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Preface

Nobody can deny the great importance of the interchange of ideas on theo-
retical and computational tools between scientists and engineers. By sharing
stimulating tools and ideas, we are able to obtain new advances in many
rapidly growing field of research related to Complex Networks. This is the
primary scope of the International Conference Net-Works 2007, which this
year 2007 is taken place in Aranjuez (Madrid), Spain.

The Net-Works 2007 conference is organised into several sessions accord-
ing to the topics presented. It represents an interesting collocation of inter-
disciplinary groups, which is a real strength in this conference series. We are
particularly happy to give young researches the opportunity to present their
results.

For these reasons, is a great pleasure for us to present this collection
of selected papers. We heartily wish that everyone experience the best of
computational scientific research. This set of papers represents the program
of the conference in detail.

We have preferred to emphasise the latest applications of complex net-
works rather than the theoretical aspects. However, we have been careful to
preserve the intrinsic rigour of the mathematics in each article.

The Net-Works 2007 conference is organised into several sessions ac-
cording to the topics presented. It represents an interesting collocation of
interdisciplinary groups, which is a real strength in this conference. All the
papers have been under peer-review, and when this proceedings is completed,
we expect to produce a special issue in the prestigious journal International
Journal of Bifurcation and Chaos.
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Abstract

The force networks of different granular ensembles are defined and
their topological properties studied using the tools of complex networks.
In particular, for each set of grains compressed in a square box, it is
introduced a force threshold that determines which contacts conform
the network. Hence, the topological characteristics of the network are
analyzed as a function of this parameter. The characterization of the
structural features thus obtained, may be useful in the understanding of
the macroscopic physical behavior exhibited by this class of media.

Keywords: force chains, complex networks, topology.
MSC 2000: 82D30

1. Introduction

Granular materials are being widely studied by the physics community since
they exhibit unusual and distinctive properties [1]. These materials are com-
posed of macroscopic particles that interact by a dissipative contact force and
can be thought of as displaying gas, liquid and solid phases. A suitable model
for the study of granular materials is to consider each grain as a hard sphere,
ignoring fragmentation and moving the effect of deformation to the dissipative
term. As pointed in [2], the wide applicability of these model to the study
of liquids, glasses and colloids implies a paramount importance of the geo-
metrical properties of the packing of hard spheres in determining the physics

emails: raturnes@alumni.unav.es, iker@fisica.unav.es, dmaza@unav.es
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R. Arévalo, I. Zuriguel, D. Maza

Figure 1: Example of a compressed sample obtained with our simulations
showing the force chains. The thickness of the lines represents the magnitude
of the normal force originated by the interaction between each pair of particles.

exhibited by the materials analyzed. The geometry of granular packing has
been investigated i.e. by [2] and [3] using Voronoi-Delaunay partitioning to
identify structures in the former and volume distributions in the latter.

In the present work we propose, in the same line of those and other works
[4], a structural study of granular packing but using tools specifically developed
in the frame of complex networks. As will be explained later we define for
each packing a network of contacts, see FIG. 1, which topological properties
are studied afterwards.

The contact topology of a granular packing can be studied as a graph
where particles are nodes and the interacting force pairs edges. This approach
has important advantages. For one hand, it is a quantitative tool as are not
other ideas proposed in the granular community, namely, that of “force chains”
[5]; it is an abstract point of view that allows to reach very primitive concepts
such as connectivity over which to elaborate more complex definitions; and,
finally, the field of complex networks provides us with a great amount of con-
cepts and algorithms among which we can chose the most suitable for our
proposes of characterization.

The remainder of this work is structured as follows: in section 2 we explain
the numerical method used and the protocol followed to obtain the samples
that we study. In section 3 the topological properties analyzed are defined
and results presented for several different conditions. Finally, in section 4 we
summaries our results and draw some conclusions.
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Topological properties of granular packings

2. Numerical method

We perform soft particle molecular dynamics simulations of discs in two di-
mensions. The model of contact includes a linear restoring force in the normal
direction of the impact and a tangential force providing static friction. The
complete details of the simulation protocol are carefully described in [6]. The
values used for the parameters of the force model are: the frictional coefficient
(µ = 0.5), the elastic constant ( kn = 105), a dissipative coefficient propor-
tional to the relative normal velocity γn = 150, and the corresponding ones
for the tangential component ( ks = 2

7kn and γs = 300) with an integration
time step δ = 10−4τ . The stiffness constants k are measured in units of mg/d,
the damping constants γ in m

√
g/d and time in

√
d/g. Here, m, d and g

stand, respectively, for the mass of the discs, the diameter of the discs and the
acceleration of gravity.

A typical simulation starts by randomly placing the discs in a wide hor-
izontal area such that no one of them is in contact with any other and the
packing fraction is around 0.1. Discs are given random velocities drawn from
a gaussian distribution. Four walls made up with the same grains that con-
stitute the bulk compress the system until a certain predefined threshold of
force is attained. It is important to note that due to the dissipative nature of
the interactions the final kinetic energy is vanishing small. The final configu-
ration obtained is saved in order to be carefully analysed. This configuration
is named a “jammed state” by the granular community and essentially corre-
sponds to a metastable equilibrium state compatible with the history of the
configuration.

We run simulations under several different conditions to check the varia-
tion of the results with the number of grains, polydispersity, friction coefficient,
maximum applied pressure and geometry of the compression cell. Let us call
sample A that obtained with a bidisperse mixture of discs, 15% with radii d
and the rest with radii 7/9d and parameter values as given above; sample B
has the same properties than A but the disks are monodisperse with radius d;
sample C is bidisperse as A but the friction coefficient is µ = 0.25; sample D
is the same as C but the final pressure is increased a 50%; finally, sample E
is the same as A but the bounadary conditions are circular instead of square.
For samples A and B we run simulations with 512, 1024 and 2048 discs, for
samples C, D and E only with 2048 since, as will be shown, no significant
dependence on system size is found. In order to attain good statistics we
perform 20 independent simulations for each sample and average the results.

11
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3. Contact network as a complex network

In the first place we define our network, i.e. a set of nodes connected by edges
[8], as follows. Every grain with, at least, one contact constitutes a node and
edges are the connections between the grains (nodes) in contact. There is
a contact between two grains if the distance between the centre of them is
smaller or equal to its diameter. A contact defines a certain amount of normal
force F between the grains. Such situation has been deeply studied by many
authors using mainly latices diffusive models [7]. One of the main results of
these works is that, independently of the system details, the mean value of the
force distribution<F> is a typical scale of the problem. Nevertheless, many
open questions remain open about the properties of these systems: why the
fluctuations in the force distribution are as large as <F> ? Which statistical
framework is suitable to explain the experimental results?

In order to study the role of the topology on this problem we will use
the tools introduce in the theory of complex network. We introduce a force
threshold f such that any contact with a normal force bigger than f is an
edge, but contacts with lower values of normal force are not edges and grains
with no contact are not nodes. Thus we obtain a network which depends on f ,
and hence its topological properties can be studied as a function of f . In our
definitions we do not consider the grains of the walls. In the remainder of this
section we present the results obtained for each of the topological properties
studied along with their definitions [8, 9].

3.1. Connectivity

In our case, the connectivity k of a node represents the number of contacts
between neighboring particles. Then, the degree distribution P (k) is the dis-
tribution function of the number of contacts per particle. In FIG. 2a we show
the degree distribution of sample A for three different sample sizes showing
that there is no substantial variation. In all the cases the maximum P (k) is
found for k = 3 and around 95% of the particles present values of k between
2 and 4. The degree distribution for the rest of the samples with N = 2048 is
shown in FIG. 2b. The overall behavior of the function P (k) remains the same
for all samples and only slight deviations are appreciated for samples C and
D. In particular, samples C and D display higher number of nodes with higher
values of k. This result can be understood if it is considered that samples C
and D are the ones with the smaller friction coefficient. This will result in a
small amount of arches inside the sample and consequently a reduction of the
amount of particles that display just two contacts.

In figure FIG. 3a we show the behavior of the average connectivity < k >

12



Topological properties of granular packings

Figure 2: Left panel shows P (k) for sample A using N = 2048, 1024, 512 discs.
In the right panel we show P (k) with N = 2048 for all samples.

as a function of the force threshold f/<F> for sample A. Again, this property
seems independent of the system size. The figure FIG. 3b shows the results
obtained for the different samples. Again, small differences are appreciable for
samples C and D without modification of the overall behavior.

The most prominent feature is a fast decay of the connectivity upon in-
creasing the force threshold. It could be said that the small forces are the
ones which keep the network connected and the connectivity almost disap-
pears when they are removed.

Figure 3: Left panel: average connectivity of sample A. Right panel: average
connectivity of all samples.

3.2. Geodesic distance and network diameter

The geodesic distance l between two nodes is the smallest number of edges that
separate them. This quantity can be measured by a number of algorithms, we

13



R. Arévalo, I. Zuriguel, D. Maza

used the breadth first search. The diameter D of the network is the longest
of the geodesic distances. In figure FIG. 4 the normalized geodesic distance
l∗ as a function of f/<F > is shown for sample A. The geodesic distance is
normalized by

√
N/2 since the geodesic distance increases with the number of

particles conforming the sample N . This scaling of l with the network size is
what would correspond to a square lattice, so in the limit case of f/<F>→ 0
our network seems to be not very different of a square one. The peak near
f/<F >= 1 can be explained in terms of the polygons that appear in the
network as will be shown later. In the inset of FIG. 4 it is shown that there is
no difference in the behavior of the geodesic distance for the different samples.

Figure 4: Left panel:l∗ is the geodesic distance l normalized by
√

N/2 for
sample A. The inset shows l∗ for the all the samples with N = 2048. Right
panel: D∗ is the network diameter D normalized by

√
2N for sample A. The

inset shows D∗ for all the samples with N = 2048.

The right panel of FIG. 4 shows D∗, the network diameter normalized
by

√
2N . This normalization factor is applied to show that the diameter of

the network scales with the diagonal of the compression cell. The behavior
is entirely similar to that of the geodesic distance and only a small deviation
is noticeable for sample E which was generated with a circular cell. For this
reason we can attribute this minor difference to the scaling factor.

3.3. Number of nodes and maximum cluster size

We define a cluster as a group of nodes mutually connected. The total number
of nodes in the network includes nodes from different clusters. In the inset of
FIG. 5.a the total number of nodes is presented for sample A normalized by N ,
in semilogarithmic scale, showing that no variation appears upon increasing
the network size. The inset of FIG. 5.b shows the result for the rest of the

14
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samples. The number of nodes in the network decays exponentially, the line in
both figures has slope 1.9, as the force threshold f/<F> is increased beyond
f/<F >= 1. Before the point f/<F>= 1 the number of nodes decays only
slightly. For f/<F >= 0 the normalized number of nodes is not 1 implying
that there are grains without any contact. This is due to the frictional nature
of the medium which is able to create arches surrounding one or more grains.

Figure 5: (a) Size, in number of nodes normalized by N , of the largest cluster
in the network for sample A. Inset: Total number of nodes in the network
normalized by N for sample A with N = 512, 1024, 2048. (b) Size, in number
of nodes normalized by N for all the samples and N = 2048. Inset: total
number of nodes for all the samples and N = 2048. The line in both graphics
has slope 1.9.

As f/<F > increases the network disaggregate in clusters that are not
connected to each other. In FIG. 5.a the size of the largest cluster, measured in
number of grains, is shown for sample A normalized by N while FIG. 5.b shows
this quantity for the rest of the samples. The largest cluster size dramatically
drops in the vicinity of f/<F>= 1 and is almost zero beyond f/<F> ' 1.5.

3.4. Properties of clusters

In this section we further analyze the properties of clusters as defined in the
previous section. As it is done in percolation theory [4] we remove the largest
cluster, which has yet been analyzed, and study the distribution of the sizes s of
the remaining clusters for different values of the force threshold: n (s, f/<F>).
We use the samples with 2048. In figure FIG. 6 n (s, 1.2), the cluster size
distribution for f/<F>= 1.2, is shown for all samples. In logarithmic scale it
can be fitted by a line whose slope, in this case is around 1.9. We have enough
statistics only for values of f/<F> between 1 and 3 and in this range we find

15
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that the distribution of sizes behaves like n (s, f/<F>) ∝ sα with α varying
with f/<F>.

2 10

101

102

 

 f/<F> = 1.2
 Sample A
 Sample B
 Sample C
 Sample D
 Sample E

n(s)

s

Figure 6: The distribution of cluster sizes s for all samples at f/<F>= 1.2
showing that it is a power function.

In FIG. 7 we show the average cluster size < s > as a function of f/<F>
with an inset showing the behavior of α. If we had retained the largest cluster
to compute the sizes distribution, FIG. 7 would display a monotonically in-
creasing function upon decreasing f/<F>. Instead, it reveals a characteristic
feature, a peak around f/<F>' 1.2 which is accompanied by a minimum in
α (f/<F>) around f/<F>= 1.5.

3.5. Fractal dimension

In the theory of critical phenomena the value of the fractal dimension deter-
mines the universality of a system, and thus, a set of properties. In this section
we compute the fractal dimension as a function of f/<F>. Two such fractal
dimensions can be defined [10]: the mass fractal dimension and the box count-
ing fractal dimension. The former is computed choosing a node and tracing
circumferences of increasing radius R around it. The mass M , in number of
nodes, inside each circumference is computed and if it behaves like M ∝ RdM

then dM is the mass fractal dimension. This procedure is repeated changing
the initial node and averaging the results. The boxcounting fractal dimension
is computed analyzing how the minimum NB number of boxes necessary to
cover the network changes with the box size L. If this verifies NB ∝ LdB
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Figure 7: Average cluster size, removing the largest one, as a function of the
force threshold f/<F >. The inset shows the power α of the cluster size
distribution n (s, f/<F>) as a function of f/<F>.

then dB is the box counting fractal dimension. The process of minimization
involved in the last calculation renders it non immediate and we followed the
methods exposed in [11]. The results obtained for both, the mass fractal di-
mension and the box counting fractal dimension, are shown in FIG. 8 as a
function of the force threshold f/<F>.

Both dimensions are fairly equal to 1.8 for values of f/<F>, roughly, lower
than 1. A slight increase can be perceived from f/<F>= 0 until f/<F>' 1
where a marked drop takes place. This fall of the fractal dimension is sharper
and deeper for the mass dimension but clearly present in both cases. The
calculation of the fractal dimensions cannot be carried out beyond the limit
shown since the network rapidly disaggregates. Thus we find a change of
behavior of the contact network in the vicinity of f/<F>= 1 that could be
assigned to a change in the universality class that describes the network as a
function of the force threshold.

3.6. Third order loops of contacts

A third order loop is defined as a three-step walk whose first and last nodes
are the same. Third order loops are thus contacts arranged in a triangular
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Figure 8: Left panel: the mass fractal dimension as a function of f/<F> for
all samples with N = 2048. Right panel: the box counting fractal dimension
as a function of f/<F> for all samples with N = 2048.

fashion whose number can be computed by the clustering coefficient [8, 9] or
the third moment of the adjacency matrix [12]. In rigidity theory [13] these
are, in two dimensions, the simplest rigid structures. Indeed if we think in a
triangle whose edges are rigid and joined by freely rotational hinges it remains
undeformed upon external perturbations. On the contrary a square made of
rigid hinges and freely rotational hinges is easily deformed by shear in parallel
sides. It is important to note that it is a sufficient, but not necessary, condition
for a polygon to be rigid that all its faces are composed of triangles. Thus,
triangles may be important for the rigidity displayed by granular packing in
two dimensions.

In FIG. 9 the number of triangles is reported for all samples. There are
no triangles beyond f/<F>≥ 1.5 and they concentrate in the edges carrying
a small amount of normal force, increasing exponentially when decreasing the
force threshold. We believe that the apparition of third order loops of contacts
is at the heart of the behavior found for some of the topological properties
presented in this paper as the geodesic distance and the network diameter.
For force values above f/<F>= 1.5 a decrease in the force threshold provokes
the connection of different clusters of the network and then, both the geodesic
distance and the network diameter grow. However, a further decrease in the
force threshold below f/<F>= 1.5 implies the apparition of third order loops
which will reduce the geodesic distance between the nodes that belong to them,
and hence the diameter of the network. The way in which a third order loop
reduces the geodesic distance between nodes can be easily understood. If we
imagine three nodes (a,b,c) where the connections are a-b and b-c, the mean
geodesic distance in the cluster will be 1.33 as a-b and b-c are separated by
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Figure 9: Number of third order loops as a function of f/<F> for all samples
with N = 2048. The inset shows the same data in semilogarithmic scale.

one edge but a-c are separated by two edges. In the same way the diameter of
this small network will be 2 as it is the maximum geodesic distance between
the nodes. If now the nodes a and c are also connected giving rise to a third
order loop, both the mean geodesic distance and the diameter of the network
will be reduced to 1.

4. Discussion

In this work we report on some topological properties of the force interactions
of granular packing by means of ideas specifically introduced for complex net-
works. Our aim is to characterize the heterogeneity of these systems without
using definitions that may change from one author to another, like usually
occurs in the case of force chains.

The set of properties analyzed is insensitive to the size of the system
and shows only slight variations of behavior when the friction coefficient or
the applied pressure are changed. Thus, they constitute a robust and useful
description of an heterogeneous material like the packing studied. It is note-
worthy that all the properties that have been analyzed as a function of the
force threshold f/<F>, that determines if an edge is present in the network
or not, display some distinctive feature or sharp variation in the vicinity of
f/<F>' 1. This behavior is indicative of a change in the structural properties
of the network in this point. As has been pointed out by Radjai et al. there
seems to be two subnetworks in the network of contacts, one “weak” network
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Figure 10: Connectivities distribution for sample A where the nodes connected
by a force f/<F >> 1 and f/<F >≤ 1 have been treated separately. The
subnetworks thus obtained exhibit well differentiated behaviors in the region
of low connectivity.

composed of small forces and containing around 60% of grains, and a “strong”
network constituted for edges carrying a force above the average.

Our findings seem to support the existence of these two subnetworks.
As the force threshold is increased we remove the weak network and retain
only the strong one, leading to dramatic changes that signal the change of
behavior expected if both subnetworks exist and are intrinsically different.
In FIG. 10 we show the connectivities distribution for both subnetworks. It
can be checked that they are quite similar for high connectivities while differ
significatively around k = 2.

A natural extension of this work is to consider the intensity of the force
in every edge of the network and define weighted networks. This point of
view could be a more suitable tool in order to relate structural features of the
network with the physical properties of the packing; in particular, it could
shed light into the question of the change of behavior at f/<F>' 1.
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Abstract

The spectral radius of the adjacency matrix of a network has recently
emerged as a important parameter related to many important properties
of different network processes. We analyze some relationships between
the spectral radius and the vulnerability of a network, and we give some
estimations for the fall of efficiency and dynamical importance.
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1. Introduction

From metabolic pathways to computer systems, a huge variety of real systems
of interest in science and technology may be described in terms of complex
networks. The study of the structural properties of the underlying network
can be crucial in the understanding of the functions of a complex system as
well as its response to external factors such as the spreading of a perturbation
over the network.

In this paper we study several parameters associated to a complex network
as well as the correlation between some of them; we also examine the evolution
of those parameters under removal of critical nodes.
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The first parameter considered is the efficiency of a network G of n vertices
which is defined as ([1],[2],[4])

E+(G) =
1

n(n− 1)

∑

i,j∈G
i 6=j

1
dij

,

where dij is the distance on a graph between two vertices i and j, i.e., the
length of the shortest path in G between i and j (if no such path exists, then
we define dij to be infinite). Note that this magnitude embodies the idea of
how the information flows through the network and turns out to be essential
in the understanding of the response of a complex network to external factors
as the spreading of a perturbation over the network. Metabolic pathways,
genetic regulatory networks, protein folding, communication networks, trophic
webs, blood vessel networks, decease transmissions and sexual contacts, . . . are
natural examples on which this parameter proves useful. Several alternative
definitions of this concept have been introduced in the literature, but all of
them share the same spirit ([2],[4]).

The vulnerability of a network is a parameter that measures how the
performance of a network under attack or random breakdown decreases. An
attack is a targeted removal of the most “important” nodes (the nodes with
highest degree). There are many approaches to this idea in the literature. For
instance, Latora and Marchiori define the importance of local vulnerability of
a vertex i in a network G as

vloc(i) = E(G)− E(G \ {i}),

where G \ {i} is obtained from G by deleting the node {i}. As an average
of this expression, there have been obtained two global versions of the con-
cept of vulnerability of complex networks, one related to random attacks or
breakdowns given by

v1(G) =
1
n

∑

i∈G

|E(G)−E(G− i)|,

while for intentional attacks we get

v2(G) = max{ |E(G)− E(G− i)| : i ∈ G}.

