersion of noninteracting

small magnetic particles are reviewed. Conse-
quences for experimental methods using AC sus-
ceptibility results to determine the particle size
distribution are also pointed out. In Section 5 these
expressions are used to model the experimental
data. The necessity of including an intra-potential-
well contribution to the magnetic response of the
nano-sized particle system is also discussed.

2. Experimental

The experiments were done on a sample consist-
ing of nano-sized maghemite, y-Fe,O,, particles
[9]. The particles, having a median particle dia-
meter of 8 nm, were suspended in hydrocarbon oil
and coated with a surfactant layer to prevent the
particles from agglomerating. Since the measure-
ments were made at low temperatures,. the oil was
frozen and the particles fixed randomly in the
sample. At low temperatures the saturation mag-
netisation of maghemite is M, = 420 kA/m [10].
The concentration by volume of particles was
~0.03%, which is low enough to safely rule out
any influence of dipole-dipole interactions on the
measured magnetic dynamics [11].

The AC susceptibility measurements were per-
formed in a LakeShore 7225 AC susceptometer,
using a sample cup containing 0.15 ml of the par-
ticle suspension. To avoid nonlinear magnetisation
effects the field used was 0.1 mT.

3. Theoretical background
3.1. Linear susceptibility of independent particles

We will restrict our attention to a solid dis-
persion of noninteracting single domain magnetic
particles with uniaxial magnetic anisotropy. The
expression for the equilibrium initial susceptibility
of such a system has been independently derived by
several authors [2]. Nevertheless, we, will in the
following present a slightly different derivation,
leading to the same equation for the equilibrium
initial susceptibility as derived by others. Finally,
we will discuss the formula proposed by Shliomis
and Stepanov [12] for the dynamic susceptibility.
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The total magnetic potential for a particle of
volume V in the external field H is given by

E=—KV(e-n)* — ugM,VH(e"h), (1)

where K is the uniaxial-anisotropy energy constant
and, n, i and e are unit vectors along the aniso-
tropy axis, applied field and particle magnetic mo-
ment, respectively.

The linear equilibrium susceptibility is related to
the fluctnations of the magnetic moment by

e h)y*>o — e h)f

¥ = M2V
X = Ho T

@)

The zero subscript in the above equation denotes
that the thermal average is taken in the zero field
limit, e.g.

Jd.Q (e h)* exp[ole n)*]
) 3)

e n)*)o =
JdQ explo(e- n)*]

where 0 = KV/kgT and dQ = d¢ d6 sin(f), with
(6,¢) denoting the angular coordinates of e. Note
that {e'h)>q = 0 since (e k) reverses its sign when
e — — e. It is thus enough to calculate {{e- h)*>, to
obtain y. With » chosen as the polar axis of
the coordinate system and («, 0} denoting the
angular coordinates of &, one has (e-h)* =
(cos & cos @ + sin « sin @ cos ¢)>. On taking the in-
tegrals over ¢ on the right-hand side of Eq. (3) and
using the variable substitution x = cos(f) one gets

(e~ h)z>o

Jl dx [cos?(o)x? + sin?(a}3(1 — x?)Jexp(ox?)
0

1
J dx exp(ox?)
0

(4)
On using the function R(o) = | dx exp(ox?) and its
g-derivative R'(c) = [ dx x* exp(ox?®) [12], one
can write the susceptibility as

M2V R ) R - R
3= o — |:cosz(a) — + sin?*(«) } (5)

kBT R 2R

In the following, when evaluating Eq. (5) for differ-
ent choices of ¢, the integrals defining R(s) and

R'(0) are computed numerically using a method
with an adaptive choice of the integration stepsize
[13]. For large values of o, the asymptotic expan-
sions of R and R’ are used [12]. On introducing the
notations