Following this approach, both networks in Figure 1 below have vulnera-
bility 0, but our intuition suggests that the complete graph K4 is more robust
than the cycle C4.
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Figure 1: Two networks with the same v1(·) and v2(·)

As an alternative approach, in [3] the vulnerability is considered as an (a
priori) efficiency-independent magnitude, which can be defined as follows:

V̂D(G) = exp
(

M −m + 1
n

+ n− a− 2
)

,

V̂σ(G) = exp
(

σ + 1
n

+ n− a− 2
)

,

where σ is the standard deviation of the degree sequence, a is the number of
edges and M and m are the values of the maximum and minimum degree of
the vertices.

Many examples support the definition of V̂D(G) and V̂σ(G) . However, the
fact that only the vertices of maximum and minimum degree are considered
in V̂D(G) makes it not as sharp as desirable. For example, in figure 2, we find
two networks that have the same V̂D(·) but different V̂σ(·).

Figure 2: Two networks with the same V̂D(·) but different V̂σ(·)

On the other hand, the largest eigenvalue of the network adjacency matrix
(denoted by λ) has recently emerged as the key quantity determining many
important properties for the study of a variety of different dynamical network
processes ([7],[9],[10]). Recently, in order to characterize the dynamical im-
portance of network, it was defined ([12]) the dynamical importance of node k
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in terms of the amount −∆λk by which λ decreases upon removal of the node
k (or equivalently removal of all edges that are incident with k):

Ik =
−∆λk

λ
.

2. Estimations for the efficiency, vulnerability and dynamical im-
portance of a network

In this section we establish some estimations involving the parameters con-
sidered above. Despite the fact that a vulnerability function should be inde-
pendent of the efficiency of the network, if G is a connected network, we have
that

p̂(n) + q(n)
(

1
n−2 − n−1

n−2E+(G)
)
≤ log

(
V̂D(G)

)

≤ p̂(n) + q(n)
(

1− 2E+(G)
)

+ n−2
n ,

where p̂(n) = n− 2 +
1
n

and q(n) =
n(n− 1)

2
.

Also we can obtain an inequality for the efficiency E+(·) in terms of the
networks maximum degree M ([4],[5]) getting that

E+(G) ≥ 2m(n−M)
n(n− 1)(n + 1−M)

+
1

n + 1−M
.

As said above, the largest eigenvalue of the network adjacency matrix λ is
a key quantity determining several important dynamical processes on complex
networks. For instance:

• The critical coupling strength for the emergence of coherence is propor-
tional to 1

λ .

• The critical disease contagion probability for the onset of an epidemic
scales as 1

λ .

• In percolation, the condition for the emergence of a giant component
also involves λ.

By using the well known inequality
√

M ≤ λ ≤ M , we can obtain several
relationships between V̂D(G), V̂σ(G) and λ since

λ−m− 1 +
2
n
≤ log(V̂D(G)) ≤ λ2 − 1

n
+ n−m +

2
n
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and

√
nλ2 − 4m2n

n2
+n−m−2+

2
n
≤ log(V̂σ(G)) ≤ 1

n

√
λ4 −

(
2m

n

)2

+n−m+
2
n

.

3. Estimations for the fall of efficiency and dynamical impor-
tance

The estimates obtained for the efficiency can be used to estimate the fall of
efficiency upon removal of a node or an edge. In fact since

2m

n(n− 1)
≤ E+(G) ≤ m

n(n− 1)
+

1
2
,

we get that

∆E =
E+(G)− E+(G′)

E+(G)
≤ (n + 4)(n− 1)

4m
− 1

2
,

where we denote by G′ the graph G after the removal of a node i ∈ G.

Similar results can be obtained for the fall of dynamical importance, but
we need some tools from the spectral analysis network theory. The inequality
λ(A) ≥ 2m/n is due to Collatz and Sinogovitz ([6]), where m is the number
of edges, n the number of nodes and λ(A) the espectral radius of the graphs
adyacency matrix A. From Weyl theorem ([8]) we get for two Hermitian
matrices A and E

|λ(A)− λ(A + E)| ≤ ‖E‖
By combining these results, the following estimation is derived

0 ≤ ∆I =
λ(A)− λ(A′)

λ(A)
≤
√

2
2

n
√

n− 1
m

,

where we denote by A′ the adjacency matrix of the graph G′ obtained after
the removal of a node.

4. Correlation between the fall of efficiency and of the fall of
dynamical importance

We briefly provide in this section a numerical illustration regarding the corre-
lations between the fall of efficiency and the fall of the dynamical importance
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defined in the previous section. We will now present examples of the dynami-
cal importance of nodes in simulated and real networks. The two graphs below
show different situations.

In the first case, Figure 3, a random Ërdos-Renji network G with 75 nodes
is generated. Once we have constructed this network, we choose at random a
node i and we compute the fall of efficiency ∆E+(G) (plotted in blue in the fig-
ure) and the fall of dynamical importance ∆I (in red in the figure) if the node
i is eliminated. We continue deactivating nodes at random until we get the
empty network. The result shows the existence of very significant correlations
between the fall of the efficiency and the fall of dynamical importance.

Figure 3: A random testing of the correlation between ∆E+(G) and ∆I for a
Ërdos-Renji network with 75 nodes.

On the other hand, if we simulate the same random node elimination
procedure for for the yeast protein interaction network of more that 500 nodes
(obtained from [13]) and we compute the fall of efficiency ∆E+(G) (plotted
in blue in the figure) and the fall of dynamical importance ∆I (in red in the

28



Critical Nodes, Efficiency, Vulnerability and Dynamical Importance

picture), Figure 4 shows that, in this case the fall of the dynamical importance
is practically void, while there are huge variations in the fall of the efficiency.

Figure 4: ∆E+(G) and ∆I for the yeast protein interaction network of more
that 500 nodes.
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R. Criado, J. Flores, A. Garćıa del Amo, J. Pello, M. Romance, M. Vela-Pérez
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Abstract

It is important, in many applications, to design an optimal artificial
network. We analyse some structural properties such as vulnerability
and efficiency, and we also present some characterisation of the extremal
networks for those parameters giving improvements of those properties
when adding a new link.
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1. Introduction

Networks have been used in order to describe the complex structure of many
real and artificial systems. Many authors have been interested in describe
both real and artificial systems using many and different complex systems
[1, 2, 3, 4, 7, 11, 12]. From biology and chemistry to Internet and financial
markets or social relationships, the structural properties of those complex
networks have been studied.

In order to understand the structure of those complex systems, it is neces-
sary to analyse some properties such as the robustness and the performance.
For the robustness, we will employ the vulnerability (as the opposite concept
to robustness) which is related with the ability of a network to avoid malfunc-
tioning when a fraction of its constituents is damaged due to random failures
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or intentional attacks [6, 9]. There are several different approaches in the liter-
ature to measure the vulnerability of a complex network [5, 6] but, in general,
they can be divided in two types. On the one hand we find the static vulnera-
bility which analyses the response of the structural properties of the networks
when some of its nodes or links are removed, while, on the other hand, the
dynamical vulnerability is considered to measure the redistribution of flow in
the network when a failure or attack occurs.

We will consider static vulnerability, related to structural properties of
the complex network that allows us to spot its critical components in order
to improve the security. In [6], an axiomatic description of the robustness is
presented and some candidates for vulnerability functions are proposed based
on the network regularity. Roughly speaking, a vulnerability function is a
normalised function v(G) intrinsic to the topology of G that increases if we
remove some components of the network. In [6] it is considered that the
vulnerability is related to the node regularity and the number of alternative
links that can balance a random or intentional attack. The basic idea is that
the more similar the nodes are, the more robust the network is, assumed that
we have fixed the number of links and nodes in the network. Hence, in addition
to the number of nodes and links, the dispersion of the degree distribution also
should play a central role in the vulnerability of the network. Following this
approach the vulnerability function of a network G = (V,E) with n nodes and
m links V1(G) was introduced as

V1(G) = exp
(

M − a

n
+ n−m− 2 +

2
n

)
, (1)

where M = max{gr(vi); i ∈ V }, a = min{gr(vi); i ∈ V } and gr(vi) is the
degree of node i ∈ V . This definition can be computed easily and gives a good
estimation of the robustness of a complex network but the fact that only the
nodes of extremal degrees are considered makes it not as sharp as desirable
from a statistical point of view. To avoid this problem, a sharper estimator
of the regularity of the degree distribution must be considered, leading to the
vulnerability function V2(G) given by

V2(G) = exp
(

σ

n
+ n−m− 2 +

2
n

)
, (2)

where n is the number of nodes of G, m stands for the number of links and σ
denotes the standard deviation of the degree distribution, i.e.

σ =

(
1
n

∑

i∈V

(
gr(vi)− 2m

n

)2
)1/2

. (3)
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The performance of a complex network G = (V,E) with n nodes and m
links, is a single function Φ(G) > 0 that measures the behaviour of G. Some
examples of the performance of a network G are the characteristic path length
of the network L(G), the mean flow-rate information over G, but we will use
the efficiency E+(G), defined (see [8, 9]) as

E+(G) =
1

n(n− 1)

∑

i6=j∈V

1
dij

, (4)

where dij stands for the shortest distance between the nodes i and j. This
concept plays the role of measuring its ability for the exchange of information
and its response for the spread of perturbations in diverse applications [3, 5].

We are interested in analyse those parameters and try to improve our
complex network. To do so, we study two different problems. The first one
is how to improve the network vulnerability or efficiency in order to get the
best possible result by adding just one link (for real cases could be a railroad
track, a new subway station or a new fly connection between two cities). The
second one is related to the design of an optimal network given the number of
nodes n and links m. We show have to construct the optimal network for the
efficiency or the vulnerability. The approaches for optimising vulnerability
and efficiency are rather different since the problems have different nature.
While we get a complete characterisation of the extremal network for the
vulnerability function, the case of efficiency function is much deeper and we
present some approximation algorithms.

2. Extreme networks for vulnerability and efficiency

In this section we consider the set of all connected networks G with n nodes
and m links and we find the extreme graphs for vulnerability and efficiency.
That is, we find those networks with maximal vulnerability, with minimal
vulnerability and with maximal efficiency for a given number of nodes n and
links m.

When dealing with a vulnerability function we work with definition V2(·),
since for definition V1(·) the results are straightforward. On the other hand, for
efficiency, we use the additive definition E+(·) given by Latora and Marchiori
(see [8, 9]), but note that since there is a relationship between the different
definitions for the efficiency, we can transfer the results from one to the other.

Our first result is about vulnerability and its extreme values. To prove it
we will use the inequality:
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n∑

i=1

gr(vi)
2 = ‖gr‖2 ≥ 4m2

n
, (5)

which is valid for every network G = (V,E) with n > 1 nodes and m links and
gr = (gr(v1), ..., gr(vn)) its degree vector.

Note that we have the equality in (5) for the K-regular graphs, simply by
the equality case in Cauchy-Schwartz inequality.

By using this result, we can characterise the networks G = (V, E), with a
given number of nodes and links and degree vector gr = (gr(v1), ..., gr(vn)) ,
having minimal and maximal vulnerability. We find that the minimum vul-
nerability is obtained for those networks having its degree factor of the form
(a, . . . , a, a + 1, . . . , a + 1), a, a + 1 ≤ n− 1, with

n∑

i=1

gr(vi) = 2m;

i.e. for those networks G which are the closest ones to the K-regular graph
with m links.

When dealing with extremal networks for the efficiency function, a first
analysis should include the local structure of the graph. By using this ap-
proach, the degree vector is the natural tool, and we show that for the net-
works having a node with maximum degree (i.e. gr(vi) = n − 1) there is a
simple formula for the efficiency function:

E+(G) =
m

n(n− 1)
+

1
2
.

As a consequence, we deduce that, for a network G (with n > 1 nodes) to
have maximum efficiency it is enough that G has the n-Star as a subgraph or
another K-complete bipartite subgraph.

We find also the following inequality for efficiency in terms of the maxi-
mum degree of the network (not necessarily equal to n− 1):

E+(G) ≥ 2m(n− a)
n(n− 1)(n + 1− a)

+
1

n + 1− a
,

where we apply the inequality dij ≤ n− a+1 for the distances between nodes
and vk ∈ V is the node with maximum degree in the network (not necessarily
equal to n− 1), that we denote gr(vk) = a.
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3. Optimal improvement of complex network

A major problem in network design is spotting the critical element to be added
to a given (real-life) complex network that gets the best possible network for
some parameters. By cost restrictions, the elements to be added to the network
(nodes or links) are usually limited and hence the problem of finding the
optimal improvement of the network is related to a discrete and conditioned
critical points problem which is hard to solve by direct methods. In this section
we will consider such problems when we want to get an optimal improvement of
the network that maximises its robustness (i.e. minimises some vulnerability
function) or maximises its performance (i.e. the efficiency function) and we
will give some computationally effective criteria to determine these conditioned
critical points.

If we consider a complex network G and we want to add a single link
` such that we get a network G′ = G ∪ {`} with minimal vulnerability or
maximal efficiency, a first naive approach leads us to compute all possible
improvements of type G∪ {`} and spot the optimal, but in real networks this
can be computationally non-effective. Note, for example, that if we want to
locate the improvement of a complex network with n nodes which has maximal
efficiency, an exhaustive analysis of all possible candidates uses an algorithm of
computational complexity of order n7, which is far from being effective when
dealing with real networks with thousand (or million) of nodes. Therefore it
is necessary to develop new strategies of design that reduce the complexity of
locating the critical component to be added in order to get effective tools for
the network optimisation.

Locating the critical single link ` that gets the most robust improvement
G∪{`} of a network G is related to the degree of the nodes to be linked. If we
want to minimise the vulnerability function V1(G ∪ {`}), it is straightforward
that the optimal design strategy is to decrease the range of the degree distri-
bution of G by adding a link joining the node of minimal degree with other
node which has no maximal degree. If we consider the vulnerability function
V2(·), we could think that the same idea should work, but since this vulnera-
bility function uses the whole degree distribution, it can be checked that this
is not the optimal strategy for network improvement. Despite this fact, the
optimal computationally effective strategy is also related to the minimal de-
gree of the nodes since, for a given network G = (V,E), with `0 = {vi0 , vj0}
such that vi0 , vj0 ∈ V and `0 /∈ E, it is equivalent that G′ = G ∪ {`0}
has minimal vulnerability V2(·) among all improvements G ∪ {`} and that
γ(vi0 , vj0) = min {γ(vi, vj); {vi, vj} /∈ E}, where γ(vi, vj) = gr(vi) + gr(vj).

Note that the computational complexity to find the minimum of γ(vi, vj)
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directly is of order n4, while the exhaustive computation of the optimal im-
provement of type G ∪ {`} has complexity n5.

Locating the maximal efficiency improvement of type G ∪ {`} is, by far,
a much more complicated problem. In this case, it is clear that the addition
of a single link ` to a network G can produce deep changes in its geodesic
structure. We could naively expect that the optimal improvement occurs
when we link the most distant nodes, but it is easy to find simple example
where this idea fails. Actually, it seems that there is no other clear-enough
criterium for locating the improvement of the network with maximal efficiency.
As an alternative approach, we propose to give other computationally effective
method that gives an approximation of the optimal improvement. If we want
to get a near-optimal improvement of type G∪{`} we have to mix two different
facts:

(i) Nodes to be mixed have to be far in order to produce a significant in-
crease in the efficiency.

(ii) The new link should produce the biggest change in the geodesic structure
of the network. Note that this geodesic sensitivity is related again to the
degree of the nodes involved.

However, these conditions do not, by themselves, guarantee that a certain
edge will provide the greatest, or close to the greatest, efficiency increase. It
can be seen that linking nodes already close always has a small impact on
efficiency, while picking distant nodes may have a larger effect, but it may as
well not be the case.

So, while choosing the two most connected nodes does not always bring the
highest efficiency, at least we know we have to take two of the most connected,
and preferably distant, nodes. There is a bound to how much the efficiency can
increase when adding a single edge, based on their initial distance and their
degrees. Therefore, a suitable course of action to find the best edge would be
to sort the possible edges to be added according to distance and node degree
and run through them in decreasing order, testing the change in efficiency and
stopping when the bound ensures that we have already come across the best
choice. The graphs above suggest that this best choice will actually be one of
the first pairs to be tested.
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Abstract

Transient wave forms in neural networks with diffusive and nonlocal
coupling have attracted particular interest because they may mediate
recruitment of healthy cortical tissue into a pathological state during mi-
graine. To investigate this process, we use a reaction-diffusion system
of inhibitor-activator type as a generic model of pathological wave prop-
agation and set it close to bifurcation in the sub-excitable regime. We
report the influence of various nonlocal connectivity schemes on wave
propagation. Wave propagation can be suppressed with cross coupling
inhibitor and activator for both positive and negative coupling strength
K, depending on the connection length δ. The area in the parameter
plane (δ,K) where this control goal is achieved resembles a Mexican-hat-
type network connectivity. Our results suggest that nonlocal synaptic
transmission can control wave propagation, which may be of therapeutic
value.
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and time delay coupling
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1. Introduction

During migraine attacks, localized pathological excitation can spread through
cortical tissue and invade large areas before it abates. This activity causes mi-
graine aura, that is, neurological symptoms preceding the headache phase [1].
The underlying process is a phenomenon called cortical spreading depression
(SD). It is assumed to be a reaction-diffusion process in the cortex, although
reactions and diffusion processes that provide the mechanism of propagtion are
still under debate [2, 3]. However, the generic dynamics of reaction-diffusion
systems are largely independent of the interaction details and shared among
various biological systems [4]. Therefore, to describe the spatio-temporal pat-
terns of SD, the cortex can be approximated as a continuous excitable media
supporting reaction diffusion waves [5, 6, 7].

Psychophysical studies on visual processing in migraine patients suggest
that changes in their networks of cortical neurons lead to an interictal state of
changed excitability, i. e., an anomalous cortical state in the interval between
migraine attacks [8, 9]. This motivates efforts to understand how the spread
of reaction diffusion waves is controlled by nonlocal network connectivity. To
include this, we investigate in this work the hypothesis that the emergence of
SD waves can be attributed to these network changes as well. Previously, we
have investigated how to change parameters of an excitable medium so as to
efficiently protect cortical tissue surrounding a stimulus against recruitment
[10]. Our current results suggest that failures in synaptic transmission result
in increased susceptibility of cortical tissue to SD. Such a modulation of ex-
citability becomes of crucial importance when the cortical state is close to the
bifurcation of the onset of wave propagation. The clinically relevant conclu-
sion to be drawn from this is that therapy might target network connectivity
that modulates cortical tissue excitability, even though a specific network con-
nectivity is not required for the initiation or propagation of SD in a regime far
from the bifurcation.

2. Neural network with diffusive and nonlocal coupling

A variety of neural network models for SD have been proposed, though there
is not yet consent on the mechanism. Roughly speaking, two classes of models
exist. One taking a bottom up approach based on biophysical laws including
several ionic currents, ion pumps, membrane potentials, and osmotic forces
[13, 14, 15, 16]. The other approach is top down trying to incorporate the
system properties without detailing any first-level subsystems. Hodgkin pro-
posed the first simplified reaction-diffusion approach to SD. The model was
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visual field                                              visual cortex

Figure 1: (left) Visual migraine aura symptom in the shape of a jagged crescent
pattern moving through the visual field (modified from [11]). (right) Trans-
lation of the visual field disturbance by inverse retinotopic mapping. The
crescent patterns translates into a wave segment resembling a “critical finger”
[12]. Such patterns are unbounded wave segments observed close to the ex-
citability boundary, i. e., a bifurcation of the systems described by Eqs. (1-2).
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never published, but communicated to Grafstein [17, 18]. According to this ref-
erences, Hodgkin suggested to consider a balance equation for potassium with
a cubic source function and diffusion. The three roots of the cubic function
being the resting state, a threshold, and a potassium ceiling level, respectively.
Based on methods introduced by Huxley, solving the equation led to the ap-
proximate speed of SD. However, the diffusion coefficient used was four times
higher than that of potassium in aqueous solution. This may either indicate
the anomalous nature of potassium migration in the cortex [19], or the leading
role of a faster transcelluar reaction-diffusion mechanism [20].

Another model [5] followed Grafstein’s potassium hypothesis with two
extensions. We shortly summarize this work, because we follow a similar ap-
proach but with a different interpretation and aim. Firstly, the model included
a second dynamic variable describing a refractory phase of SD. The source
term in the balance equation of potassium is replaced by a quartic polynomial
as the major nonlinearity of this activator-inhibitor system. Secondly, the
reaction-diffusion model was connected to a neural network building together
a hybrid model. The neural network was originally used to study cortical dy-
namics and sensory map reorganization. In the hybrid model it was used to
explain visual field defects occurring during migraine with aura. We also use a
reaction-diffusion system combined with a nonlocal interaction coming from a
neural network. Our goal is to investigate which neural network connectivity
can prevent SD, as suggested and studied using cellular automatons in [21].