M2V R

A= MOIBTE’ (6a)
M2V R - R

X1 = Ho eT 2R (6b)

the susceptibility reads y = cos*(a)y) + sin(e)y..
If this formula is averaged over a distribution of
particle easy axes orientations, one finally gets for
the susceptibility,

x = {cos® o)y + {sin® ady,. (7)

The assumption of a linear response allows for
interpreting the first term in this formula as the
average response to the field component along par-
ticle easy axis H; = H{cos ¢, and for interpreting
the second term as the response to the field com-
ponent perpendicular to that axis, H, = H{sin ).
In the low-temperature or, equivalently, large-bar-
rier range, o » 1, y, reaches the temperature
independent value uoMZ2/2K, whereas xR Ko —
UoMZ/K, with yo = uoMZ2V kg T.

In a particle ensemble with a random orientation
of the anisotropy axes, {cos’a) =1/3 and
(sin? «) = 2/3, hence, Eq. (7) is reduced to y =
uoMZV/3ksT, ie., the Curie law for a super-
paramagnet is recovered. Thus, as previously men-
tioned, the equilibrium linear susceptibility of
a monodispersed particle ensemble with randomly
oriented easy axes is independent of the anisotropy
constant K [2].

In a nonequilibrium situation, the magnetic re-
laxation induced by the field components H and
H, are described by different relaxation times. In
the case of the response to the field component
being parallel to the anisotropy axis, the relaxation
mechanism corresponds to a thermally activated
inter-potential-well process and entails overcoming
an energy barrier. In the large-barrier range, the
characteristic time for this process is given by the
Neéel-Brown expression [1, 3]

T = To eXp(o), ®)
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where o is a weakly temperature- and volume-
dependent microscopic relaxation time related to
intra-potential-well dynamics [14, 15], typically of
the order 107 %5, In the case of the field compo-
nent being perpendicular to the anisotropy axis, the
response corresponds to an intra-potential-well re-
distribution of the magnetic moments and its relax-
ation time, 1, is of the order of 7y [6]. Thus, to
account for the response of a magnetic particle
system to a weak AC magnetic field, Shliomis and
Stepanov [12] proposed a generalisation of Eq. (7)
that consists of attaching Debye-like factors to each
term in the equation for the susceptibility,

% = <cos® apyy(l + iwry) ™!

+ (sin? ady (1 + icory) ™t (9)

Nevertheless, as 1, ~ 1y, particle magnetic moment
responds almost instantaneously to H,. More spe-
cifically, in AC susceptibility experiments, the con-
dition wt, <1 will be fulfilled up to frequencies
~107 Hz. Very short measurement times, as, e.g.,
those obtained when performing inelastic neutron
scattering [16] or ferromagnetic resonance experi-
ments, are required in order to enable studies of the
dynamics of the intra-potential-well response.
Hence, on assuming wt, <1, and considering a ran-
dom distribution of particle easy axes, Eq. (9) can
be written as

x =30 +ior) ™" + 21, (10)

Eq. (10) was first proposed by Kumar and Datta-
gupta [17], who, considering both relaxation mech-
anisms, made an interesting analysis of the re-
sponse of small magnetic particles to an AC field.
Unfortunately, they considered y; =y, and
¥1 = ugMZ/2K, which do not fulfil the relation
Ly + %11 = oMZV[3ksT and, hence, their y does
not have the correct static limit.

It is worth noting that the corresponding equa-
tion describing the behaviour of the time-depen-
dent magnetisation, within the linear response
regime, is given by

M@/H =%y + % xy[1 — exp(—t/7))]. (1)

Owing to the wr, < 1 assumption, this formula will
be valid for observation times t> 1, ~ 1. An
equation equivalent to this was also proposed by

Gittleman et al. [18], although they merely
considered the approximations y & xo — oM 2/K
and y, ~ puoMZ/2K. ;

If, instead of having a monodispersed particle
system, the particle sizes are described by a nor-
malised size distribution gp(V) [gp(V)dV is the
volume fraction of particles with volumes between
V and ¥ + dV] and the anisotropy constant is the
same for each particle, the in-phase and out-of-
phase components of the AC susceptibility are
given by

, 1 1 2
X = L {g bl T (o)) + gX_L} gr(V)dV, (12a)

T
ot | 2l d 2

where it has been implicitly assumed that the par-
ticles within a given volume interval have their easy
axes oriented at random. Alternatively, one can
write this equation in terms of the distribution of
energy barriers gz(Ey) = gp(V) dV/dE, = gi{V)/K,
where E, = KV. The integration of the correspond-
ing expressions, presented in Section 4, will be
truncated at E, = 4000 K. This simplification will
not introduce any significant error in the calculated
results, since the only contribution to the suscepti-
bility coming from particles (energy barriers) larger
than that value will be their y; contribution, which
will be in the order of 1072y, or smaller. In addi-
tion, as will be discussed below, the particle size
distribution for the sample used in the present
study falls off exponentially at such large particle
sizes.

3.2. The energy barrier (volume) distribution

In a recent publication [4] it was shown that the
measured y“(T) directly mirrors the distribution of
energy barriers through the relation

2 3K 1
ge(Eg(w,T)) ~ =

s ———— y(@,T), 13
T ‘LL()MSZ Eb(a),T) K (CU,T),& ( )

with Ey(w,T) = — kT In(wty). This equation was
derived assuming K to be sufficiently large so
that yy & xo and y, &~ 0. A more exact expression
relating the out-of-phase component of the AC
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susceptibility to the energy barrier distribution is
given by

2 3K 1 R(o,)
z £ e, T), (14
% 1M By, T) Riay) © @) (19

ge(Ep(w,T)) ~

where o, = Ei(w,T)/keT = — In{wro) is a temper-
ature-independent parameter (thereby neglecting
the weak temperature dependence of 7). Eq. (14) is
a restatement of a similar equation appearing in
Ref. [197 (although a factor /18 appears to be
missing in the equation derived in Ref. [197). To
derive Eq. (14), one uses the fact that the integrand
in the equation for ¥"(T) [Eq. (12b)] is peaked
around 7 = 1/w, implying that x(V)g(V) can be
brought outside the integral with the volume
set equal to V,, = (kgT/K)o, = — (kg T/K)ln(wry).
The ratio R(o,)/R(o,) will thus (assuming a
temperature independent 7,) be independent of
temperature. For typical AC field frequencies,
30 Hz < w/2n < 3 x 10° Hz, the ratio R(c,)/R'(0,,)
varies in the interval 1.06-1.10. Hence, using
Eq. (14) will not alter the shape of the energy bar-
rier distribution derived from Egq. (13), but merely
change the value of the magnetic anisotropy con-
stant thus derived.

Another method to derive the energy barrier
distribution by means of the temperature derivative
of Ty [Ref. 5(a)] also exists. We will briefly show
that this procedure, which goes back to Wohlfarth
[20], could be less accurate than that of ¥” when the
intra-potential-well contributions to the magnetic
response play a significant role.

We start rewriting Eq. (12a) as

poMZ [ R (wry)?
3 = 010§ i VA
X = 3l T L gr(V) {1 R1+ (o)

}dV(lS)

where Egs. (6a) and (6b) has been used. On noting
that the factor (woty)*/[1 + (wt))* ]~ 0 for V < V,,
and (wt))?/[1 + (wr))*] =~ 1 for V > V,, one gets

ATY) _ _ poMZ 3 (® R
T~ ar ), ¢RI (9

where the temperature dependence of M has been
neglected [21]. The integral depends on T via the
lower integration limit, V,,, and the argument of the

functions R and R', ¢ = KV /kgT. On taking the
temperature derivative of the integral, one obtains

ATy)  uoM? R'(o,)
=7~ g R(o,) 7*

© R” R’ 2 )
[ [5-(E oo} w

where R” = dR'/do. This equation generalises that
of Slade et al. [Ref. 5(a)], which would be obtained
if one started the derivation with y; ~ xo and
y1 ~ 0. It is thus shown that when a nonzero y; is
accounted for, the presence of the second term on
the right-hand side of Eq. (17), which contains in-
formation about gy(V) in integral form, implies that
O(Ty")/3T does not mirror the particle volume dis-
tribution in the same direct way as y” does.