We use the spatially extended FitzHugh-Nagumo (FHN) system [22, 23],
which has a cubic nonlinearity, as a generic model of SD waves

∂u

∂t
= u− 1

3
u3 − v + D

∂2u

∂x2

+nonlocal coupling (1)
∂v

∂t
= ε(u + β − γv)

+nonlocal coupling . (2)

The model approximates the cerebral cortex as a two-dimensional surface with
the ability to support sustained SD wave propagation. As a generic model
this system does not make an explicit distinction between the various species
involved in SD. In effect it lumps together sodium inward currents and extra-
cellular potassium concentration [K+]o into a single activator variable u and
their combined kinetics into the cubic source term. Likewise, a single inhibitor
variable v is related to recovery processes, such as effective regulation of [K+]o
by Na+-K+ ion pumps and the glia-endothelial system [20, 14, 15]. Whether
a transcellular or extracellular route is taken, is at this level not specified. The
main reason we use the FHN mechanism as the reaction-diffusion part of the
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model is that it has been shown to successfully reproduce the two-dimensional
spatio-temporal pattern of SD [7, 24]. Our study is essentially based on these
pattern formation properties of SD waves and less on its detailed biophysical
mechanism.

We extend the FHN system to encompass cortical lateral interactions, i. e.,
connections running parallel to the cortical surface. They are accounted for
in the form of nonlocal coupling terms

K [s(x + δ)− 2s(x) + s(x− δ)] . (3)

The signal s can either be the activator u or inhibitor v. A connection in the
cortex can extend over several millimeters and it either mediates competitive
or cooperative interactions. The parameter δ describes the connection length
and the coupling strength K of the interaction.

Lateral connections in the cortex can form clusters at regular intervals [25].
Their structure and how they might interact with SD waves will be further
considered in Sec. 4.Until then, we consider only one nonlocal coupling term
occurring either in the activator (1) or inhibitor (2) balance equation, with
fixed values for δ and K. This leads to four different coupling schemes: two of
cross coupling (CC) activator and inhibitor, and two in which each dynamic
variable is coupled via Eq. (3) into its own balance equation (NCC).

3. Suppression of waves by nonlocal interaction

The investigations were done in a one-dimensional spatial FHN system. We
chose the parameter of the FHN system such that it is without the nonlocal
coupling term in Eqs. (1-2) above but near to the excitability boundary of
a one-dimensional system. This boundary was obtained by transforming the
system into a co-moving frame and searching for homoclinic orbits. These or-
bits correspond to pulse solutions in the original coordinates. The excitability
boundary (∂P ) is defined by a saddle-node bifurcation at which the stable and
unstable homoclinic orbit disappear [26]. The parameter values of β, ε, and
γ at which homoclinic orbits disappear constitute a boundary of codimension
one. In other words, ∂P separates the parameter plane into a regime where
local stimulations is transmitted without damping and a regime where such
sustained 1D reaction-diffusion waves do not exist (Fig. 2).

We chose a FHN system near ∂P because the transient nature of the ob-
served symptomatic and electrophysiological events during migraine suggest
such a regime [11, 27]. In the regime below but close to ∂P transient wave
forms exist in a one-dimensional system [10]. Above ∂P transient wave forms
exist in two-dimensional systems untill excitability reaches a boundary called
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∂R. There, sustained wave segments, called “critical fingers”, propagate with-
out reentering tissue (c.f. Fig. 1). The regime between ∂P and ∂R is therefore
called sub-excitable. The regime in which this transition takes place is also
well investigated in chemical model systems in experiment and theory, for a
review see [28].

To investigate the influence of various nonlocal connectivity schemes on
wave propagation in the regime of sub-excitability, we start by setting a super-
threshold stimulation in the one-dimensional system, choosing a particular
FHN system with parameter values β = 0.8, ε = 0.1, γ = 0.5, and D = 1.
Once a stable one-dimensional wave profile is obtained, the nonlocal lateral
network is switched on. Different networks for various parameter values K and
δ are classified by their effect on the wave. We distinguish two cases. Either
the wave is suppressed. This indicates that the excitability boundary ∂P of
the combined system is shifted to higher excitability values (upwards in Fig. 2)
into a regime where without the nonlocal coupling pulse solutions would exit.
Or the wave continues to spread, though its profile and speed might change.
From a clinical point of view, the wave suppression is a desirable control goal
for the network achieved within the solid black regions in the (K, δ)-planes in
Fig. 3.

We find that wave propagation can be suppressed with a NCC (non-cross-
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Figure 2: Parameter space of the FHN system at the section γ = 0.5. ∂P
is the propagation boundary. Below ∂P any confined perturbation of arbi-
trary profile decays eventually. Above ∂P some wave profiles are stable and
propagate with constant speed. They correspond to homoclinic orbits in a co-
moving frame. The simulations have been done with a FHN system at β = 0.8
and ε = 0.1 (solid black circle). A successful suppression of reaction-diffusion
waves by nonlocal coupling indicates a shift of ∂P of the combined system
beyond the point at β = 0.8 and ε = 0.1.
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coupled) setup only with positive coupling strength K. When the NCC term
appears in the activator balance equation, the desired control goal is achieved
largely independent of the connection length δ (Fig. 3 a), as long as δ is in
the range of the wave width, including its refractory tail. When the nonlocal
coupling term appears in the inhibitor balance equation, a similar picture
arises, though waves are suppressed for connection lengths ranging into the
refractory tail of the wave (δ > 40) only for a narrow regime of K. Suppression
completely fails for δ > 70 (Fig. 3 b).

Cross coupling of inhibitor and activator achieves the desired control goal
for both positive and negative coupling strengths K, depending on the con-
nection length δ (Fig. 3 c-d). The area in the parameter plane (δ,K) where
this control goal is achieved resembles a Mexican-hat-type network connec-
tivity. This is readily seen in Fig. 4. When the nonlocal term appears in
the inhibitor balance equation (2) the regimes of successful control in the K
direction is much wider (Fig. 3 d) than the regime for cross coupling in the
activator balance equation (1, Fig. 3 c).

K

δ

(d) CC u

-2 -1.5 -1 -0.5  0  0.5  1  1.5  2
 0

 20

 40

 60

 80

 100

K

δ

(c) CC v

-2 -1.5 -1 -0.5  0  0.5  1  1.5  2
 0

 20

 40

 60

 80

 100

K

δ

(a) NCC u

-2 -1.5 -1 -0.5  0  0.5  1  1.5  2
 0

 20

 40

 60

 80

 100

K

δ

(b) NCC v

-2 -1.5 -1 -0.5  0  0.5  1  1.5  2
 0

 20

 40

 60

 80

 100

Figure 3: Parameter plane (K, δ) of the nonlocal control term. Black areas
indicate successful suppression of wave propagation. (a) Non-cross coupling
(NCC) in the activator equation (1). (b) NCC in the inhibitor equation (2).
(c) Cross coupling (CC) in the activator equation (1). (d) CC in the inhibitor
equation (2).
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Figure 4: The ”Mexican hat” connectivity profile of successful wave suppres-
sion for cross coupling (CC) is clearly visible when the control plane is rotated
and the space coordinate δ is plotted as the distance ranging from negative to
positive values. Shown is the successful control area (black) for the CC term
appearing in the inhibitor equation (2). When the CC term is in the activator
equation (1) the profile of the Mexican-hat connectivity is inverted.

4. On the nature of nonlocal coupling in migraine

In the previous section, we have shown which network failures lead to the
emergence of reaction-diffusion waves. From this alone it is not deducible
whether some of these network failures can also explain the anomalous cor-
tical state in the interval between migraine attacks. It would be a plausible
hypothesis, however, that the same network changes that cause the ictal mi-
graine events, i. e., SD waves, lead to the anomalous interictal state. Changes
causing the latter have been attributed to abnormal aspects in early visual
processing in the cortex [9]. Various, seemingly contradictory explanations
have been given, such as lack of both intra-cortical inhibition and excitation.
They are also referred to as cortical hypo- or hyperexcitability (see [29] and
references therein).

There is substantial work on the functional role of lateral connectivity for
cortical processing, but little is known how the mechanism of SD is coupled
to it. Evidence supporting a coupling comes from two independent sources.
On the one hand, there is the structure of the hallucinatory aura patterns,
in particular the typical zigzags (see Fig. 1). Such patterns were suggested
to reflect the cortical network organization [30, 31]. The main idea is that
the approaching wave initially affects cortical cells which possess the highest
spontaneous activity and are clustered in patches. Within these patches the
neuronal response properties remain relatively constant. Their feature distri-
bution corresponds to the organization of the receptive field structure in the
cortex. For example, the connection pattern in the visual cortex is unspecific
in the immediate vicinity of each neuron, while long-range connections primar-
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ily run between so-called iso-orientation columns [25]. Cells in an orientation
column have the same oriented receptive field structure, thus they are respon-
sive to edges with the same orientation. These edges are literally seen during
a migraine attack as the building blocks of the hallucinatory zigzag pattern.
Therefore, it is reasonable to assume that the SD wave interacts with this
neural network structure in form of a synchronization process that occurs at
the front of the SD wave and extends over the typical spatial length scale of
iso-orientation columns.

The other line of evidence comes from in vivo studies in animal research
on SD. In [20] Herreras et al. showed that a synchronization of the firing
pattern is possible up to the order of millimeters ahead of the SD wave. The
peculiarity of this activity is that it is resistant to synaptic transmission block-
ade. This led to the hypothesis of direct neuron-to-neuron communication by
previously closed gap junctions. They suggested that SD propagates through
transcellular pathways using a reaction-diffusion mechanism. Computer sim-
ulations of Shapiro support this scheme [16]. A complete description of SD,
however, must additionally include the full network connectivity of synaptic
transmission when SD occures close to a bifurcation. Such a description of SD
is beyond the scope of the present study. The time and space scales of these
dynamics differ by several orders of magnitude such that a separate treatment
is justified. Therefore we investigate the stability of the suggested neuron-to-
neuron communication by gap junctions separately. We assume that the way
this transcellular pathway interacts with synaptic transmission is in principle
described in the previous section.

5. Time-delayed diffusive electrical coupling

In a previous study [32] we used the FHN system modeling two individual neu-
rons with a diffusive coupling in the activator variable. We showed that two
FHN-neurons, each oscillating under its own source of noise, can synchronize.
The application of time-delayed feedback to only one of two subsystems was
shown to change coherence and time scales globally. Time delayed feedback is
also able to induce stochastic synchronization under certain conditions. This
motivates the approach pursued here to examine a time-delayed coupling be-
tween two identical neurons. Since the time-delay can introduce rich dynamics
we study the case without random fluctuations.

To distinguish this system of two neurons from the spatially extended
FHN reaction diffusion system describing the cortical tissue in Eqs. (1-2), we
use the variables x and y with a subscript 1 and 2 identifying the two neurons.
The variables represent the membrane potential and the gating, respectively.
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Figure 5: Simulation for two symmetrically coupled identical FHN-
subsystems. Parameter values are ε = 0.01, a = 1.05, τ = 3, C = 0.4. Shown
are phase space sections corresponding to the individual subsystems and their
associated time series. After a short transient effect the combined system set-
tles into a stable firing oscillation. The initial history functions used for this
simulation are solutions to the uncoupled subsystems.
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The diffusive coupling occurs in the membrane potential. This is a discrete
model of a gap junction-mediated electrical coupling, because ionic currents
through gap-junctions give rise to strong electrical coupling of the neurons.
Gating mechanisms of neuronal gap junctions have not been described as yet.
Therefore, we do not consider any gating. But we include a time delay τ
because if the spread in the transcellular pathway is diffusion limited, as the
slow propagation speed of SD clearly suggests, the transmission time can be
in the order of the excitation cycle.

∂x1

∂t
= x1 − 1

3
x3

1 − y1 + C(x2(t− τ)− x1)

∂y1

∂t
= ε(x1 + a)

∂x2

∂t
= x2 − 1

3
x3

2 − y2 + C(x1(t− τ)− x2)

∂y2

∂t
= ε(x2 + a)

Individual neurons have only one stable fixed point (for a > 1). It is readily
shown that when τ = 0, the coupled system also has only one stable fixed
point. With a non-vanishing delay time the phase space is infinite dimensional.
Then, the fixed point is given by the four coordinates above as well as their
respective history functions of length τ , which need to be constant. Along the
lines of [33], it can be shown that this fixed point is stable. We find that for
adequate parameter values C, ε and τ , the system is multi-stable. It can avoid
the stable fixed point and instead exhibit a mutual resonance phenomenon. In
the 4D phase space section at time t, this results in a stable firing oscillation
of period 2τ between the two sub-systems (see Fig.5). Thus, for two FHN-
Neurons in the excitable regime, a non-vanishing delay enables a synchronous
operation of the two subsystems.

6. Discussion

We showed that certain control schemes of an inhibitor-activator type system
shift the emergence of wave propagation towards higher values of excitabil-
ity. The control we investigated is of the form of a nonlocal coupling given in
Eq. (3). This nonlocal transaction was added to the reaction-diffusion mecha-
nism either in the inhibitor or the activator balance equation. The sum of all
individual cross coupling terms that achieve a clinically desirable control goal
takes the shape of an upright or inverted Mexican hat, respectively. This sup-
ports our assumption that the nonlocal coupling results from intrinsic lateral
cortical connections.
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Dichotomic lateral interaction is an architecture widely used in models of
topographic feature maps. The prototypical example of such maps is the orien-
tation preference in primary visual cortex, which is activated by the SD wave.
The link between SD and the neuronal network architecture is still missing.
One possibility is that gap-junction-mediated oscillatory patterns trigger SD.
If so, these oscillatory patterns are likely to be modulated by lateral synaptic
connections, although their existence is in general resistant to synaptic trans-
mission blockade [20]. However, when SD is close to the bifurcation of the
onset of wave propagation, as suggested by the spatio-temporal patterns (e.g.
in Fig. 1), therapy might target network connectivity as to prevent spread.

Although we are still far from modeling the full mechanism of migraine
with aura, neural network models have become sophisticated enough to con-
strain and validate possible underlying cortical circuitry of involved subsys-
tems. To understand the origin of the gap-junction-mediated oscillatory pat-
terns better, we performed simulations in a system of two gap-junction-coupled
neurons. We showed that a time-delay is sufficient to produce sustained oscilla-
tions in an otherwise merely excitable ensemble. Thus, opening gap junctions
between neurons, which are closed in a healthy state, can explain a localized
pathological synchrony in the cortex when there exits a time delay.

To summarize, in modeling migraine a major objective is to understand-
ing cortical susceptibility to focal neurological symptoms in terms of neural
circuitry [10, 21, 5]. This could open up to us new strategies for therapy using
methods of controlling complex dynamics. Control of complex dynamics has
evolved during the last decade as one of the central issues in applied nonlinear
science [34]. Progress toward clinical implementation of nonlinear methods
has been done so far in neurology in particular in Parkinson’s disease, a neu-
rological diseases also characterized by pathological brain synchrony. There,
techniques based on control of complex dynamics [35] are now tested in clinical
studies and fundamentally novel therapy methods are being evolved [36]. It is
hoped that this success can be expanded.
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Abstract

We will review some results about the relation between dynamical
and spectral properties of complex networks. From the dynamical point
of view we will focus on the time the whole population needs to be com-
pletely synchronized and how partial synchronization of more tightly con-
nected clusters (communities or modules) appears. This properties can
be related with the eigenvalues of the the Laplacian matrix of the net-
work.

Keywords: networks, synchronization
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In 1998 Watts and Strogatz presented a simple model of network’s struc-
ture that was the seed of the modern theory of complex networks [1]. Begin-
ning with a regular lattice, they showed that the addition of a small number
of random links reduces the diameter drastically. This effect, know has small-
world effect, was already detected in natural and artificial networks. The
research was in part originally inspired by Watts’ efforts to understand the
synchronization of cricket chirps, which show a high degree of coordination
over long distances as though the insects where “invisibly” connected. Since
then complex networks are being subject of attention of the physicists’ com-
munity [2, 3, 4, 5].

Complex networks are found in fields as diverse as the Internet, the World-
Wide-Web, food-webs, and many forms of biological and social organizations
(see [6] and references therein). The description of these networks, as it occurs
in many physical systems, can be performed at different scales. The lower
level of description, the “microscale”, is represented by single nodes. From
the static point of view the key point is to determine certain properties of
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individual nodes (degree, centrality, clustering, etc.), while from the dynamics
perspective the goal is to know about the dynamical process each node is
performing. This level of description is unfortunately very precise and does
not allow a generic analysis of the global properties of the system. At the other
extreme, we have the higher level of description, the “macroscale”, represented
by the statistical properties of the network as a whole. This description has
been the realm of statistical physics in complex networks and has provided
great insight in the universality of certain features of many real world systems.

In the middle of these descriptions still remains a huge space for different
scales of descriptions that we like to name as “mesoscales”, or intermediate
scales. These scales are understood as substructures (eventually subgraphs)
that have topological entity compared to the whole network, e.g. motifs [7, 8],
cliques [9], cores [10], loops [11] or, generally speaking, communities [12, 13].
In particular, the community detection problem concerning the determination
of mesoscopic structures that have functional, relational or even social entity
is still controversial, starting from the “a priori” definition of what a commu-
nity is [14]. The correct determination of the mesoscale in complex networks
is a major challenge. Under the name of the community detection problem,
consisting in finding a ’good’ partition of the network in sub-graphs that rep-
resent communities according to a given definition, physicists have provided
different methods that confront this challenge[15]. However, in many complex
networks the organization of nodes is not completely represented by a unique
partition but by a set of nested communities that appear at different topo-
logical scales. This evidence comes from indirect experimental data revealing
functionalities in complex networks that involve different subsets of nodes at
different hierarchical levels [16, 17].

In a completely different scenario, physicists have largely studied the dy-
namics of complex biological systems, and in particular the paradigmatic anal-
ysis of large populations of coupled oscillators [18, 19, 20]. The connection
between the study of synchronization processes and complex networks is in-
teresting by itself. Indeed, the original inspiration of Watts and Strogatz in the
development of the Small-World network structure was, as mentioned before,
to understand the synchronization of cricket chirps. This synchronization phe-
nomena as many others e.g. asian fireflies flashing at unison, pacemaker cells
in the heart oscillating in harmony, etc. have been mainly described under
the mean field hypothesis that assumes that all oscillators behave identically
and interact with the rest of the population. Recently, the emergence of syn-
chronization phenomena in complex networks has been shown to be closely
related to the underlying topology of interactions [21] beyond the macroscopic
description.
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In this talk we review some of the results concerning the dynamics towards
synchronization of phase oscillators in complex networks at the mesoscale de-
scription [22, 23, 24, 25].
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Abstract

We study the effect of topology in an attractor neural network in
which a noise parameter meant to mimic synaptic depression causes in-
stabilities of the memory patterns leading to complex behaviour, includ-
ing the possibility of chaos. Investigation of the system shows that three
distinct phases can emerge: a ferromagnetic (memory) phase, a phase of
chaotic hopping among the attractors, and a phase of periodic pattern-
antipattern switching. In a mean-field approach and for a single pattern,
the dynamics of the network is well approximated by a two-dimensional
discrete map in which the exponent of the power-law degree distribution
is a relevant parameter. Analysis of this map reveals that there is an
optimal exponent, around 2, which minimises the amount of depression
needed to destabilise the memories. Our study shows that there are par-
ticular topologies that are most convenient for storage and retrieval of
memories, whereas others allow for a better performance in tasks such
as pattern recognition and class identification and categorisation. We go
on to suggest a mechanism by which a network could switch from stable
to unstable behaviour by means only of a slight rewiring. Monte Carlo
simulations agree both qualitatively and quantitatively with mean-field
results.
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1. Introduction

It is widely believed that synapses are responsible for information storage in
the animal brain [1]. Neural network models can be constructed in which
nodes represent neurons and links play the role of synapses [2]. A set of
patterns can then be stored by allocating synaptic weights according to the
Hebb rule [3]. In this way, the phase space of network dynamics acquires
attractors which coincide with the patterns stored, thereby conferring to the
system a mechanism for retrieval known as associative memory. However, it
is clear that a real neural system must be capable of much more if it is to do
anything except recall the same memory pattern forever: some destabilising
mechanism must exist. In fact, certain experimental evidence suggests that
chaotic activity may be necessary for some high level brain tasks [4,5]. In
relation to this, there has recently been much interest in so-called dynamic
synapses [9,10,11], fluctuations of the synaptic weights that occur on time
scales of milliseconds - as opposed to the time scale of static learning that can
be of anything from minutes to years [1]. Biologically, these fluctuations fall
into two categories: synaptic depression (a decrease in conductance due to a
depletion in available neurotransmitters) and synaptic facilitation (increased
conductance thanks to residual calcium within the membrane) [12,13]. Both
are thought to appear as a result of a high frequency of spikes arriving at
the presynaptic neuron 1. In this study we extend a general dynamic synapse
model that has been shown to exhibit chaotic (dynamic memory) as well as
ferromagnetic (static memory) behaviour to the case of networks endowed
with a topology [6,7,8]. To the best of our knowledge, this is the first work to
investigate the effect of topology on this type of neural automata, and we have
found that the nature of the behaviour exhibited does indeed depend strongly
on the precise wiring of the network.

2. The model

We consider a set of N binary neurons with possible states si = {−1, +1}
situated at the nodes of a network [2,14]. This network has a topology given
by the adjacency matrix εij = {1, 0}, signifying the existence or inexistence of
a link that represents synaptic interaction. A set of M patterns ξν

i = {−1, +1}
(which we will generate randomly) can be stored by giving each link a synaptic
weight ωij according to the Hebb rule [3]: ω̄ij = M−1

∑M
ν=1 ξν

i ξν
j and consider

1Most neurons will of course be simultaneously both pre- and postsynaptic, but we will
use these terms in reference to the particular synapse whose fluctuations are being considered
at the time.
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the synaptic weights ωij as the result of ω̄ij being altered by fast presynaptic
noise in the form of the stochastic variable xj , ωij = ω̄ijxj . At the limit where
the time scale of xj is infinitely smaller than that of neuron dynamics, we will
take it to follow a bimodal distribution

P (xj |S) ≡ qδ(xj − Φ̄j) + (1− q)δ(xj − 1), (1)

implying that at each time step every synapse has a probability q of altering
its weight by a factor Φ̄j , where Φ̄j is a function of the local network activity
to be determined. This distribution differs from the one used in references
[6,7,8] in that they consider an activity-dependent probability (q = q(m)) and
a fixed depression factor (Φ̄j = Φ = constant). The fact that, as we shall
see, for appropriate choices of parameters the same effective local fields - and
therefore the same behaviour - can be obtained from either model suggests a
greater generality of the bimodal noise distribution than might be expected.
The main extension made in this study is to consider a dependency on local
activity since we whish to apply the model to systems with topologies other
than that of the fully-connected network.

We assume the factorisation P st(X|S) =
∏

j P (xj |S) and express the tran-
sition rate for postsynaptic neuron i in terms of an effective local field heff

i (S)
(see [15] for details). Effective synaptic weights ωeff

ij such that heff
i (S) =∑

j ωeff
ij sjεij can then be obtained analytically:

ωeff
ij = [1 + q(Φ̄j − 1)]ωij . (2)

These effective synaptic weights can be used for numerical simulations for a
given function Φ̄j . In this study we will consider only parallel updating, though
the model could perhaps be extended to sequential updating, or anything in
between.

As well as the standard macroscopic overlap vector −→m = (m1, ...mM ), where
mν ≡ N−1

∑
i ξ

ν
i si, which tells us which attractor (if any) the system finds

itself in at a given time, we can define an analogous local overlap for each
pattern as mν

j ≡ N−1
∑

l ξ
ν
l slεjl. Through these we define the function

ζ(−→mj) ≡ κ

1 + α

∑
ν

(mν
j )

2, (3)

where α ≡ M/N is the load parameter and κ is a constant that we will
set at κ = (N/〈k〉)2 so as to make ζ(−→mj) ' |−→m| for a “typical” presynaptic
neuron j of average degree kj ' 〈k〉. This function ζj = ζ(−→mj) (or in fact
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any other monotonously increasing function of mν
j ) can be seen as a measure

of the electrical activity felt by neuron j. Since we would like Φ̄j to depend
on the current arriving at presynaptic neuron j, a possible definition is Φ̄j ≡
1 + q−1

0 ζ(−→mj)(Φ − 1). In this way we can recover the behaviour observed in
[6,7,8] at the fully-connected network limit for any choice of q = q0. We will
set q0 = 1/2 for the sake of comparison 2. The parameter Φ is proportional to
the extent of synaptic variation, its sign signifying either of the two regimes:
facilitation if Φ > 1 or depression if Φ < 1. Simulations are carried out by
inserting (3) into (2) for the synaptic weights and simply computing ζj for
each neuron at every MCS.

3. Mean field

Particularising for a single pattern (M=1 ) the effective local fields reduce to

heff
i =

1
N

∑

j

[
1 + (Φ− 1)m2

j

]
ξiξjsjεij . (4)

Defining ηi ≡ ξisi, we have mj = 〈ηiεij〉i. Because previous studies [16] have
shown that, in general, 〈kη〉 6= 〈k〉〈η〉, we define a new set of overlap parame-
ters, µn ≡ 〈kn

i ηi〉i/〈kn〉 (note that µ0 = m), and their associated local versions
µn,j ≡ 〈kn

i ηiεij〉i/〈kn〉.

We also need the mean value (a quenched average over realisations of the
network) of the adjacency matrix εij . For this we will imagine that each neu-
ron i has been allocated ki half-links according to some distribution p(k), the
total number of half-links in the net being 〈k〉N . We now proceed to chose a
neuron at random and join one of its half links to one belonging to another
random neuron 3. The probability of choosing one of a given neuron j ’s half-
links is kj/(〈k〉N). After as many realisations as are necessary to link up all
the neurons, the expected value of the number of links joining neurons i and
j will be kikj/(〈k〉N). If we impose the restriction that there can be at most
one link between any two neurons (εij = {0, 1}), then the value will be slightly
smaller. However, it is easy to prove that this value is a good approximation

2i.e., the results obtained in the references will coincide with those yielded by our model
if we take q = 1/2 in the noise distribution (1).

3Although it is well known that the degree distribution of a network does not determine
all its statistical properties, this kind of algorithm is probably the most general way of
generating a topology with a given p(k), and is indeed the mechanism used here.
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in this case also, at least if ki, kj ¿ N , and so we will use 4

[εij ] =
kikj

〈k〉N . (5)

The value given in (5), which is general for any graph, coincides - for a power-
law distribution with γ = 3 - with the one obtained by G. Bianconi for a
Barabási-Albert evolving network [17,18].

Standard mean-field analysis (see [15] for details) yields

µn(t+1) =
1
〈kn〉

∑

k

p(k)kntanh

{
k

TN

[
µ1(t) + (Φ− 1)

〈k3〉
N2〈k〉µ

2
1(t)µ3(t)

]}
, (6)

which, applied recursively to µ1 and µ3, constitutes a two-dimensional map,
valid in principle for any topology with a known distribution p(k). Although
it is not a variable of the map’s dynamics, we can also use (6) to calculate
µ0 = m, which is after all the macroscopic magnitude of interest. At the
thermodynamic limit (N → ∞), the sum over degrees becomes an integral,
which can be solved analytically only for certain distributions p(k).

4. Criticality

Near the critical temperature we expect stable solutions µn 6= 0 such that
µn(t+1) = µn(t) to occur (for any n). Since µn(T'Tc) ' 0, we can expand the
hyperbolic tangent in (6) around the origin and keep only terms up to order
three. If we also make the approximation µ3 ' µ1, then we have

µ1(T'Tc) =
1√
Tcθ3

[
Tc − T

Φc − Φ

] 1
2

, (7)

where θn ≡ 〈kn〉
〈k〉Nn−1 , Φc = θ4

3θ3θ2T 2 , and the critical temperature 5 is

Tc = θ2 =
〈k2〉
〈k〉N . (8)

Equation (7) tells us that even if T ≥ Tc the behaviour of the overlap will
become ferromagnetic at Φ = Φc > 0 due to the high degree of facilitation.

4It is interesting, however, that in the case of more than one link permitted, which may
in fact be biologically more realistic, the result is exact.

5This expression for the critical temperature, which is general in our mean-field approx-
imation for any topology given by the adjacency matrix εij , means that we can define a
matrix τij ≡ kikj/(〈k〉N) such that [εij ] = τij and Tc = Tr(τij)N

−1.
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However, more interesting to us is the value of Φ at which the overlap becomes
unstable. Proceding as before but setting the condition µn(t+1) = −µn(t), we
find that (at high temperatures) we will have bistability (periodic hopping) if
Φ > Φbi, where

Φbi = Φc − 1
θ3

(
1 +

T

Tc

)
. (9)

At low temperatures, simulations show the existence of three distinct phases:
ferromagnetic, chaotic and periodic, depending on the noise parameter. The
value of Φ at which the behaviour of m becomes chaotic, Φchaos, cannot be
calculated analytically since this only occurs at relatively low temperatures,
which undermines our expansion of the hyperbolic tangent. However, it is pos-
sible to study the stability of the single-pattern system for a given topology
by analysing the Lyapunov exponents associated with (6). This is contrasted
with results obtained from Monte Carlo simulations for different scale-free
topologies in Fig.2.

5. Scale-free networks

Up until now, everything that has been said is general for any topology fol-
lowing a distribution p(k), the equations only requiring various moments of
k. Motivated by many recent findings relating to the emergence in nature of
scale-free networks [18,19,20] and the interesting properties these topologies
exhibit [21], we will now concentrate on distributions of this type, such that

p(k) ∼ k−γ . (10)

As their name indicates, these distributions do not have a characteristic size,
the probability being spread in theory over all values of k. However, since in
a real network values of k can only take whole numbers, we will assume the
limits to be given by ko and km ≤ (koN

1
γ−1 , N). Much of the analysis done

on scale-free networks tends to set γ = 3, the exponent that arises naturally
in a Barabási-Albert evolving network [18]. Nevertheless - and as these au-
thors point out - in nature we find networks with values of γ ranging at least
from slightly larger than 1 to more than 4, depending probably on the precise
mechanism involved in their realisation. For this reason, we make γ a control
parameter and study its influence on the behaviour of nets with given mean
degree 〈k〉 and number of neurons N (this imposition, together with normali-
sation of p(k), is enough to define the limits ko and km).
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In Fig.1 we see the critical temperature plotted against the exponent γ for
different fixed mean degrees as given by equation (8). High values of γ result
in a distribution p(k) ' δ(〈k〉), and so Tc → 〈k〉/N . At γ slightly larger than
2, the tail of the distribution is truncated by the net size (hubs with k = N−1
will exist) and the slope of Tc becomes suddenly smaller. Then there comes a
point for even lower exponents at which no neuron can have a degree larger
than a certain kmax < N without resulting in a higher 〈k〉 than is imposed, and
so Tc drops. This relation between the critical temperature and the maximum
degree allowed agrees qualitatively with one of the main results reported in
[16] - namely, that hubs continue to store information even at relatively high
temperatures.

 0

 0.1

 0.2

 0.3

 1  2  3  4  5

T
c

γ

<k>=10
<k>=20
<k>=40

Figure 1:
Critical temperature against exponent γ for different mean degrees (N=1600) as given
by (8).

Φchaos is also found to depend strongly on the slope of the degree distri-
bution. Fig.2. shows this critical value plotted against γ as obtained from
Monte Carlos simulations and from mean-field analysis. There is good agree-
ment for all but very low values of γ - which may be due to the fact that, as
mentioned above, the mean adjacency matrix (5) used is in fact for a net in
which multiple connections are allowed, an effect that we would expect to be
most noticeable in nets containing hubs with k → N ; indeed, these might well
then tend to destabilise the system at higher levels of Φ as the map predicts.
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Most interesting is the existence of a plateau, around γ ' 2, at which very
little depression (Φ ' 1) is required to make the attractors unstable.

 1

 0.5

 4 3 2 1

Φ

γ

Stable

Unstable

 1

 0.5

 4 3 2 1

Φ

γ

Stable

Unstable

Figure 2:
Depression coefficient at which behaviour becomes chaotic, Φchaos, from map (lines)
compared to MC simulations (bars). (Data correspond to averages over 10 nets, with
< k >= 20, N = 1600, T = 1/800). Inset shows standard deviation σ of Φchaos

against net size for fixed 〈k〉/N = 1/100. As expected, σ ∼ 1/
√

N (dotted line).
(Data obtained from MC simulations of 10 different realizations of the network for
each N, with γ = 3 and iterated at T = 1/800.)

The map also allows us to plot bifurcation diagrams of the overlap m
against the exponent γ. These are shown in Fig.3, along with associated Lya-
punov exponents, for two different values of Φ. The top two panels correspond
to very slight depression. This results in the opening of an unstable window,
periodic in the middle and chaotic at the borders, around γ ' 2. (Note that
the chaotic region on the left has a smaller amplitude in m than that on the
right: this is presumably because Tc varies with γ while we are keeping T con-
stant.) If we gradually reduce Φ, this window of instability widens, as well as
the chaotic regions themselves, until the chaotic border on the left disappears
from our diagram (it would occur at γ < 1). The two lower panels are for
a higher value of depression, at which only much steeper degree distributions
(γ ↑) present stable (ferromagnetic) behaviour.
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Figure 3:
Bifurcation diagrams and associated Lyapunov exponents for two different values of
depression (< k >= 20, N = 1600, T = 1/800)
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6. Dynamic topologies

This sensitivity that network behaviour exhibits to topology can be illustrated
with a simple dynamic topology model. The algorithm used generates an ini-
tial scale-free topology with an exponent γ1 and a final (virtual) topology
according to a given γ2 such that it is the result of multiplying the degree of
each node by an appropriate factor. Then, at each time step of the simulation,
a given number of nodes, chosen with a probability proportional to k1 − k2,
have one link removed, to be re-connected to another node chosen with proba-
bility k2−k1. In this way the degree distribution goes smoothly from γ1 to γ2

without altering the total number of links (and so 〈k〉). (Because this implies
varying ko, the intervining stages are not all strictly-scale free, but do have
distributions with long power-law tails.)

Fig.4. shows how the behaviour of a network which finds itself representing
a given pattern (red) can, simply through small rewiring actions of the type
described above, become unstable (chaotic phase) and end up representing
a different - uncorrelated - pattern (green). In the final state, the phase is
periodic hopping, which as we can see is another way of representing a given
pattern - e.g. if this were, say, an image, it would be swithching continuously
between the recorded pattern and its negative.
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Figure 4:
Evolution from γ1 = 3 to γ2 = 2, with 10 links re-connected at each MCS (Φ =
0.98, < k >= 40, N = 1600, TN = 0.001)).
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7. Discussion

We have extended the dynamic synapse model of an attractor neural network
presented and studied by Torres et al. [6,7,8] so as to take into account the
local effects that are to be expected in a network with topology. Mean-field
analysis, though only exact for the case of a fully connected network, proves
nonetheless to be remarkably accurate at predicting certain critical phenomena
even for nets with low mean degrees. Applying the model to scale-free net-
works reveals a strong dependency of the emergent complex behaviour on the
exponent γ of the degree distribution. In particular, phase diagrams obtained
both from mean-field analysis and Monte Carlo simulations show a plateau,
around γ ' 2, at which the behaviour of the network becomes unstable for
very slight depression. This may point to the existence of a topology that is
optimal for certain dynamic memory tasks, such as pattern recognition and
class identification and categorisation. As an example application we present
a simple dynamic topology model in which a few synapses are rewired at each
MCS without altering any other parameters, with the result that the network
can pass suddenly from one type of behaviour (or phase) to another.
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Abstract

In a small-world network of mainly attractively coupled non-identical
neurons, we show that a small fraction of phase-repulsive couplings is
able to strongly improve synchronization for certain values of link and
repulsivity probabilities. By a spectral analisys we link the observed
dynamical behaviour with the structural properties of the network.

Keywords: phase repulsive, synchronization

1. Introduction

One of the most important mechanisms for transmit and code information,
in large oscillator ensembles is syncronization, specially in biological netwoks.
Diferent experiments have pointed out this fact in the neural tissue, finding a
relationship between the behaviour of the system and the net structure [1, 2].

The importance of the synchronous behaviour in real collectives has rise
the question of how to optimice the network topology for synchronization.
Several strategies have been developed with the aim of finding the best way
to achieve synchronization in complex networks, mainly focused in the role of
weighted links in heterogeneous networks [3]. Most of the works are devoted
to obtain syncronization between attractively coupled identical units, but het-
erogeneity of dynamical unit is naturally present in real networks, biological
or social. Also, in real systems, heterogeneity in conexions is also a common
feature; it is know that biological networks combine different kinds of connec-
tions to improve synchronization and transmission performance, as in the case
of the coexistence of excitatory and inhibitory synapses in the brain [4].
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In this work we explore both the heterogeneity of units and couplings, and
the conexion with the topological structure [5]. We show that a small percent-
age of repulsive links in a small-word structure can induce the emergence of a
coherent oscillation dynamics in cases where the equivalent network composed
of only attractive connections is not able to synchronize or even to activate
the ensemble.

2. Model and numerical results

We want to study the rising of synchonous behavoir in a population of het-
erogeneous excitable units, where initially part of the group stay in oscillant
an the rest in silent state. For this purpose, we study of the dynamics of
an ensemble of non-identical locally coupled Hodgkin-Huxley (HH) neurons
considered as spatially isopotential cells:

CV̇i = Ii − Iion
i (Vi, xi) + d

∑

j

L̂ijVj

ẋi = αx(1− xi)− βxxi (1)

The variables and parameters are the standards in literature [4]. The conec-
tivity matrix is L̂ij = Lij/ki, where ki normalize the conection strength by the
number of connections to node i, and Lij is a zero-row sum adjacency matrix.
The coefficient d stands for the coupling strength.

The heterogeneity in the population in introduced by means of the external
bias current Ii, which is uniformly distributed within the interval I0 ± ∆I,
being I0 = 9 µA/cm2 near a Hopf bifurcation, in such a way that for the
chosen ∆I = 0.2, about 70% of the neurons stay around the silent state while
the rest will fire periodically.

In order to observe how units heterogeneity and phase repulsive couplings
affects to coherent behavior, initially we consider just a regular lattice topology
with identical (all positive or negative) conexions for an ensemble of N neurons.
As expected, the system reachs a phase synchronization state for a certain
d = d+ = 0.12 and equivalently, for d = d− = −0.02 it reaches an antiphase
coherent state. Being |d−| < |d+|, phase-repulsive coupling results to be more
effective to globally activate and entrain the whole network. This results is
common in excitable systems due to the asymmetry of the attractor in the
phase space.

However, our main interested is to explore the influence of a complex
topology in the activation and synchronization of the network. Taking into
account the previous result, we consider the possibility of being repulsive at
least part of the long-range connections. Then, we fix d = 0.1 for the coupling
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Figure 1: Space-time plots of the neuron voltage for a N = 800 HH units
network, with ∆I = 0.2, d = 0.1, and different coupling connectivities: (a)
Local coupling with q = 0; (b) network with long range couplings, p = pc =
0.0055, and q = 0; (c) same as (b) but q = 0.3; (d) same as (c) but q = 0.45;
(e) same as (c) but p = 0.015.

strength, that is, within the unsynchronized regime, and L is modeled now
by keeping the regular short-range connections positive Li,i±1 = +1, and by
randomly adding (rather than rewiring) a fraction p of long-range couplings
Lij = Lji = ±1 with a probability q of being negative.

Figure 1 shows space-time plots of the voltage variable through the whole
array for different probabilities p and q. As expected, in the absence of long-
range conection, for chosen coupling strength d only around the initial 30% of
the neurons is firing and the array is not activated or synchronized, as shown
in Fig. 1(a). When long-range links are included, the first observations is that
for any p, a minimum fraction of the new added links needs to be repulsive
in order to increase the activity of the network, as becomes evident when
comparing Fig. 1(b) with Figs. 1(c)-(e). In Fig. 1(b) the activity generated by
the initially active neurons is reduced or even annihilated when all the long-
range connections are attractive (q = 0). However, the scenario completely
changes when, for the same p, some of the shortcuts are repulsive (q > 0) like
in Figs. 1(c)-(e) where self-sustained electrical activity emerges for nonzero q.

In addittion, we observe the existence of optimal values for p (let us call
p = pc to this value) and q for which the collective oscillation becomes maxi-
mally phase-coherent. This fact can be observed by comparing Fig. 1(c) where
p = pc and Fig. 1(d) for the same q but slightly higher p.

We now quantitatively study how the dynamics is affected by p and q,
by measuring the mean firing rate (MF)of the network and the standard de-
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viation of the global electrical voltage V (t) =
∑N

i=1 Vi(t) obtained as σV =√
< V 2(t) > − < V (t) >2. While the MF measures the network activation, a

high σV indicates that this activity is coherent. When the network is fully
activated the MF approaches to 70 Hz.

The effect of the topology in the dynamics as a function of p and q can be
seen in the countour plots in the p-q space shown in Fig. 2. We first observe
that there is a chance in the behaviour of both the activity and coherence as
a funtion of p. The effect of the activity (measured by means of the MF rate)
is shown in the left panel, and the coherence is measured in the right panel
thought σV . While for the MF there is a transition towards a fully activated
system at certain p, the σV reaches a maximum at this point. In the right
panel of Fig. 2 it is clear the signature of a resonance both in p and q, as
observed in Fig. 1.

Figure 2: Contour plots in the p-q plane of the (left) mean frequency (MF)
and (right) network coherence σV as a funtion of p and q in a N=800 network.
It becomes evident in the right panel the resonance in p and q. Each point is
averaged over 100 simulations, 1 s. long.