This fact can conveniently be restated consider-
ing how the relation

T 1 3Ty

" 2In(wty) OT °

derived in Ref. [22], is modified when %, # 0 is
considered. On rewriting Eq. (14) in terms of gy(V),
using this expression to eliminate gy (V) from the
first term on the right-hand side of Eq. (17), and
solving for y”, one gets

i B 1 {G(TX’)

gt

2R T Y n(wry) | 0T
woMZ [ R” RN*T
K JV*gV(V)!:R (R c*dV .
(18)
Since ¢ runs from g, = — In(wry) ~ 20-30 to infin-

ity within the integral, one can use the asymptotic
formulae for R and its derivatives [12] to obtain
[R"/R —(R'/R*] ~ 1/c?® + ---, which introduced
into Eq. (18) yields

1 [a(Ty) poM? [
In(cuto){ 8T ~ 3K L gV(V)dV}
(19)

!

_I
2

The aforementioned relation of Lundgren et al.
[22] is recovered in the limit K —»o0 or, equiva-
lently, if one derives Eq. (18) considering y; = %o
and y; ~ 0 from the beginning. Egs. (18) and (19)
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are generalisations of such a relation when the
intra-potential-well response is taken into account.
The second term within the curly brackets of
Eq. (19) corresponds to minus the contribution of
blocked (V > V) particles to the AC susceptibility
at T = 0. Even for this special case, 8(T'y")/0T does
not scan the energy barrier distribution as exactly
as y” does.

Egs. (17)-(19) indicate that the determination of
the barrier (volume) distribution by means of
O(Ty)/oT will be correct only in those cases when
the intra-potential-well contributions to the suscep-
tibility can be neglected. On the other hand, the
determination of the barrier (volume) distribu-
tion using y” [Eq. (14)] is not restricted by such a
condition.

Tests of Eq. (19) and the relation derived in Ref.
[22] are probably best performed using results ob-
tained from measurements on noninteracting mag-
netic particle systems. Admittedly, the relation
derived by Lundgren et al. was initially used in
connection with experiments on spin glasses. How-
ever, spin glasses are intimately connected with
magnetic interactions and collective dynamics, ef-
fects which are not explicitly treated in the deriva-
tion of this relation.

4. Results

In a recent publication [4], Eq. (13) was used to
extract the energy barrier distribution for the same
ferrofluid sample as used in the present work. The
distribution was determined in the energy interval
100 K < E, < 1500 K. :The extracted distribution
ge(Ey) compares remarkably well with a normalised
Gamma distribution

A |
ge(Ep) = Ti+a <?> exp(—Ey/b) (20)

where I'(+) is the gamma function. The parameters
of the distribution function were determined as
a =0.5585 and b = 1687 K. Moreover, it was
shown that this distribution can be used to calcu-
late ¥"(T)-curves that compare to a high degree of
precision with the corresponding experimental re-
sults. The calculations in Ref. {4] were performed

assuming x| & xo and y. ~ 0, thereby neglecting
intra-potential-well contributions to the magnetic
response. The importance of this contribution is
however best seen when comparing calculated
¥'(T)-curves with the corresponding experimental
ones. In Fig. 1, calculated y'(T)- and y"(T)-curves,
assuming y; ~ %o and y. ~ 0, are visualised to-
gether with the corresponding experimental results.
The calculations were performed using K =
14.7 kJ/m® and 7o = 4 x 10719 s [4]. While the cal-
culated and experimental y”(T)-curves compare to
a high degree of precision, the resemblance between
the calculated and experimental y'(T)-curves is
rather poor. It is worth pointing out that the cal-
culated and experimental y'(T)-curves. differ not
only in magnitude but also in shape.