In Fig 2 we can also observe the importance of q in the behaviour. First it
is clear that a value q 6= 0 is needed to activate the network, which is related
with the larger capacity of negative perturbations to get the system out of the
stable point (silent state). The q value of maximal activity depends slightly
on p. Additionally, this activity will be coherent for a p− q pair of values that
shift to higher p as q increases.
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3. Structural analisys

When we explore the influence of the topology on the dynamics pointed on
by these observations becomes evident when we observe that the critical link
probability pc depends strongly in the ensemble size as ' ln(N)/N , that is,
coincides with the birth of the gigant connected component (GCC) of the
Poisson random graph with N elements, which is precisely the network we
have when only the randomly added long-range connections are considered (i.
e. when we neglected the local couplings).

Therefore, we want to analyze wheter the network structure has some
bearing on the dynamics. Recently, the method of the master stability function
has been succesfully used for this goal in several situations [3]. However, this
method requires the dynamics unit to be identical in order to consider the
stability of the perfectly synchronous state, which is not our case. Then, to
perfom our analisys we use a purely structural analysis, based in the properties
of L, ignoring the dynamics imposed on it, that is, we consider

V̇ = dLV (2)

where V = (V1, ...VN ). Then, there is a basis in which Vi ≈ exp(dλit), where
λi are the eigenvalues of L.

It is well known that all the eigenvalues of the Laplacian associated to a
network with only attractive couplings are negative. However, when we add
some repulsive connections, L has possitive and negative eigenvalues. We find
that any set of initial states rapidly evolves into the subspace S+, associated
to the possitive eigenvalues, within a time smaller than the characterictic
temporal scale of the system dynamics (τ ≈ 15ms).

To quantlfy the effect of S+, we note that, for a given positive λi,edλi is
a measure of how much the system spreads into the subspace defined by the
corresponding eigenvector. Then, the ratio

edλit

edλmaxt
= ed(λi−λmax)t (3)

measures how different is the evolution in that subspace with respect to the
one where the system develops faster. By defining the geometric average

g(t) = ed(〈λi〉−λmax)t (4)

we can estimate the homogeneity of the evolution in S+ with a number in
(0, 1]. Then, g → 1 means similar evolution in all dimension in S+, whereas
g < 1 implies that the behaviour is determined by those vector with the largest
associated eigenvalues.
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We are now interested in the behaviour of g(t) as a funtion of p and q.
As the shape of g(t) with p is not very sensitive to time, we fix t = d−1 ∼ τ
to focus our study within the time scale of our dynamical unit. In figure 3.
we observe that g ≡ g(τ) presents a minimum al pc which is lower for higher
values of q , and whose position shifts to higher p as q increases, as in the
numerical simulations of the networks. In this last case, the system becomes
more heterogeneous due to the connectivity, and therefore, the intrinsic dy-
namics is minimally constrained by the structure that arises around pc due to
the repulsive shortcuts.

The results reflect the fact that at pc there is a transition from a 2-k lattice
to a lattice with a exponential degree ditribution, indicating the presence of
hubs. In this state, where the eigenvalues dispersion is large, the activity
is enhanced, as observed in the numerical simulations, and the network is
compatible with the diversity of the dynamical units, which are allowed to
reach a partially coherent state. On the other hand, far from pc the nodes
are indistinguishable from a topology point of view and the dynamical units
are constrained to evolve alike, when they have different intrinsic dynamics,
failing in obtaining a coherent behavior.

In summary, we have shown numerically how a small fraction of phase-
repulsive links can enhance activity and coherence in a complex networks
of non-identical dynamical unit, initially in differents dynamical states. A
spactral analisys allows us to obtain information about how the topology in-
fluences the dynamics.
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Abstract

We present a model of an attractor neural network with complex, time–
dependent connections in which some of the nodes remain silent at each
time step. The network has a heterogenous distribution of connection
weights and, depending on the current degree of order, some connections
are reinforced/weakened with strength Φ on short–time scales. We also
consider that only a fraction ρ of nodes are simultaneously updated. The
resulting dynamics has attractors which, for a certain range of relevant
parameters Φ and ρ , become unstable, and results in a chaotic itineracy
among them which highly depends on ρ. For intermediate values ofρ,
we observe that the number of attractors visited increases with ρ, and
the trajectory may change from regular to chaotic and vice versa as ρ is
modified. Finally, a statistical analysis of time series show a power–law
spectra under conditions in which the attractors’ space is most efficiently
explored. We argue on the possible qualitative relevance of this phe-
nomenology to networks in several natural contexts.
PACS: 05.45.Pq; 05.50.+q; 87.18.Sn; 87.23.Ge; 89.40.-a; 89.65.-s; 89.75.-k

1. Introduction

In the last decade, there has been a great interest in the study of complex
networks —that is a large set of nodes connected in pairs by edges— in physics
[1, 2]. Most of these studies have focused on the wiring topology of the network

emails: jmarro@ugr.es, jtorres@ugr.es, ,
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which, for example, has lead to the discovery of scale–free and small–world
networks in natural and man–made systems. However, real networks exhibit
a number of relevant qualities besides interesting topological structure [2, 3,
4, 5]. In this work, we are concerned with two features which could affect
the network performance. First, we consider a network with weighted and
time–dependent connections, as it occurs, for instance, in trophic webs, social
and comunication (e.g., cell phone) networks, or transport connections. In this
examples, connection weights usually vary on a long–time scale. One, however,
can consider that weights may change on a short–time scale to improve actual
functioning as it happens, for instance, in neural media. As a matter of fact,
the human brain is the paradigm of a weighted network [6], and it is also clear–
cut that high–level functions in the brain rely on fast synaptic changes during
operation [7]. Then, in the rest of the paper, we shall often use the language
and refer to observations on neural and, eventually, computational networks.
In any case, our study is rather general and we believe that the main behaviour
described in this paper should apply to networks in different contexts (see, for
instance, Refs. [3, 4]). Secondly, in our study we consider partial activation
of nodes which can also induce fast fluctuations in the network. One may
argue that the cost for the network to maintain all nodes synchronized and
fully informed of the activity of all the others can be very high, because
it will require a lot of energy. Moreover, there are some indications that
certain nodes are more active than others, and that only a fraction of nodes
is actually engaged at each time in some cooperative tasks. For example, this
is a characteristic of nodes in excitable media which include a finite refractory
period after each excitation [8]. The possibility of having reticent nodes is also
a recent concern in computer science in relation with parallelism [9, 10], in
mathematical–physics [11], and in neuroscience, where it has been associated
with working memories [12, 13], variability of neuron thresholds [14] and silent
neurons [15, 16]. In principle, this is a different phenomenon but one may
argue that some of the observed partial synchronization processes, in which
some elements do not attend to the others’ mode, could be associated with
the existence of silent and/or excitable units, the case of interest here.

The investigation of time-dependent connections in physics has only re-
cently been initiated; see, for instance, Refs.[3, 4, 5]. However, studying the
consequences of fast connection changes in biologically inspired models has
already a two–decades history —see [17] and references therein. For example,
it has recently been shown that the susceptibility of a network to outside in-
fluence increases dramatically for excitable nodes [18] and, more specifically,
under a competition of processes which tend to increase and decrease, re-
spectively, the efficiency of synaptic connections at short times [19]. On the
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other hand, the investigation of the effect of the partial activation of nodes is
rarer [20, 11, 10, 21], in spite of the fact that there is some —e.g., the above
mentioned— specific motivation for it in several fields. In this paper we have
investigated the combined effect of these two features, in an attractor neural
network. We show that varying the fraction of nodes that are simultaneously
active induces a variety of qualitatively different behaviours in situations of
great susceptibility, but not in more general conditions. The susceptibility
needed to observe the most interesting behaviour is shown to occur under ap-
propriate tuning of the connection weights with the network activity. As a
first application of our study, we describe here how a model exhibits unsta-
ble dynamics, which leads to itinerancy and chaotic behaviour in a way that
mimics both general expectations and some recent biological observations.

2. The model

We consider a network with N nodes with s≡ {si} and w ≡{wij ∈ R} (i, j =
1, . . . , N) representing, respectively, the node states or activities and the con-
nection weights. From these we define a local field on each node due to the
weighted action of the others, namely, hi (s,w) ≡ ∑

j 6=i wijsj . At each time
unit, the activity of n nodes is updated according to the probabilistic master
equation:

Pt+1(s) =
∑

s′
T

(
s′→ s

)
Pt(s′), (1)

with transition probability

T
(
s → s′

)
=

∑
x

pn(x)
∏

{i|xi=1}
τn

(
si → s′i

) ∏

{i|xi=0}
δsi,s′i . (2)

Here, x is an operational set of binary indexes —fixed to 1 at n sites chosen at
each time according to distribution pn (x) , and fixed to zero at the other N−n
sites. The choice (2) simply states that one (only) updates simultaneously the
selected n nodes. The corresponding elementary rate is

τn

(
si → s′i

)
= σ

(
si → s′i

) [
1 +

(
δs′i,−si

− 1
)

δn,1

]
, (3)

where σ = σ (s, β) is a function to be determined, with β an inverse temper-
ature parameter, whose particular form is chosen for reference purposes. In
fact, the above describes parallel updating, as in cellular automata, for n = N
or, macroscopically, ρ ≡ n/N → 1. However, the model describes sequential
updating, as in kinetic magnetic models, for n = 1 or ρ → 0. We are interested
in changes with ρ ∈ (0, 1) which allow for a sensible generalization of famil-
iar cellular automata and represent more real situations, as indicated in the
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introduction. For example, assuming a neural network, ρ may stand for the
fraction of neurons that are stimulated each cycle. There is no input on the
other 1 − ρ, so that information from the previous state is maintained. This
induces persistent activity which has been argued to be a basis for working
memory [12, 13]. Varying ρ may also be relevant to simulate the observed
variability of the neurons’ threshold [14] and the possible existence of silent
neurons [15] or dark neuro–matter [16], for instance.

The equations above may be simulated in a computer for different choices
of pn and transition details. In order to obtain analytical results, we con-
sider the simplest case in which the node activities are binary, si = ±1,
the n nodes to be updated are chosen at random, so that one has pn (x) =(
N
n

)−1
δ (

∑
i xi − n) , and σ is an arbitrary function of (only) βsihi which sat-

isfies detailed balance. In spite of the latter, detailed balance is not fulfilled
by the superposition T for n > 1, so that resulting steady states are generally
out of equilibrium, which is known to be realistic [22]. We also assume that
fields are h (s,w) = h [π (s) , ξi] . Here, ξi ≡ {ξµ

i = ±1;µ = 1, . . . , M} stands
for M given realizations of the set of activities, or patterns, and

π ≡ {πµ (s)} , πµ (s) = N−1
∑

i

ξµ
i si, (4)

measures the overlap between the current state and pattern µ. For N → ∞
and finite M, i.e., in the limit α ≡ M/N → 0, the time equation

πµ
t+1 (s) = ρN−1

∑
i
ξµ
i tanh {βhi [πt (s) , ξi]}+ (1− ρ) πµ

t (s) (5)

follows for any µ. Actual applications concern finite values for both M and
N, so that the limit α → 0 is not very interesting in practice. This and other
restrictions are not essential to the model, however; in fact, our simulations
below concern more general situations, as pointed out when necessary.

The model allows for different relations between the fields hi and the
other network properties. The simplest case at hand for specific relations of
such kind is Hopfield’s [23] which follows here for ρ → 0 and weights fixed
according to the Hebb prescription, i.e., wij = N−1

∑
µ ξµ

i ξµ
j . The symmetry

wij = wji then assures Pt→∞ (s) ∝ exp (β
∑

i hisi) . This (equilibrium) case
exhibits associative memory property. That is, for high enough β, the patterns
{ξi} are attractors of dynamics [24], as if they would have been stored in the
connections and recalled in the course of the system relaxation with time.

Equilibrium is generally impeded for ρ > 0 [25], and the asymptotic state
then strongly depends on dynamic details [22, 26]. We checked that, in agree-
ment with some indications [20], the Hopfield–Hebb network also exhibits
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Figure 1: Evidence of chaos. Bifurcation diagram showing the stationary
order parameter q (π) , as defined in the main text, versus the synchronization
parameter ρ for M = 5 random patterns, N = 1600 nodes, β = 100 and
Φ = −1/2. This behaviour is characteristic of any Φ 6= 1, and it follows
indistinctly from the analytical solution and from Monte Carlo simulations.
The dashed line corresponds to the Hopfield equilibrium case.

associative memory for ρ > 0. However, no new physics emerges as ρ is varied
in this case, and it is likely this occurs rather generally concerning dynamics
for simple weighted networks.

Our model may exhibit a complex dependence on ρ assuming activity
dependent weights. This is expected to occur in many excitable media [8].
However, as far as we know, the only situation with time–dependent connec-
tions which is well documented in the literature concerns the brain. In this
case, transmission of information and computations have repeatedly been re-
ported to be correlated with activity–induced fast fluctuations of synapses,
i.e., our wij ’s [27, 7]. For example, it has been observed that the efficacy
of synaptic transmission can undergo short–time increasing (sometimes called
facilitation) [28, 29] or decreasing (depression) [30, 31], and that these ef-
fects depend on the activity of the presynaptic neuron. It has already been
demonstrated that such processes may importantly affect a network perfor-
mance [17, 19, 33, 32, 34]. Likewise, it seems sensible to assume that similar
short–time variations may occur in other networks —e.g., reaction–diffusion
systems and the cardiac tissue [8]— associated with some efficacy lost after
heavy work or with excitations, for instance.
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Figure 2: The Lyapunov exponent Λ as a function of the β and Φ for several
values of ρ = 0.25, 0.5, 0.8, 0.99, from bottom to top, respectively. Λ > 0
correspond to an irregular or chaotic dynamics. Left graphs correspond to
Φ = 0.01 and Λas a function of β,and right panels correspond to β = 25 and
Λas a function ofΦ. Note that there is a small chaotic region (Λ > 0) for ρ . 1
and low βand Φ = 0.01.

Motivated by all these facts, and also trying to maintain a well–defined
reference frame, we shall assume that the connection weights are

wij = εijwij = εjwij , (6)

where the second equality is introduced for simplicity. Here, wij stands for
some reference value and εj for a random variable. That is, we are assuming
some “noise” on top of a previous preparation of the connections designed
so that the network can perform some specific function. This also suggests
us to assume that the random variable in (6) is fluctuating very rapidly so
that, on the time scale for the activity changes, it behaves as stationary with
distribution given, for example, by

pst (s, εj) = qδ (εj − Φ) + (1− q) δ (εj − 1) . (7)
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We shall further assume that q depends on the degree of order in the system
at time t, namely, that q = q (πt) . For the sake of concreteness, our choices
here will be that q (π) = (1 + α)−1 ∑

µ πµ (s)2 and that wij is given by the
Hebb prescription. The result is that each node is acted on by an effective
field

heff
i (s,w) =

∑

j 6=i

weff
ij sj (8)

with
weff

ij = [1− (1− Φ) q (π)]wij . (9)

This amounts to assume short–term variations affecting the intensity of con-
nections by an amount, either positive or negative, Φ on the average. More
specifically, one has a decreasing effect for any Φ < 1, and enhancement for
Φ > 1, as far as Φ > 0, while Φ < 0 allows for the possibility of a change
in the nature of the weights. For the indicated choices of fields and reference
weights, our framework reduces to the familiar Hopfield–Hebb case for Φ = 1.
It should not be difficult to implement the model for choices other than (6)
and (7).

3. Results

Assuming (8) and (9), it readily ensues from (5) for M = 1 that π∞ =
F (π∞; ρ,Φ) . Local stability requires that |∂F/∂π| < 1, where

F (π; ρ, Φ) ≡ ρ tanh
{
βπ

[
1− (1− Φ)π2

]}
+ (1− ρ) π. (10)

Therefore, fixed points are independent of ρ for any Φ, but stability demands
that ρ < ρc with ρc = 2

{
3βπ2∞

[(
4
3−Φ

)− (1− Φ) π2∞
]− β + 1

}−1
. The re-

sulting situation for any Φ 6= 1 is illustrated in Fig. 1, where one observes
regular behaviour, bifurcations and chaotic windows. This picture cannot oc-
cur for fixed weights, e.g., in the Hopfield case (dashed line). In order to
deepen on the possibility of chaos, we computed the Lyapunov exponents for
different values of ρ as a function of the relevant parameters, namely Φ and β,
and from the analytical solution for M = 1. This is shown in Fig. 2. The figure
clearly reveals the existence of chaos above some degree of synchronization,
more specifically, for ρ > ρc (β,Φ) which marks the onset of period doubling
before irregular behaviour. For example, the left graphs show that, for a small
positive value of Φ, which corresponds to some slight depression of connections
which occurs more likely the higher the current system order is, there is a re-
gion for large β (relatively small temperature, say T ≈ 0.02 in our arbitrary
units) and 1 > ρ & 0.8 for which dynamics may eventually become chaotic.
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In the same graph one may notice a tiny chaotic window for ρ ≈ 1 and β ≈ 7;
this is the case identified previously by us [35]. The right graphs, on the other
hand, illustrates that chaos is typically an exception for positive values of Φ;
it may only occur then for a rather large fraction of synchronized nodes (large
ρ) near Φ . 0. On the contrary, for negative Φ, i.e., when the order tends
to induce changes in the nature of the connection intensities, it is more likely
that the system will behave chaotically. It is also to be remarked that, inside
the chaotic region in each graph, there is a complex pattern of transitions from
regular to irregular behaviour as one changes, even very slightly the values of
ρ, Φ and β. The next question is whether such complex behaviour may have
some constructive role in natural and man–made networks.

-1

 0

 1

 0  150  300

π

Time (n)

-1

 0

 1

π

-1

 0

 1

π

-1

 0

 1

π

Figure 3: Typical Monte Carlo runs. This shows the overlap as a function of
time (in units of n MC trials), during the stationary regime after equilibration,
for N = 1600 nodes, β = 50, Φ = 0.0035 and, from bottom to top, ρ = 0, 0.59,
0.89, and 0.95, respectively. In this case, ρc ' 0.5. This is for M = 3 correlated
patterns (identified here with different colours). That is, we generated three
patterns completely at random, and then replaced 20% of the digits in the
second and third patterns with the same number of digits, and flipped digits,
respectively, taken from the first pattern.

Different types of behaviour the system may exhibit are illustrated by the

88



Complex Networks with Time–Dependent Connections and Silent Nodes

stationary Monte Carlo runs in Fig. 3. This involves three partially correlated
patterns, as explained in the figure caption, and illustrates, from bottom to
top: (a) for ρ < ρc, convergence towards one of the attractors, namely, fixed
points corresponding to the patterns provided, which is revealed by the fact
that one of the overlaps (the red one) is large, close to 1, while the others two
are closer to zero; (b) irregular behaviour with positive Lyapunov exponent
for a larger value of ρ where that dynamics is now unstable and the system
activity is visiting the different attractors, including the negative of some of
them or antipatterns; (c) a different type of irregular behaviour in which, in
addition to visiting different attractors on a large time scale, there are much
more rapid irregular transitions between one pattern and its antipattern; and
finally (d) regular oscillation between one attractor and its negative, which is
more rapid as ρ → 1 (that is, when all the nodes are active).

The cases (b) and (c) above are examples of instability–induced switching
phenomena, namely, the system seems to describe in these cases kind of het-
eroclinic paths among the attractors, and remains different time intervals in
the neighbourhood of each of them, as it was previously observed in a related
case [35].

An interesting fact concerning the nature of temporal itineracy among the
stored patters as ρ is varied is illustrated in Fig. 4. This shows time evolution
of the mean firing rate defined as

m =
1

2N

N∑

i=1

(1 + si) . (11)

Three patterns (and their corresponding antipatterns) are involved here which
consist of a string of 1s, a string with the first 50% positions set to 1 and the
rest to −1, and a string with only the first 20% positions set to 1, respectively.
In this Monte Carlo experiment, the activity remains wandering around one
of the patterns for any ρ < ρc. The choice of pattern depends on the initial
condition (top graphs in the Fig. 4). For larger values of ρ within a chaotic
window (middle graphs and left-bottom graph in Fig. 4), the system tends
to visit the other patterns as well. In particular, the middle-left graph in
the figure (ρ = 0.384) shows visits to the three patterns, and a trajectory
which is structured, namely, there are many jumps between the pairs of more
correlated patterns, and only a few between the most distant ones. Moreover,
the number of jumps between the less correlated patterns tends to grow as
ρ is further increased within the chaotic window. The figure shows that, for
ρ = 0.39 and 0.40, even the antipatterns are visited; note that we have that
ξ2 = −ξ2. Increasing ρ further, e.g., for ρ = 0.6 in this specific experiment,
the network surpasses equiprobability of patterns and, eventually, abandons
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Figure 4: Mote Carlo runs that one may interpret as states of attention in the
network, which illustrates the possible role of chaos. This shows time-series
of the mean firing rate for N = 1600, β = 167, Φ = −1

2 , and different values
of the paramenter ρ = 0.1,0.3, 0.384, 0.39 and 0.4. Here, ρc = 0.38, and the
system stores three patterns, ξµ, µ = 1, 2 and 3, as described in the main text.
The figure shows how the number of visited attractors increases with ρ after
ρc. Note that although there three stored patterns ξµ, the antipatterns −ξµ

are also attractors of the networks dynamics.

the chaotic regime to fall into a limit cycle (bottom-right graph), where it
periodically oscillates between a pattern and its antipattern.