In order to explain the discrepancy between the
calculated and experimental y'(T)-curves, it is im-
portant to account for the intra-potential-well con-
tribution to the susceptibility. This contribution is
included by calculating y; and y, according to
Egs. (6a) and (6b). Inspection of Egs. (13) and (14),
accounting for the almost constant value of
R(c,)/R/(c,), indicates that when computing the
¥"(T)-curves one should not expect a significant
influence of the use of Eq. (6a) to define yy, instead
of using the more simple yxy = xo. This can be
viewed as follows. The perpendicular component of
the susceptibility does not include dispersion.
Hence, the only difference is the presence of a factor
R’/R in the integrand of Eq. (12b), as compared
with the corresponding equation of the xj = xo
model, which, as argued above, can be brought
outside the integral. Thus, the only noticeable effect
is the occurrence of the approximately temperature
independent ratio R(¢,)/R'(c,) in the expression for
the out-of-phase component of the AC susceptibil-
ity. This merely implies, assuming that we know the
saturation magnetisation of the magnetic particle
system, that the magnetic anisotropy constant
needs to be re-normalised by the same factor in
order for the calculated y"(T) results to compare
in magnitude with the corresponding experimental
results,

In Fig. 2, calculated ¥'(T)- and yx"(T)-curves, us-
ing Egs. (6a) and (6b) to calculate x; and x, needed
in Egs. (12a) and (12b), are visualised together with
the experimental AC susceptibility results. The
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(a)

0 50 100 150
T (K)
4
(b}
3 ]
3 2 N
:X
1= _
0
0 150

Fig. 1. Calculated (solid lines) and experimental (open symbols) ac susceptibility curves. The different curves correspond to different
frequencies /. The calculations were performed using (V) = zo(V) and z, (V) ='0. K = 147 kJ/m® and 74 = 4 x 107*%s. (a) ¥(T) and

() 2(T).

calculations were performed using K = 13.4 kJ/m?>
and 1o = 4% 1071%s, Including both inter-poten-
tial- and intra-potential-well contributions to the
magnetic response, the similarity between cal-
culated and experimental y'(T)-curves improves
considerably. Clearly, this indicates that the intra-
potential-well contribution has to be included in

order to give a full description of the dynamic
susceptibility. It is also worth pointing out that the
¢ » 1 approximations of Egs. (6a} and (6b), ie.
A~ xo — HoMZ/K and y, ~ uoMZ/2K, result in
calculated curves showing a similarly good agree-
ment with the experimental curves. However, the
approach of Kumar and Dattagupta [17], ie.,
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Fig. 2. Calculated (solid lines) and experimental (open symbols) AC susceptibility curves. The different curves correspond to different
frequencies f. The calculations were performed using Egs. (6a) and (6b) to calculate y(¥) and z.(V). K =13.4kJ/m® and

To=4x%10"10g. (a) ¥(T) and (b) 7"(T).

using yy & yo and y. & poMZ/2K, will not give
a consistent description of the AC susceptibility,
since in this case one obtains y'(T)-curves larger
than the corresponding experimental curves.
When closely examining Fig. 2, it is possible to
discern small discrepancies between the calculated
and experimental y'(T)-curves at high (T > 100 K)

and low temperatures (T < 15 K). A possible cause
for the observed difference at low temperatures is
that the used energy barrier distribution overesti-
mates the statistical weight in the low-energy tail of
the distribution (the experimentally determined dis-
tribution only covered energy barriers larger than
100 K). The difference at high temperatures can
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tentatively be explained by the temperature de- In Fig. 3, a comparison between calculated, ac-
pendence of the saturation magnetisation of the counting for a temperature-dependent M, and that
magnetic particle system, which has so far been the used Gamma distribution possibly overesti-
neglected. mates the statistical weight in the low-energy tail of
30
@ 20
=
10
0 50 100 150
T(K)
4 T T
(b}
3 r i
Sar .
=
1r _
0 2,
0 150

Fig. 3. Calculated (solid lines) and experimental (open symbols) AC susceptibility curves. The different curves correspond to different
frequencies f. The calculations were performed using Egs. (6a) and (6b) to calculate (V) and (V). In addition, a temperature
dependence of the saturation magnetisation was used as well as a cut-off in the Gamma energy barrier distribution at E, = 38 K
(the statistical weight for energy barriers smaller than this energy was set to zero). K = 13.2kJ/m?® and 75 = 4x 107 '%5. (a) 7(T) and

(&) z(T).
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the distribution, and experimental AC susceptibil-
ity curves are visualised. The temperature depend-
ence of the saturation magnetisation was modelled
as AM/MJ0) = 1.8 x 1073T*?, which is of a sim-
ilar magnitude as what has been measured for
a concentrated maghemite sample (the concentra-
tion by volume of particles in this sample was
~17%) taken from the same batch of ferrofluid
[23]. To correct for a possible overestimate of the
weight in the low-energy tail of the energy barrier
distribution, a cut-off in the Gamma distribution
was introduced at E, = 38 K (the weight for energy
barriers lower than this value was set to zero). As
can be seen in Fig. 3, the proposed modifications of
the model eliminate most of the differences
observed between calculated and experimental
results in Fig. 2. It should be pointed out, however,
that other simplifications used in the theoretical
modelling, such as neglecting the temperature
and volume dependence of the microscopic relax-
ation time t4, may also contribute to the observed
differences. :

Egs. (17)+19) suggest the plotting of " and
— [(/2)/In(wro)]1&(Ty) /AT versus — T In(wr,) as
an alternative way of showing the necessity of in-
cluding an intra-well response in the theoretical
modelling of the AC susceptibility. In the case of
the intra-potential-well contribution to the mag-
netic response being negligible, these two curves
should trace out the same energy barrier depend-
ence and thus determine the same energy barrier
distribution. This is what one observes when per-
forming this analysis using the theoretical curves
shown in Fig. 1. If, however, the intra-potential-
well contribution to the magnetic response cannot
be neglected, one would, according to Egs. (18) and
(19), expect — [(r/2)/In(wo)] 8(Ty)/O0T to be lar-
ger than y”. Moreover, the difference between the
two curves is expected to be larger at lower temper-
atures, since when decreasing the temperature the
lower integration limit in Egs. (18) and (19) de-
creases. This is what is observed in Fig. 4, where x”
and — [(r/2)/In{wto)10(T¢}/OT are plotted versus
energy barrier Ey(w,T)/kg = — T In(wtg). This plot
gives further evidence for the necessity of including
an intra-potential-well contribution to the mag-
netic response of this nano-sized magnetic particle
system. The figure also confirms the notion that

- 5 ; ;

2

= 4
S 7 F)

=

£ b ]
o 3 r »

—_ -

I S

g 2p” 3 1
£

=

Ql p
A

=?; 0 L * |'.92°°°0000

0 500 1000 1500
Tin(wt) (K)

Fig. 4. %" (open symbols) and — [(7/2)/In(wre)]0(Ty)/0T (filled
symbols) versus Ey(w,T)/kg = — T In{wty). w/2n = 320 Hz and
To=4x%x10"10g,

— [(n/2)/In(ewt4)] (Ty')/@T does not determine the
energy barrier distribution as accurately as y” does.