This interesting behaviour is made more explicit in Fig. 5, where we
plotted the distribution probability for the mean firing rate, P(m, ρ) = kN(m),
with k a normalization constant and N(m) the number of occurrences that m
has a value between m and m + dm during a large temporal window ∆t. This
tell us how often the activity of the network is around a particular memory
pattern, and how this is affected when one varies ρ. The figure show that
for ρ small P(m, ρ) is centered around the mean activity of one of the stored
patterns. As ρ increases the variance of the distribution also increases, and
for ρ > ρc P(m, ρ) becomes multimodal with several peaks centered around
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Figure 5: Monte Carlo histograms showing qualitative changes in the distri-
bution of the mean firing rate m, which is a measure of the time the system
is around a particular pattern or antipattern. This is for time series with pat-
terns defined as in Fig. 4, N = 1600, β = 167 and Φ = 0.05, and it follows
that now ρc ' 0.43.

the mean-activity associated to all stored patters. Note that the two first
cases in this figure are asymmetric (it can be centered in the pattern or in
its antipattern) while the other two are symmetric around m = 0, due to the
caotic itineracy among all patterns and the particular set of patterns we used.

In order to deepen further on the nature of the chaotic switching, we
have computed the normalized power spectra p (ω) of the time series for the
mean firing rate m. If one computes the associated entropy [36], namely, S =
−∑

ω p(ω) log p(ω), it ensues a sharp minimum at S ' 0.37 for Φ = −0.048
(data not shown). The series corresponding to this minimum and, for compar-
ison purposes, a different one for a much larger entropy are presented in Fig.
6 (left). The power spectra for these two series is presented in Fig. 6(right).
This reveals a qualitative change of behaviour, namely, that (only) the series
describing a more efficient chaotic mechanism exhibit a power law distribution.
We are presently analyzing in more detail this interesting phenomenon.
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Figure 6: Left: Time series for the overlap π in the case ρ = 0.632, M = 1,
β = ∞ (zero temperature), N = 3600, and Φ = –0.048 (top) and –0.065
(bottom) showing chaotic transitions between the associated pattern and its
antipattern. This series correspond to entropies S ' 0.37 and 0.9, respectively.
Left: The power spectra corresponding to the two series in the left panels. The
straight line here has slope 1.9.

4. Discussion

We have described in this paper details concerning a model network in which
connections are heterogeneously weighted and time–dependent, namely, corre-
lated to the global activity. As documented above, these two conditions occur
in many natural networks. Furthermore, only a fraction ρ of nodes are active
at each time, so that the rest maintain the previous state. This would occur
in an excitable media, for instance.

A main conclusion is that, although the synchronization parameter ρ is
generally irrelevant, varying ρ may greatly modify the system behaviour un-
der certain conditions. The necessary condition is a kind of susceptibility or
sensitivity to external stimuli which greatly favours dynamic instabilities. It
may be achieved in our example by appropriate tuning of two parameters, Φ
and the inverse of the temperature β. The former induces either enhancement
(Φ > 1) or lowering (Φ < 1) for positive Φ, or even change of sign for nega-
tive Φ, of the intensities of connections. This process is a very fast one —as
compared with the nodes changes—, and it occurs more likely the larger the
current degree of order is.
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Within the most interesting range for its parameters, our model exhibits
heteroclinic trajectories which imply, in particular, a kind of dynamic associ-
ation. That is, the network activity either goes to one attractor for ρ < ρc,
or else, for larger ρ, is capable of an intriguing programme of visits to possi-
ble attractors. This dynamic may abruptly become chaotic, which seems the
most relevant regime. Besides synchronization of a minimum of nodes, this
requires careful tuning of ρ, β and Φ. That is, as suggested by Fig. 2, there
is a complex parameter space which makes it difficult to predict the ensuing
behaviour for slight changes of parameter values.

The most interesting behaviour of the network consists of switching among
attractors, that can be regular for ρ < ρc, or to involves chaos which makes
such process much more efficient. More specifically, we observe a highly–
structured chaotic itinerancy process in which, as illustrated in Fig. 4, mod-
ifying ρ within a chaotic window —which requires also tuning β and Φ—
one may control the subset of visited attractors. That is, increasing ρ within
the relevant regime makes the system to visit more distant (less correlated)
attractors. In this way the system may perform, for instance, family discrimi-
nation and classification by tuning ρ [37]. On the other hand, the complexity
of the parameter space for ρ > ρc suggest that one could devise a method
to control chaos in these cases, and also that one should pay attention to
these facts when determining efficient computational strategies in artificial
machines. Similar switching phenomena, in which the activity describes a het-
eroclinic path among saddle states, has already been incorporated in models
which thus simulate experiments on animal olfactory systems [38, 39, 40, 41].
Comparable oscillatory activity has been reported to occur in cultured neural
networks [13] and ecology models and food webs [42, 43, 44], and it is believed
it could account for other natural phenomena as well [38].

Finally, an important feature of the model chaotic itinerancy is illustrated
in Fig. 6. This reveals the existence of power–law distributions within the
regimes in which the network exhibits its most interesting behaviour. This
is the case for the power spectra of time series and for the time spent in the
neighbourhood of each attractor for appropriate values of ρ. This fact suggests
that a critical condition which has been called for to explain some of the brain
exceptional behaviour [45, 46, 47] could perhaps consists, as in our model here,
of a highly susceptible, unstable and chaotic condition similar to the one we
have described for the model.

93



J. Marro, J.J. Torres, J.M. Cortes, S. de Franciscis

Acknowledgements

We acknowledge financial support from FEDER-MEC project FIS2005-00791,
JA project P06-FQM-01505, and EPSRC-COLAMN project EP/CO 10841/1.

References

[1] A.L. Barabási, Rev. Mod. Phys. 74, 47 (2002)

[2] S. Boccaletti, V. Latora, Y. Moreno, M. Chavez, and D.U. Hwang, Phys.
Rep. 424, 175 (2006)
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Abstract

Modern network theory has produced a number of relevant results
in the last few years. However, there are still many relevant questions
open, particularly, when it comes to comprehend the relation between the
structure and function (dynamics) of networked systems. In this contri-
bution, we briefly address some of the most recent advances on the emer-
gence of collective behavior in complex networks focusing on two generic
phenomena that support our findings: the synchronization of phase os-
cillators and the emergence of cooperation through game modeling. The
results show that there are some regularities that unveil universal prin-
ciples, pointing to new organizing relationships in the interplay between
the structure and function of complex networks that might provide new
insights into why the class of scale-free networks are so ubiquitous in
Nature. We round off the discussion by highlighting the current trends
in this exciting and emerging field of research.

Keywords: complex networks, synchronization phenomena, evolutionary
game theory
MSC 2000: 91D30, 4C15, 91A43

1. Introduction

Complex networks are becoming manifest in all fields of contemporary science.
As part of a broader movement towards research in complex systems, scien-
tists have recently found a striking degree of self-organization that emerges
again and again in otherwise seemingly diverse systems [1, 2]. The network
approach is particularly suitable to explore several aspects of complexity. It
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has to do with the unraveling of the structure of interactions as well as the
emergent behavior of many non-identical objects coupled with the underlying
structure. The massive and comparative analysis of networks from different
fields has produced a series of unexpected results and has shown that previ-
ous models proposed in mathematical graph theory are very far from the real
needs [1, 2]. The first issue that has been faced is certainly structural and
consists of identifying a series of unifying principles and statistical properties
common to most of real networks. Another important body of works has dealt
with spreading and percolation-like processes on top of networks, addressing
a variety of phenomena ranging from disease spreading to information flow
and resilience to random failures and attacks. Finally, a third and promis-
ing branch of research has arisen in the last few years spurred by the new
insights gained through network modeling. It consists of studying the dynam-
ical behavior of large assemblies of dynamical systems interacting via complex
topologies. Phenomena such as synchronization, the emergence of coopera-
tion in social and biological systems, as well as signaling and gene regulatory
dynamics and other biochemical processes could be now tackled with a fresh
viewpoint by considering both sources of entangled complexity: the structure
and the dynamics of the systemÕs constituents.

In this contribution, we briefly revise some recent results on two distinct
phenomena: the synchronization of Kuramoto phase oscillators and the Pris-
oner’s Dilemma on top of complex topologies. Although these processes are
quite different, we will see that the dynamical organization of the system’s
constituents share a number of features, therefore pointing to new regularities
in the emergence of collective behavior and the role played by the underlying
topology.

2. Synchronization of Kuramoto oscillators

Studies on synchronization in complex topologies where each node is consid-
ered as a Kuramoto oscillator, were first reported for Watts-Strogatz (WS)
networks [3, 4] and Barabási-Albert (BA) scale-free graphs [5, 6]. The Ku-
ramoto model (KM) on top of complex topologies is described by the equations
of motion

dθi

dt
= ωi +

∑

j

σijAij sin(θj − θi) (i = 1, ..., N) , (1)

where σij is the coupling strength between pairs of connected oscillators and
Aij are the elements of the connectivity matrix (Aij = 1 if i is linked to
j and 0 otherwise). The original Kuramoto model is recovered by letting
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Aij = 1, ∀i 6= j (all-to-all) and σij = K/N, ∀i, j. The intrinsic or natural
frequencies ωi are distributed according to some distribution g(ω), that is
usually assumed to be unimodal and symmetric about its mean frequency Ω.

The global dynamics of the system Eq. (1) turns out to be qualitatively
the same as for the original Kuramoto model for the case in which we are
interested, namely, for networks whose degree distribution follows a power
law P (k) ∼ k−γ , with 2 < γ < 3. The coherence of the set of N oscil-
lators can be characterized by the order parameter 0 < r(t) exp (iφ(t)) =
1
N

∑N
j=1 exp (iθj(t)) < 1. For small values of the coupling (σij = σ ∀i), the

strength of the interactions is not enough to break the incoherence produced
by the individual dynamics of the oscillators. This behavior persists until a
certain critical value σc is attained, where some elements lock their relative
phase and a cluster of synchronized nodes comes up. When σ > σc, the
population of oscillators splits into a partially synchronized state made up of
oscillators locked in phase that adds to r and a group of nodes whose natural
frequencies are too spread as to be part of the coherent pack. Finally, for large
enough values of σ, almost all nodes get entrained around the mean phase φ
and the system settles into a completely synchronized state where r ≈ 1.

The very existence of a critical point for the Kuramoto model on top of
SF networks is surprising, as most of previous studies on dynamical processes
taking place on top of these networks revealed the lack of critical points when
γ ≤ 3 [1, 2]. This is the case, for instance, of the spreading of a disease, which
always pervades the system no matter the value of the epidemic spreading rate
[1, 2]. On the other hand, the KM on top of homogeneous like networks such
as a random graph shows a critical point greater than that obtained in SF nets.
As the equations of motion are functionally the same and only the second term
on the right hand of Eq. (1) contains the topology of both kinds of networks,
the differences in the collective behavior should come from the microscopic
organization of the groups of coherent oscillators. Therefore, the dynamical
organization of these groups (driven by the underlying substrate) is at the very
root of the mechanisms behind the differences observed. Recently, Refs [7, 8]
proposed a new local parameter that captures and quantifies the way in which
clusters of locked oscillators emerge. The main difference with respect to r
is that one measures the degree of synchronization of nodes (r) with respect
to the average phase φ and the other (rlink) the degree of synchronization
between every pair of connected nodes.

This new parameter, rlink, gives the fraction of all possible links that are
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synchronized in the network and is defined as

rlink =
1

2Nl

∑

i

∑

j∈Γi

∣∣∣∣ lim
∆t→∞

1
∆t

∫ tr+∆t

tr

ei[θi(t)−θj(t)]dt

∣∣∣∣ , (2)

being Γi the set of neighbors of node i, tr the time the system needs to settle
into the stationary state, and ∆t a large averaging time. By computing the
extend to which pairs of connected oscillators are synchronized in terms of a
symmetric matrix whose entries corresponds to every possible pair of links,
the clusters of synchrony for any value of σ can be identified [7, 8]. From
the microscopic analysis, it turns out that for homogeneous topologies (Erdös-
Rényi graphs (ER)), many small clusters of synchronized pairs of oscillators
are spread over the graph and merge together to form a giant synchronized
cluster (GC) when the effective coupling is increased. On the contrary, in het-
erogeneous graphs, a central core containing the hubs first comes up driving
the evolution of synchronization patterns by absorbing small clusters. More-
over, the evolution of rlink as σ grows explains why the transition is sharper for
ER networks: nodes are added first to the GC and latter on the links among
these nodes that were missing in the original clusters of synchrony, while in SF
graphs oscillators are added to the largest synchronized component together
with most of their links, resulting in a much slower growth of rlink. Finally,
the probability that a node with degree k belongs to the largest synchronized
cluster is an increasing function of k for every σ, namely, the more connected a
node is, the more likely it takes part in the cluster of synchronized links. More-
over, the highly connected nodes are also more robust to perturbations once
the fully synchronized state is attained, that is, the average time 〈τ〉 a node
needs to get back into the fully synchronized state is inversely proportional to
its degree, i.e., 〈τ〉 ∼ k−1.

The observed differences in the behavior at a local scale are rooted in
the growth of the GC. That is, in one case (ER-like networks), almost all the
nodes of the network takes part of the giant component from the beginning and
latter on, when σ is increased, what is added to the GC are the links among
these nodes that were missing in the original cluster of synchronized nodes.
For SF-like networks, the mechanism is the opposite. Nodes are added to the
GC together with most of their links, resulting in a growth of rlink much slower
than for the homogeneous topologies. This study about the patterns of self-
organization towards synchronization reveals that the quantitative difference
about the macroscopic behavior, shown by the computation of the evolution of
the global coherence r for ER and SF networks, has its roots on a qualitatively
different route at the microscopic level of description. The use of the new
parameter rlink which involves the computation of the degree of coherence
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between each pair of linked nodes is a useful tool for describing such differences.
Moreover, the results suggest that the degree of heterogeneity of the network
is the key ingredient to explain the two different routes observed.

More important for what concerns to the present communication, is the
fact that structural differences appear when the control parameter σ grows.
Imagine that one measure the topological properties of a network by measur-
ing the degree of local synchrony in the system. Therefore, the structure of
the network will be given by the emerging topology of oscillators beating at
the same pace. In order words, even if the underlying network is of size N ,
unless the system is completely synchronized, the observer would only detect
the topology resulting from the emerging collective behavior, the rest of the
nodes being invisible for the measuring system. Strikingly, if the substrate net-
work is a SF graph, one would be able to distinguish it from the homogeneous
case. A clear evidence of this effect is given by the synchronization of networks
with community structure. It has been shown that the community structure
is progressively unveiled when the coupling σ drives the system’s dynamics
towards the coherent state. In particular, the nodes belonging to the first
community level are the first to get synchronized, subsequently the second
level nodes achieve the frequency entrainment and finally the whole system
shows global synchronization. Thus, one can conclude that the inner the link
is the faster it gets synchronized and that different values of σ would reveal
different levels and correspondingly distinct topological features. The above

dynamical organization and the key role of hubs is not exclusive of synchro-
nization phenomena. As we shall see in the next section, the same qualitative
picture for the emergence of collective behavior also holds for a quite different
phenomenon, namely, the evolution of cooperation in the prisoner’s dilemma
when played on top of scale-free networks.

3. Prisoner’s Dilemma on complex networks

To understand the observed survival of cooperation among unrelated individ-
uals in social communities when selfish actions provide a higher benefit, a lot
of attention is being paid to the analysis of evolutionary dynamics of simple
two-players games like the Prisoner’s Dilemma. In this game individuals adopt
one of the two available strategies, cooperation or defection; both receive R
under mutual cooperation and P under mutual defection, while a coopera-
tor receives S when confronted to a defector, which in turn receives T , where
T > R > P > S. Under these conditions it is better to defect, regardless of the
opponent strategy, and assuming that strategies are allowed to spread within
the population according to their payoffs (replicator dynamics [9, 10]), the
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proportion of cooperators asymptotically vanishes in a well-mixed population
(i.e. when each agent interacts with all other agents).

The Prisoner’s Dilemma game is defined in its more general form by the
payoff matrix: (

R S
T P

)
(3)

where the element aij is the payoff received by an i-strategist when playing
against a j-strategist, with i = 1 meaning cooperator, and i = 2 defector.
The payoff ordering is given by T > R > P > S. Other payoff orderings
have received other names, e.g. T > R > S > P corresponds to the so-called
Snowdrift (or Hawks and Doves, or Chicken) game. Following several studies
[11, 12], the PD payoffs are set to R = 1 (so the reward for cooperating fixes
the payoff scale), T = b > 1, P = 0 (no benefit under mutual defection), and
P−S = ε = 0. This last choice places us in the very frontier of PD game. It has
the effect of not favoring any strategy when playing against defectors (while
being advantageous to play defection against cooperators). Small positive
values of the parameter ε ¿ 1 leads to no qualitative differences in the results
[11], so the limit ε → 0+ is agreed to be continuous.

The dynamic rule is specified as follows: each time step is thought of as one
generation of the discrete evolutionary time, where every node i of the system
plays with its nearest neighbors and accumulates the payoffs obtained during
the round, say Pi. Then, individuals are allowed to synchronously change
their strategies by comparing the payoffs they accumulated in the previous
generation with that of a neighbor j chosen at random. If Pi > Pj , player i
keeps the same strategy for the next time step, when it will play again with all
of its neighborhood. On the contrary, whenever Pj > Pi, i adopts the strategy
of j with probability Πi→j = β(Pj−Pi), where β−1 = max{ki, kj}b. Note that
this dynamic rule, though stochastic, does not allow the adoption of irrational
strategy, i.e. Πi→j = 0 whenever Pj ≤ Pi.

The dynamics of the PD game on top of complex networks turns out to be
very rich, which a wide region of the parameter b where cooperation survives
at variance with the well mixed population. However, the average cooperation
level strongly depends on the underlying topology. One novel feature of this
game on complex topologies is the existence of three different asymptotic states
for the strategies of the nodes. The first set is made up of nodes that always
cooperate, henceforth called pure cooperators. The elements of a second set,
where defection is fixed, will be called pure defectors. Finally, there is also
a set in which nodes are neither pure cooperators nor pure defectors, but
they are forced to fluctuate between the two strategies, sometimes playing as
cooperators and sometimes playing as defectors [12].
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The detailed characterization of the clusters made up by pure cooperators
CC (pure defectors, DC) reveals an striking dynamical organization of the
strategists in the population. It follows, for instance, that for irrational values
of b, pure cooperators can not be in contact with pure defector. Therefore,
they are surrounded by the fluctuating individuals that keep them safe from
the fixation of defection on the whole system until cooperation is extremely
expensive (very large values of b). Another noticeable result concerns the
number of cooperator cores. While for random graphs the number of cooper-
ator clusters, Ncc, is equal to 1 only for a small range of b values, and later
increases up to a maximum, for the BA network the number of such cores is
always 1, no matter how many pure cooperators are in the system. That is
to say, in one topology (ER), there is a wide region of b where there are sev-
eral cooperator cores, whereas pure cooperators in SF networks always form
a single core. On its turns, the cooperator core in SF networks contains the
hubs, which are the ones that stick together all pure cooperators, that would
otherwise be disconnected [12].

Interestingly, the path followed by pure defectors until they invade the
whole population and cooperation is extinguished (which happens as b is in-
creased), is radically different in homogeneous and heterogeneous networks
and is rooted in the local organization of pure defectors. In ER networks,
pure defectors first appear distributed in several clusters that later coalesce
to form a single core before the whole system is invaded by defectors [12].
Conversely, defectors are always organized in several clusters for SF networks
(except when they occupy the whole system). This latter behavior results from
the role hubs play. As they are the most robust against defector’s invasion,
highly connected individuals survive as pure cooperators until the fraction
of them vanishes, thus keeping around them a highly robust cooperator core
that loses more and more elements of its outer layer when the density of pure
defectors tends to 1, until cooperation is finally defeated by defection.

In summary, for the PD in complex topologies, two different paths char-
acterize the emergence (or breakdown) of cooperation. Starting at b = 1 all
individuals in both topologies are playing as pure cooperators. However, for
b > 1, the pure cooperative level in SF networks drops below 1 and the pop-
ulation is constituted by pure cooperators forming a single CC, as well as by
a cloud of fluctuating individuals. As b is further increased, the size of the
cooperation core decreases and some of the fluctuating nodes turn into pure
defectors. These defectors are grouped in several clusters around the fluctu-
ating layer. For even larger payoffs, the cooperator core is reduced to a small
loop tying together a few individuals, among which is highly likely to find the
hubs, while the cores of pure defectors gain in size. Finally, pure and fluctuat-
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ing elements are invaded by defectors and a single N -defector core is formed.
On the contrary, the original N -cooperator core survives longer for ER graph.
However, when b grows, this cluster splits into several cooperator cores that
are in a flood of fluctuating elements. Larger payoffs first gives rise to several
defector cores that by coalescence form an outer layer that is separated from
a single central core of cooperators by individuals of fluctuating strategies.
Finally, an N -defector core comes out when b is further increased.

4. Conclusions

As we have seen, the same qualitative picture for the dynamical organiza-
tion in two kinds of collective behaviors, namely the emergence and evolution
of cooperation and the formation of clusters of synchrony in synchronization
phenomena, manifest when the dynamics takes place on homogenous or het-
erogeneous networks. These works adds to other findings about the topology
emerging from dynamical processes. The evidences that are being accumu-
lated point to a dynamical organization, both at the local and global scales,
that is driven by the underlying topology. Whether or not this intriguing
regularity has something to do with the ubiquity of complex heterogeneous
networks in Nature is not clear yet. More works in this direction are needed,
but we think that they may ultimately lead to uncover important universal
relations between the structure and function of complex natural systems that
form networks.

As for current trends in the modeling of complex networks, there are still
many fundamental questions that remain open in this emerging field of re-
search which will be tackled in the future. For instance, despite many efforts,
we have seen that the question of why scale-free networks are so ubiquitous
in Nature is still unanswered on firm grounds. Other open questions include:
What universal organizing principles drive the growth and evolution of net-
worked systems? How local interactions scale up to and are modulated by
global dynamics at network levels, and how are they integrated into the emer-
gent behavior associated with the system states?, and what common patterns
can be identified not only in the topology but also in the dynamical organiza-
tion of the systems constituents? These questions have only been partially ad-
dressed and the results point out that seemingly diverse phenomena can share
dynamical patterns when they take place on complex topologies. Future works
should thoroughly study the emergence of collective behaviors in biological,
social and technological systems with the aim of unveiling universal principles
and uncovering new structural and dynamical organizing relationships in the
interplay between the structure and function of networked systems.
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Finally, we would like to mention another promising line of research that
is receiving more and more attention form the scientific community. Due to
adaptive and dynamical wirings, networks are themselves dynamical entities,
whose topology evolves and adapts in time, driven by some external action,
or by the action of the internal elements, or following specific predetermined
evolving rules. This kind of networks is very important from a practical point
of view and are found in many natural and manmade systems. Prototypical
examples of these networked systems are brain and wireless networks. To un-
derstand how the structure of adaptive networks correlates with their functions
is not a simple task. However, the expectancy is that the network approach
will surely provide the tools to tackle the problem, with the added value that
any progress in this line will result in new applications in technology or to
a better cottoning of the dynamical and functional behavior of neurological
processes.
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Abstract

In this paper we show that any set of pairwise non isomorphic pseu-
dorgraphs whose spectral energy is bounded is finite.
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1. Introduction

There are various important problems in the spectral graph theory. One of
them is the problem of establishing in what measure the information on the
properties of the different parameters relating to the spectra of graph allows
us its reconstruction. Note that even knowing the characteristic polynomial
of the adjacency matrix of graph, the graph is recovered in a non unique way
[3]. One of the important parameters in the characterization of a graph is its
graph energy [5],[6],[7],[8]. Therefore it is essential to determine the role this
parameter play in the problem of determination of a graph[10].

2. Finiteness of pseudographs with bounded energy

In this paper the finite pseudographs or pseudoorgraphs are analyzed[2], in
other words a nondirected and directed finite graphs in which both loops
and multiple lines are permitted. Let G = (V,E) be a pseudograph with

emails: root@ssp.mccme.ru, sergio.sanchez@urjc.es
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m = |V | vertices and the adjacency matrix M . Let λ1 ≥ λ2 ≥ ... ≥ λk be the
eigenvalues of M. The spectral graph energy E (G) is by definition [5],[6]

E (G) =
k∑

i=1

|λi| . (1)

Theorem 2..1 Let E0 be any no negative real number. Then the set, of pair-
wise non isomorphic pseudographs whose energy is bounded by E0, is finite.
Proof:
Suppose that for some number E0 the set

∑
of pairwise non isomorphic

connected pseudographs whose spectral energy is bounded by E0 is infinite.
Let G be a pseudograph (G ∈ ∑

) and PG (λ) a characteristic polynomial
of the adjacency matrix M (G) = (aij) . Then we can represent PG (λ) in the
form PG (λ) = λsP (λ) where s is an integer and P (λ) a polynomial with
rational coefficients, whose leading coefficient is equal to 1 and P (λ) 6= 0.
Let P (λ) have the form P (λ) = λn + α1λ

n−1 + ... + αn where λ1, λ2, ..., λn

are the roots of a polynomial P (λ). Suppose that |λ1| > λ2 > ... > |λn|
then 1 ≤ |λ1| ≤ E0 because |λ1λ2...λn| = |αn| and αn is an integer. Let
m be the number of vertex of a pseudograph G (G ∈ ∑

) then m = s + n.
Let λ1 > λ2 > ... > λk be a set of distinct eigenvalues of adjacency matrix
MG = (aij) of some connected finite pseudograph G with m > 1 vertices.
Then all matrix entries are nonnegative so by Frobenius theorem [1] λ1 > 0
and |λν | 6 λ1 6 E0 for all ν = 2, ..., k.

We claim that for all i = 1, ..., m the degree of a vertex Vi of pseudographs
G is less or equal to E2

0+E0. Clearly aii 6 E0. First we show that the following
inequality holds for all i = 1, ...,m

σi =

√√√√√
m∑

j=1
j 6=i

a2
ij 6 E0 (2)

For this purpose we analyze the quadratic form q (x) in some m-dimensional
Euclidean space E, whose matrix in some orthonormal basis e1, e2, ..., em

coincide with the matrix MG. Therefore, the restriction of the quadratic form
q (x) a over 2-dimensional space E

′
which is expanding over orthonormal vec-

tors
e1, e

′
i =

ai1

σi
e1 + ... +

aii−1

σi
ei−1 +

aii+1

σi
ei+1 + ... +

aim

σi
em (3)

will have in this basis the matrix of the form

M
′
=

(
aii σi

σi b

)
(4)
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where b = q (e′i) . It can be easy to prove that the difference between the
eigenvalues λ

′
1 > λ

′
2 of matrix M

′
satisfies an inequality

λ
′
1 − λ

′
2 =

√
(aii − b)2 + 4σ2

i ≥ 2σi (5)

Note that

det
(
M

′ − λE
)

=
∣∣∣∣

aii − λ σi

σi b− λ

∣∣∣∣ = λ2 − (aii + b) λ + aiib− σ2
i (6)

where λ
′
1 ≥ λ

′
2 are its roots. By the Vietta theorem we have

λ
′
1 + λ

′
2 = aii + b

2λ
′
1λ

′
2 = 2aiib− 2σ2

i

(
λ
′
1 + λ

′
2

)2
= a2

ii + 2aiib + b2

(
λ
′
1 + λ

′
2

)2
= λ

′2
1 + 2λ

′
1 λ

′
2 + λ

′2
2

0 <
(
λ
′
1 − λ

′
2

)2
= a2

ii + 2aiib + b2 − 4aiib− 4σ2
i = a2

ii − 2aiib + b2 + 4σ2
i

λ
′
1 − λ

′
2 =

√
(aii − b)2 + 4σ2

i

(aii − b)2 ≥ 0

so √
(aii − b)2 + 4σ2

i ≥ 2σi

Since the values of a quadratic form over the unit sphere are between
it maximum and minimum values of their adjacency matrix in a certain or-
thonormal basis, we obtain

2σi ≤ λ
′
1 − λ

′
2 ≤ 2E

Therefore for

Vi =
m∑

j=1

aij 6 aii + σ2
i 6 E2

0 + E0
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Since G is a connected graph its adjacency matrix MG is symmetrical
and is indescomposible, hence all its entries are nonnegative. Therefore for
any pair of distinct indexes i,j ∈ {1, 2, ..., m} there exists a natural number
δ such that (i, j) − th entry of M δ

G does not vanish. The minimal of these
numbers for a given pair i, j we shall denote by δ(ij). Let d be the maximum
of all δ(ij).

It is easy to see that for any natural number l the sum of entries of each
row of matrix M l

G is less or equal to
(
E2

0 + E0

)m. Therefore

1 +
(
E2

0 + E0

)
+

(
E2

0 + E0

)2 + ... +
(
E2

0 + E0

)d ≥ m (7)

by and

m 6
(
E2

0 + E0

)d+1 − 1
E2

0 + E0 − 1
(8)

Let P (t) = tk +α1 tk−1 + ... + αk -be the minimal polynomial of the matrix
MG. Its degree k is equal to the number of distinct eigenvalues of MG. If
d ≥ k then

Md−k
G P (MG) = Md−k

G

(
Mk

G + α1M
k−1
G + ... + αkE

)
=

= Md
G + α1M

d−1
G + αkM

d−k
G = 0

(9)

The last equality is impossible since the entry (ij) in the left side is nonzero
provided by d = δ(ij). Therefore d < k and

m 6
(
E2

0 + E0

)d+1 − 1
E2

0 + E0 − 1
(10)

So we have
0 ≤ aii ≤ E0, 0 ≤ aij ≤ σi ≤ E0, i 6= j (11)

From these inequalities for the entries of matrix MG it follows that the number
of vertexes of pseudographs from

∑
is bounded.

¤

If the quantity of degrees of the polynomial P (λ) = PG(λ)
λσ for all G ∈ ∑

is
bounded, then the number of different roots of polynomials PG (λ) is bounded
and the set

∑
is finite as it claimed in Theorem 1.

Finally it is necessary to examine the case in which for all n there exists a
pseudograph G (G ∈ ∑

) such that the degree of the polynomial P (λ) = PG(λ)
λσ

is bigger than n.
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Since |λ1| > |λ2| > ... > |λn| and |λ1|+ |λ2| + ...+ |λn| 6 E0 then λ1

< 1 for all n ≥ E0 and λn < ε for all n ≥ 1
ε .

Take ε = 1
2[E0]E0

and Pi (λ) = PG(λ)
λσ the polynomial of degree n >

[
1
ε

]
+1.

Then

|αl| = |λ1...λn| =
∣∣λ1...λ[E0]

∣∣
∣∣∣λ[E0]+1...λ[ 1

ε ]

∣∣∣
∣∣∣λ[ 1

ε ]+1...λn

∣∣∣ <

< (E0)
[E0] 1

2(E0)[E0] = 1
2

(12)

So αl is a nonzero integer, and the set of degrees of polynomials P (λ) for
all G (G ∈ ∑

) is finite. But in this case the set
∑

is a finite set as it claimed
by Theorem 1.

However, for the regular strongly connected graphs the Theorem 1 does
not hold. Takes as an example a line graph L (G) of certain pseudograph G,
in other words L (G) is a pseudograph whose vertexes are all the edges of
the pseudograph G and their edges are all the possible ordered pairs of the
vertexes in L (G) in the form

(
(u, v)i , (v, w)j

)
. This construction is similar to

the corresponding definition of a line graph for non directed graphs [2],[3], but
the spectral properties of directed and non directed line graphs are different.

3. Coenergetic pseudographs

Theorem 3..1 The set of nonzero eigenvalues of the adjacency matrixes MG

and ML(G) of the pseudographs G and L (G) coincide. Furthermore the mul-
tiplicities of each nonzero root in the characteristic equation of the matrixes
MG and ML(G) are the same.

Proof:
Let v1, v2, ..., vn be all vertexes and ε1, ε2, ..., εn all edges of pseudograph G.
Following the definition of the adjacency matrix M (G) = (aij) of the pseu-
dograph G, a coefficient aij is equal to the number of oriented edges, which
come from the vertex i to the vertex j. Define a outmatrix SG a n × m
matrix SG = (sik), which (ik) − th element sik is equal to 1 if the edge εk

of pseudograph G leaves from the vertex vi and equal 0 otherwise. In the
some way define a inmatrix FG a m× n matrix FG = (fkj), which (kj)− th
element fkj is equal to 1 if the end of the edge εk stay in the vertex vj and
equal 0 otherwise. Let

∑
(G) be a pseudograph of subdivision of pseudo-

graph G, which is defined in the natural way as a pseudograph with a set
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u1, u2, ..., un, u1+n, ..., um+n as vertexes and which directed edges are the fol-
lowing ordered pairs of his vertex for the corresponded indexes i, j.k

(ui, uk+n) , (uk+n, uj) , i, j ∈ {1, 2, ..., n} , k ∈ {1, 2, ..., m} (13)

in which a directed edge εk goes out from the vertex vi and go in the vertex
vj . It is easy to check that

M∑
(G) =

(
0 SG

FG 0

)
, (14)

M∑
(G) =

(
MG 0
0 ML(G)

)
(15)

So we obtain that
MG = SGFG, ML(G) = FGSG (16)

Therefore the conclusion of the theorem is obtained from the properties of
the characteristic polynomials of matrix AB and BA, where A and B are an
arbitrary matrices n×m and m× n respectlively [4].

¤

Conclusion 1 Pseudographs G and L (G) have same spectral energy

E (G) = E (L (G)) (17)

4. Sample pseudograph

Example 1 Example of a set of pseudographs with same energy.

Fig.1 Pseudograph G, MG = (2) , λ1 = 2, E (G = 2)

Fig.2 Line graph L (G) , ML(G)=
(

1 1
1 1

)
, λ1 = 2, λ2 = 0, E (L (G)) = 2

Fig.3 Line graph L2 (G) = L (L (G)) ,

ML2(G) =




1 1 0 0
0 0 1 1
0 0 1 1
1 1 0 0


 ,

λ1 = 2, λ2,3,4 = 0, E (L (L (G))) = 2
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Abstract

In this paper we propose an approach to predict if an insured in a
given automobile portfolio is going to report a claim or not during a year.
The algorithm we suggest is based on the application of a standard Sup-
port Vector Machines (SVMs), hybridized with a global search heuristics,
a Genetic Algorithm (GA). The SVM is used to classify insures as failed
(reported a claim) or not failed, whereas the GA is used to perform on-
line feature selection in the risk factors space of the SVM, in order to
improve its performance. This is also an important issue for the insurer
company, because it allows them to select the ”best” risk factors (the
ones that retain the most amount of information).

We used with this purpose given risk factors included in the data base
of the insurance company MAPFRE. In the simulations section, we com-
pare the performance of the SVM and of a classical statistical method,
the Discriminant Analysis. The results obtained shown that the learning
techniques, and SVM in particular, can be useful tools for researchers in-
terested in evaluating claim frequency of insures of automobile insurance
firms.

Keywords: Claim risk, Risk Factors, Support Vector Machines, Genetic
Algorithms, Discriminant Analysis
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1. Introduction

Claim frequency, as well as claim size, is an important issue to determine the
prime an insured has to pay. Is essential for an insurance company to classify
insured as homogeneous as possible attending claim risk, in a way that insured
belonging to a same class pay the same prime. To achieve this goal, statistics
techniques are used, selecting what we know as risk factors, insured’s features
correlated with claim rate that explain a big amount of its variance.

Our goal is to give the better insured classification attending claim risk
in one year, using innovative techniques, that of Learning Machines. This
kind of algorithms has been successfully employed specially in engineering
tasks. In the financial or economic field, we can find them mainly in problems
about bankruptcy prediction (see [6] for further information). In these cases,
the algorithms used are Neural Networks, Genetic Algorithms, Classification
Trees, but just in a few cases, SVMs. Nevertheless, there are no applications
to the actuarial problems (except that related with business failure) of any of
these methods.

SVM has been proven to be a powerful method for classification problems,
with very good properties of versatility [2]. These properties, and the fact that
SVM is a novelty technique in this area, are the reasons why we have selected
it to solve the task of insured’s classification.

The feature selection process, implemented through the GA heuristics,
eliminates irrelevant or redundant risk factors, for, in a first stage, improving
the SVM performance. Nevertheless, the risk factor selection is an important
issue by its own, because is related with the accident rate.

We will show that the obtained results are very encouraging, and we expect
that this will aimed further investigations relating Learning Machines and
Insurance problems.

2. Problem Definition

The problem we want to study can be considered as a particular example of
the so called multi-attribute classification problem. This problem consists in
the assignment of an object, described by values of attributes, to a predefined
class.

Mathematically a multi-attribute classification problem can be stated as
follows [Schölkopf 1999]:
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We want to estimate a (decision) function f : Rn −→ {±1} using data
(observations or objects) from the set of observations we will employ to train
what we know as “classification machine” (Neural Network, Genetic Algo-
rithm,). So, Let {xi}, xi ∈ Rn, i ∈ {1, . . . , `} be a set of observations (objects)
drawn from some unknown probability distribution P (x, y), and yi ∈ {−1, 1}
(categories), a set of associated true labels.

Then, the considered data set would be

(x1, y1), . . . , (x`, y`) ∈ Rn × {±1}, (1)

and our goal is function f to rightly classify the new and unseen examples
(x, y), i.e. f(x) = y for examples (x, y) that where generated from the same
underlying probability distribution P (x, y) as the trained data.

Concept of function f can be extended to that of classification machine,
defined as a set of possible mappings x → f(x, α) where a particular choice
of parameters a generates what is called a “trained machine”. The machine
is supposed to be deterministic, i.e. for each given x, and one α the output
of f(x, α) is always the same. We can consider α corresponds with the “free”
parameters determining a particular machine; in a general neural network
with fixed architecture, α corresponds to the weights and biases of the neural
network, in the case of Classification Trees α is the number of nodes, branches
and functions in nodes of the final tree.

The training error (or empirical risk) can be set as:

Remp[α] =
1
`

∑̀

i=1

|f(xi, α)− yi|. (2)

The expected test error (called risk), averaged over test examples drawn from
the underlying distribution P (x, y), is

R[α] =
∫

1
2
|f(x, α)− y| dP (x, y) (3)

1
2
|f(xi, α)− y| is known as loss.

It can be noted that Remp[α] don’t depends of the probability distribution,
is fixed for each α and each trained set {xi, yi}. Hence, only minimizing the
training error does not imply a small risk. Statistical learning theory (Vapnik
y Chervonenkis, 1974; Vapnik, 1979) or VC (Vapnik-Chervonenkis) theory,
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shows that is imperative to restrict the class of functions that f is chosen
from to one which has a capacity that is suitable for the amount of available
training data. VC theory provides bounds on the test error. The minimization
of these bounds, which depend on both the empirical risk and the capacity
of the function class, leads to the principle of structural risk minimization
(Vapnik, 1979) [Segovia-Vargas et al (2004)].

In the general case, the multi-attribute classification problem consists in
finding the machine which learns the mapping xi → yi with the highest gen-
eralization ability possible. According with the statistical learning theory, the
generalization error of a learning machine can be analyzed considering the
machine’s capacity and it’s empirical risk [Bishop 1995]. The capacity factor
represents the machine’s complexity, whereas the empirical risk factor mea-
sures its quality. To ensure high generalization ability, the trade-off between
these two factors should be addressed [Segovia-Vargas et al (2004)].

2.1. Prediction of claims

The multi-attribute classification problem is applicable in a straight forward
manner to our problem, with {xi}, i ∈ {1, . . . , `} being the insured described
by a set of risk factors (every component xi,j) and yi ∈ {−1, 1} a label which
describes the class, -1 the one without claims, and 1 the one with claims.

3. The employed algorithm

3.1. Brief introduction to SVM

The use of classification machines, mainly neural networks, in the financial
field, is not a new trend. What is an innovation is the application in the
actuarial area. We have chose SVMs because they are a competitive and robust
approach in classification tasks, and they have obtained greatest results in a
similar problem, the prediction of insolvency in non-life insurance companies
[8].

Consider a set of insured represented by the value of their risk factors
{xi}, i ∈ {1, . . . , `} , and a set of associated labels yi ∈ {−1, 1} which describe
the insured as presented a claim (failed) or don’t. First imagine that this
training set can be separated by a linear hyperplane. Briefly speaking (see
[Burges(1998)] to a more complete analysis as well as further results about
SVMs), the linear SVM for separable sets solves the following problem:
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“Find w ∈ Rn and b ∈ R to minimize τ(w) =
1
2
‖w‖2, subject to:

yi

(
wt · xi + b

) ≥ 1 ∀i = 1, . . . , `.” (4)

Once such w and b are found, our classification rule for insured is given by
sign

(
wt · xi + b

)
, and the associated error to this classification is Remp(w, α).