An alternative way of showing the influence of
intra-potential-well fluctuations is to study the be-
haviour of the phase ¢ = tan™*(y"/x’). The signifi-
cance of such fluctuations has neatly been pointed
out in a theoretical study of a 1D bistable system
driven by an oscillating field [24]. It was shown
that, unlike in a model disregarding intra-poten-
tial-well fluctuations, the phase when plotted versus
temperature exhibits a maximum when intra-po-
tential-well fluctuations are considered. This max-
imum of the phase is interpreted as being due to
competition between intra-potential- and inter-po-
tential-well motions and hence depends on the very
existence of the former [25]. Fig. 5 shows the phase
behaviour of the theoretical models used in Figs. 1
and 3, along with that of the experimental results.
Whereas the experimental data and the model
which takes intra-potential-well fluctuations into
account show the expected maxima of ¢, the model
with %y = %o and g, = 0 shows a monotonic in-
crease of ¢ with decreasing temperature. As the
phase behaviour is an intrinsic characteristic of
each model, Fig. 5 illustrates that the discrepancies
between the experimental results and the model
which excludes intra-well fluctuations are not
merely quantitative but also qualitative.

The discrepancy between the experimental ¢-
curves and.the corresponding calculated curve, in-
cluding intra-potential-well fluctuations, near the
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Fig. 5. ¢ = tan~'(3"/x’) versus temperature. The solid and dashed lines were obtained using the theoretical models with and without
intra-potential-well fluctuations, respectively, while the experimental results are shown by open symbols. w/2n = 1 kHz.

maxima in the ¢-curves, is explained by the
aforementioned uncertainty in the determination of
the energy barrier distribution at low energy bar-
rier values (<100 K). This indicates that the low-
temperature behaviour of ¢ can be used to more
accurately assess the energy barrier distribution at
low energy barriers. This may prove to be very
helpful when trying to distinguish between mag-
netic relaxation governed by thermally activated
dynamics and quantum tunnelling of the particle
magnetic moments [25]. A particular shape of the
energy barrier distribution in the low energy limit
can if the exact form of the distribution is unknown,
result in a magnetic response that is erroneously
attributed to quantum tunnelling of the particle
magnetic moments.

Finally, it is worth noting that the approxima-
tion y & xo and y, &~ 0, together with Egs. (12a)
and (12b), could be interpreted as a model where
one fully takes into account the intra-potential-well

response, via its effects on the equilibrium response,
and then assumes one relaxation mechanism for the
overall response [cf Eq. (11)],

M(®)/H =3y + 20) [1 — exp(t/7))]
=310l — exp(t/7y)] (21)

where yx; and y, are calculated according to
Egs. (6a) and (6b). Apart from its dubious founda-
tion, the proven failure of the yy ~ 3o and y. ~ 0
approximation to reproduce the experimental re-
sults points to the inadequacy of this model, and
hence to the necessity of including different relax-
ation times for each response.

5. Conclusions

Raikher and Stepanov have theoretically proved
that intra-well motions are essential, especially at
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low temperatures, for obtaining a correct descrip-
tion of the dynamics of the particular case of
single-domain magnetic particles whose easy axes
are aligned along the applied field [26].

In this paper, to be able to reproduce the mea-
sured in-phase and out-of-phase components of the
AC susceptibility in a particle ensemble whose easy
axes are randomly distributed, it was necessary to
include intra-potential- as well as inter-potential-
well contributions to the magnetic response. More-
over, it has been shown that different relaxation
times need to be assigned to the two contributions.
In other works, the y, contribution has either been
left out completely [4, 5], or the approximation
x1 =~ UgMZ/2K has been used, either considering
X = xo [17,27] (ie. inconsistently neglecting
intra-potential-well thermal fluctuations), or more
correctly y & yo — HoM:/K [18]. The present
work indicates that not only is it necessary to
include a ¥, contribution, but one also has to allow
for fluctuations inside the potential-wells. Conse-
quences, when including a y, contribution to the
magnetic response, for methods using AC suscepti-
bility results to determine the distribution of energy
barriers (particle volumes) have also been pointed
out.
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