The points who verify the equality in restriction (4), are what we call
Support Vectors. Those vectors lies on one of the two optimal separation
hyperplane, wt · xi + b = 1 or wt · xi + b = −1.

Consider now the case when the points in the training set are no lin-
early separable; then the constraint (4) cannot be satisfied. One possibility
is to introduce some nonnegative slack variables ξ’s in order to overcome this
difficulty. The new formulation for the SVM results:

“Find w ∈ Rn, b ∈ R and i = 1, . . . , ` to minimize

τ(w) =
1
2
‖w‖2 + C

∑̀

i=1

ξi (5)

subject to yi (wy · xi + b) ≥ 1 − ξi and ξi > 0 ∀i = 1, . . . , `”, where C is a
parameter of the classifier to be estimated.

The nonlinear SVM maps the input variable into a high dimensional (often
infinite dimensional) feature space, and applies the linear SVM in this feature
space. Computationally, this can be achieved by the application of a kernel
function.

The nonlinear SVM is able to classify any set of insured in failed or not
failed with a probability of error given by Remp(w, α) .

3.2. The feature selection problem

In its more general form, FSP for a learning problem from samples can be
addressed in the following way: given a set of labelled data points (x1, y1), . . . ,
(x`, y`) with xi ∈ Rn and yi ∈ {−1, 1}, and choose a subset of m features
(m < n), that achieves the lowest classification error, see [Weston et al. (2000)]
for details.

The general FSP can be particularized for our problem by considering
that the components of vectors {xi}, i ∈ {1, . . . , `} are the risk factors which
describe the insured, and vector σ defines the best set of factors to be used by
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the SVM. Feature selection eliminates irrelevant and redundant risk factors
of every customer, what improves the performance of the SVM (besides the
“extra” interest related to the claim rate earlier mentioned). The remaining
risk factors are used by the SVM for the classification process.

In this paper we propose solving the FSP by means of a Genetic Algorithm.

3.3. A Generic Algorithm for FSP

Genetic Algorithms (GAs) are a class of robust problem solving techniques
based on a population of solutions (binary strings), called individuals, which
evolves through successive generations by means of the application of the
so called genetic operators: selection, crossover and mutation, see [Goldberg
(1989)].

Selection is the process by which individuals in the population are ran-
domly sampled with probabilities proportional to their fitness values. An
elitist strategy, consisting in passing the highest fitness string to the next gen-
eration, is applied in order to preserve the best solution encountered so far in
the evolution.

The selected set, of the same size of the initial population, is subjected
to the crossover operation. Firstly, the binary strings are coupled at random.
Second, for each pair of strings, an integer position along the string is selected
uniformly at random. Two new strings are composed by swapping all bits
between the selected position and the end of the string. This operation is
applied to the couples with probability Pc less than one.

The population of the GA for the FSP is formed by a number ?ξ of binary
strings σ in {0, 1}, which evolves by the iterative procedure of the genetic
operators described above. A component σ i = 1 means that the correspondent
risk factor i has to be taken into account for the SVM (so will be for the
company), and if the component σ i = 0 means that the correspondent ratio i
has to be removed from the set of risk factors.

Note that every individual of the GA population (a binary vector σ) stands
for a different set of risk factors to be used by the SVM. The fitness function
associated the each individual is the classification error obtained classifying
` training points (x ? s, y), that can be estimated as Remp(w, b, σ). Due to
GAs maximizes the fitness function, and the objective function in the FSP is
minimizing the error probability, a modified fitness function is introduced:

F = 100(1−Remp(w, b, σ)). (6)
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4. Results and comparative

4.1. Classification using all the risk factors

We consider a sample of 58238 clients taken from the data base provided by
MAPFRE with the insured and claims of 2003. They are described by 13
risk factors (Driving license date, birth date, Kind of driving license, Sex,
Civil State , Profession, Vehicle Fabrication date, Vehicle Use, Circulation
zone, Power rating, Vehicle Value, Vehicle Marc), which we had to split to
categorize the variables (Civil State was split in Single, Married, Divorced
and Widowed, and in a similar way in the other cases ) so we finally had 40
risk factors.

To do the simulation, we have employed standard software, LibSVM
(Chih–Chung Chang and Chih–Jen Lin, LIBSVM a library for support vector
machines, 2001 Software at http://www.csie.ntu.edu.tw/ cjlin/libsvm). In the
process of experimenting with the arguments, we used the built-in support for
validation of svmtrain “n-fold cross validation”. This consists of splitting the
input data in n sets (n = 5 in our case), and then train the model with n-1 of
the n sets, and validating the results with the remaining set. This process is
repeated for each of the possible n elections of the set which is omitted from
the training process.

We used LibSVM with a Radial Basis Function kernel, and 5-fold cross-
validation, and we obtained an accuracy rate of 77.72%.

We have compared these results with those obtained by Discriminant
Analysis, the classical technique used in this kind of studies. Discriminant
Analysis is a technique that works with quantitative variables and where the
groups are characterized by a categorical variable, in our case this categori-
cal variable is going to be the claim variable that has two values: -1 and 1.
Because of the qualitative nature of our variables, it has been necessary to
previously transform the set of variables in a quantitative/continuous one. To
do that we have proceed as follows:

1. We have done a Multiple Factor Analysis (with the SPAD software) over
the complete set of variables.

2. We have selected a reduced number of factors that explain the 100% of
the variance (the first 59 factors).

3. We have done a Discriminant Analysis with this 59 factors (using the
SPSS software).
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The result was a 70,5% of well classified cases.

As we can observe, the SVM improve the results obtained with the usual
technique of Discriminant Analysis, and so its use is well justified.

4.2. Classification with the selected risk factors

In order to select the risk factors retaining the big amount of information for
the claim rate, a GA was programmed. We used “one point crossover” and
mutation with “one bit”. Our goal was to choose the 30 best risk factors. The
fitness function was the prediction capacity estimated with a SVM.

The selected factors were:

‘ANTIGÜEDAD CARNET’

‘EDAD CONDUCTOR’

‘ANTIGÜEDAD VEHÍCULO’

‘MADRID’

‘BARCELONA’

‘VALOR’

‘POTENCIA’

‘CASTILLA Y LEÓN’

‘GALICIA’

‘PROF12’ (sin código)

‘PROF41’ (FUNCIONARIOS Y ADMINITRATIVOS (desplazamiento
profesional habitual urbano))

‘CASADO’

‘HOMBRES’

‘USO110’ (TURISMO DE USO PARTICULAR)

‘ANDALUCÍA (-Sevilla)’

‘PROF56’ (SIN PROFESION)
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‘MURCIA’

‘ARAGÓN’

‘SOLTERO’

‘SEVILLA’

‘PROF20’ (“Industriales, Comerciantes, Profesiones liberales”)

‘BALEARES’

‘PROF 0’ (sin código)

‘VALENCIA’

‘CATALUÑA (- Barna)’

‘CASTILLA-LA MANCHA’

‘COMUNIDAD VALENCIANA ( - Valencia)’

‘USO168’ (TODO TERRENO +5 HASTA 9 PLAZAS -)

‘ASTURIAS’

‘PROF55’ (OBREROS MANUALES)

We run again the SVM, now with just the selected risk factors. The results
was

Classification 30 selected All the
variables variables

SVM 77.66% 77.72%

5. Concluding remarks and further studies

In this work, an insured classification attending their claims with a SVM, has
been presented. This technique had never been employed in this area, and we
have obtained good results with it.

We classify the insured again, selecting first the relevant risk factors (be-
cause this is an interesting issue in insurance, and because it improves the
performance of the SVM), and hybridizing so the SVM with a Genetic Algo-
rithm. We also obtain interesting results.

Nevertheless, we think that the more important contribution of our work
is the opening of the actuarial field to the application of learning machines in
solving this kind of problems.
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Abstract

Many dynamical processes that occur in nature or in experiments are
space-time bifurcations in systems with symmetries. One of the most out-
standing examples is the Takens-Bogdanov bifurcation [1] that has been
used to model Codimension-two bifurcations with double zero eigenvalues
and square symmetries, that exhibit chaotic behavior [2], [3]. In partic-
ular, the dynamics of termo-convective experiments in square cells with
a small aspect ratio have been modeled with the groups of symmetry Z2
[4] and D4 [5].
In the first part of this work we describe the dynamic behavior appear-
ing in the equation system with the group of symmetry D4 proposed in
[2], as a function of the different parameters. The space of parameters
is analyzed in order to identify those variables that could be useful to
synchronize, in space and time, two identical systems of this kind. In
the second part we describe the first results obtained to synchronize two
identical systems.

Keywords: NonLinear Dynamics, Benard-Marangoni Convection.
MSC 2000:

1. Introduction

Bifurcations, in presence of symmetries appearing in extended systems with
patterns formed by more or less periodic structures, have a symmetry group
directly related to the lattice symmetry of the periodic structure. Under this
conditions, solutions in bifurcations are normally very complex and has been
solved in detail only in some particular situations. But in strongly confined
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systems where natural structures are imposed by boundary conditions with less
symmetries, some typical situations of this kind of bifurcations can be analyzed
more easily. There is a classical situation that appear in Benard-Marangoni
convection [6] when the aspect ratio Γ (the ratio between the medium hori-
zontal dimension D divided by depth of the fluid d (Γ = D/d) is low enough
as to put the system near a Codimension-2 point. A Codimension 2 point in
a convective system let us analyse experimentally this kind of bifurcation in
high detail and to compare it with theoretical and numerical solutions [1].

Codimension two points in small aspect ratio convective systems are re-
lated to the simultaneous instability of two convective modes. Unfortunately,
only in a few cases, this kind of bifurcations have been studied experimentally
[4], [5], [7]. The systems cited in these references (considering square and
cylindrical symmetries) has been studied experimentally and also modeled by
solving the Navier Stokes equations and using adequate lateral boundaries
conditions. This works consider resonances between the lowest order modes
(1:1, 1:2), [8], [9]. Numerical simulations reproduce qualitatively the com-
plex dynamical results obtained experimentally as a function of the control
parameter.

But in [4], it was shown that the dynamic behavior can be modeled by
a Takens-Bogdanov bifurcation reproducing all the sequence of bifurcations
without reference to the physical variables (the velocity and temperature
fields). In this work, the vector dynamics of the system was represented by
a scalar (geometrical) variable, easily observed and measured in the planform
of the system. By means of this variable, the complex dynamics of the exper-
imental system could be analyzed by a scalar variable simplifying the analysis
of the fluid dynamics. The system of equations used here have been studied
numerically by different authors [2], [10].

We can see the stationary states obtained when the control parameter
(temperature) is increased and it is possible relate it to the bifurcations in
the system of equations. It can be observed how the system, firstly in the
zero double point, breaks the spatial symmetry going then to one of the two
possibilities that keep a part of the symmetry (the diagonal). Each possibility
of symmetry represent an spatial attractor.

After the spatial break of symmetry the sequence of bifurcations follows
with a time-dependent regime. A further increase in the control parameter
brings the system throughout a Hopf bifurcation to a limit cycle and then,
to a chaotic attractor in presence of the symmetries of the square partially
broken. A further increase in the control parameter brings the symmetric
attractors to collide with the (0, 0) point, opening the possibility to an hete-
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roclinic conection. This heteroclinic connection produces a chaotic oscillation
with a very rich dynamic between both attractors, each of them representing
one of the preserved symmetries in the system.

In this work we present a detailed numerical analysis of the system of
equations, identifying the influence of the different parameters on the dynam-
ics. The aim is to detect the influence of those that could be used to control
or synchronize the system in the chaotic attractor. After it, we present some
results of simulations obtained when two identical experiments of this type
are synchronized. To detect the different synchronization regimes we used the
Lyapunov exponents calculated by the Runge-Kutta method for each variable.
The system is hyperchaotic having more than one Lypunov exponent positive.
When two identical systems are coupled, we obtain a system of 8 dimensions
instead of two of 4 and the space of phases can change as a function of the
coupling parameters values.

As an interesting result we obtained generalized synchronization in win-
dows as it has recently been shown in reference [11], but as a difference with
this work, the chaotic behavior is not supressed. When synchronization takes
place the system remains chaotic, but the order of chaos is lowered. This
paper describes first the different dynamic states of the system and then the
results on synchronization of two identical systems with symmetric coupling.

2. Bifurcations in systems with square symmetry

One of the simplest models to represent a real experiment in square symme-
try can be found in [4]. However the set of equations used in this work is
over-simplified because only the symmetries that define the sub-space Z2 are
considered, and consequently, the experimental results can only be partially
reproduced.

In order to recover all the details of this experiment the same authors [5]
introduce a system of equations that reproduce all the group of symmetries D4,
the symmetries of the square. The bifurcation problem is now D4 equivariant
as long as non additional symmetries are generated by the boundary conditions
of the box (hidden symmetries). D4 represent the group of reflections (m) and
rotations (ρ) of the square and the following equations system include all the
elements of symmetry. Hidden symmetries have been used in [8] to reproduce
the dynamics.
In our simulations we use the system of equations introduced in [2]:
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Figure 1: Spatial Bifurcations in the experiment and in the model. Symmetry
breaks preserving the diagonal elements.

Figure 2: Generators of D4, the symmetry group of the square.

x′ = y + ε2fz(zy − wx) (1)
y′ = µx + x(a(x2 + z2) + bz2) + ε(νy + y(c(x2 + z2) (2)

+ez2 + dx(xy + zw))) + ε2fw(zy − wx)
z′ = w − ε2fx(zy − wx) (3)
w′ = µz + z(a(x2 + z2) + bx2) + ε(νw + w(c(x2 + z2) (4)

+ex2 + dz(xy + zw)))− ε2fy(zy − wx)

where (x, y, z, w) are the variables and (a, b, c, d, e, f, µ, ν, ε) are parameters
that must be adjusted to fit the experiment. In order to solve this system a
4th order Runge-Kutta method has been used and the solutions obtained were
controlled by comparing to well known situations obtained by other authors
that use the same equations (when available). In order to check our simulations
we reproduce here the results obtained in [4] for the sequence of bifurcations
appearing when the control parameter is increased. It can be seen in Figure
3.
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Figure 3: Bifurcations in the parameter space. The control parameter in the
experiment is the heath flow, asociated with µ1 (Used to check the simulations
against reference [5]).

When the control parameter is sufficiently high to have the heteroclinic
connection, the system is equivalent to four coupled oscillators. The phase
space of this oscillators seem two pair of eyes distributed in the planes (x, y)
and (z, w). Each pair of oscillators are winded by the heteroclinic conection
trajectories that never close. In Figure 4 (a), we present temporal signals
obtained for each variable; and the plane of phases y(t) vs. x(t) and w(t) vs.
z(t) are shown in Fig. 5 b). The similitude between both planes is easily seen.

Figure 4: (a) Temporal data signals for each variable and attractors in the
planes (x, y) and (z, w).
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It is important to remark that in the model ε is a critical parameter. If
we look for solutions representing the experiment, we need the ε value near
zero because the equations system becomes unstable [2]. We adjusted the
parameters in the model in order to fit during a certain time the temporal
series obtained from the experiment.

3. Attemps to synchronize two identical systems

In order to analyze the synchronization possibilities two sets of equations like
Eq. (1-4) has been coupled. We used a coupling scheme that can be symmetric
or asymmetric and the coupling is a direct function of the error between both
systems (acting as a feedback loop).

The equations for the coupled system can be seen in the set of Eq. (6-
12) where variables are named by the subscripts (1,2) corresponding to each
original system. The parameter θ change the strength of the coupling between
the variables and θ ε [1, -1] controls the coupling symmetry. From the perfect
symmetric coupling (θ = 0), to the master-slave condition obtained when
θ = (1,−1).

x′1 = y1 + εx/2(1 + θx)(x2 − x1) (5)
y′1 = µx1 + x1(a(x2

1 + z2
1) + bz2

1) + εx/2(1 + θy)(y2 − y1) (6)
z′1 = w1 + εz/2(1 + θz)(z2 − z1) (7)
w′1 = µz1 + z1(a(x2

1 + z2
1) + bx2

1) + εw/2(1 + θw)(w2 − w1) (8)
x′2 = y2 + εx/2(1 + θx)(x1 − x2) (9)
y′2 = µx2 + x2(a(x2

2 + z2
2) + bz2

2) + εy/2(1 + θy)(y1 − y2) (10)
z′2 = w2 + εz/2(1 + θz)(z1 − z2) (11)
w′2 = µz2 + z2(a(x2

2 + z2
2) + bx2

2) + εw/2(1 + θw)(w1 − w2) (12)

In order to detect synchronization windows we calculated the Lyapunov
exponents when the systems are coupled on the variables x (with a coupling
strength εx ) and making εy = εz = εw = 0. To obtain a symmetric coupling
the value of θx must be fixed to zero (θx = 0). The system has now four
positive Lyapunov exponents and the results against the coupling strength are
shown in Figure 5.

In reference [11] the coupling of several chaotic 3-Dimensional systems
have been analyzed (Rossler, Lorenz, etc.), and they found windows to syn-
chronization observing the Lyapunov exponents behavior. Also in our system
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Figure 5: Lyapunov exponent for the coupled systems.

we found different windows where the coupled systems could synchronized,
but as a strong difference, here the chaos is not supressed and variables are
completely synchronized [13].

4. Conclusions

The Takens Bogdanogv bifurcation equations can be used to analyze the space-
time synchronization between two systems with square symmetry (like the
experiment in reference [4]). Complete synchronization is achieved without
chaos suppression. But some remarks about the relation between simulations
and the experiment must be added. In the experiment represented by the
equations considered here, the pattern obtained after the spatial bifurcations
becomes time dependent. Under this conditions, the convective fluid layer
receive a stationary flow of heat from a heater below and transfer it to the
air in the upper side of the layer, but transformed into a time dependent heat
flow. Physically considered this means that the system must store during a
certain time a part of the total flow. Continuity requires to conserve the mean
flow at the output equal to the stationary flow at the input. That is, the
fluid layer need to transfer the heat flow modulating it in amplitude by the
heat stored in the system. This produces, in consequence, a time dependent
convective pattern following these modulations. In our experiment the flow
mean value was modulated 10% in amplitude (approx.) with quasiperiodic
chaotic fluctuations.

Our model focuses on the time dependent variable around the mean flow
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(the instantaneous value less the mean value). A scheme to clarify this can
be seen in Figure 6. In the pattern, the projection of the diagonal length:
(x = d cosα), follows the evolution of temperature in a wide range of the
control parameter, as was demonstrated in [12]. The mean flow is a stationary
quantity that can easily be calculated by the normal heat transfer equations.

Figure 6: Scheme to clarify the time dependent flow magnitude against its
mean value. Nu is the Nusselt number, a measure of the effective heath flow
and Ra is Rayleigh number, the non-dimensional control parameter [12].

Another mathematical restriction must be remarked. The system of equa-
tions considered here is very useful to represent the bifurcation process in a
space with symmetry D4. However it has some limitations if we need too long
temporal series because the solution becomes unstable. In this case the model
is not valid, unless we make ε = f(x, y, z, w, t), which is not possible. As we
have noted, variables (x, y, z, w) have a physical meaning, they define the size
of the diagonals in the square, that is, a magnitude independent proportional
to the instantaneous heat flow.

It is important to remember that the model is constructed not with the
physical variables (velocity and temperature fields), but with a scalar projec-
tion of them defined on the pattern,that can be measured more easily. In
short, the model represents the dynamic observed on the pattern and syn-
chronization was achieved in the simulations, in the variables describing the
movements of the pattern.
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Abstract

In the current work, preferential-attachment algorithms are applied to
Recommendation Systems in order to improve their quality of prediction
from a sparse dataset. We show how some networks are grown under
the influence of trendiness forces, and how this can be used to enhance
the results of a recommendation system, i.e. increase their percentage of
right predictions. After defining a base algorithm, we create recommen-
dation networks which are based on an histogram of user ratings. We
show the influence of data aging in the prediction of user habits and how
the exact moment of the prediction influences the recommendation. Fi-
nally, we design weighted networks that take into account the age of the
information used to generate the links. In this way, we obtain a better
approximation to evaluate the users’ tastes.

Keywords: Recommendation systems, preferential attachment, network
evolution
MSC 2000: AMS codes

1. Introduction

Since the experiment of Milgram in 1967 [1], the study of (social) networks
have attracted the interest of many scientists from completely different fields.
Boosted by the seminal paper of Watts and Strogatz [2], complex networks
theory has become a strong utility to analyze different kinds of data structures.
The application of complex networks to social problems has generated special

emails: massimiliano.zanin@hotmail.com, pedro@bmat.com, javier.buldu@urjc.es
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interest, and it has given fruitful results in different subjects, raging from sex-
ual disease control [3, 4] to music community identification [6, 7]. Another field
where complex networks have been successfully implemented is in Recommen-
dation Systems. In the last years, developments in computer and information
technologies have created new channels of commerce, mainly electronic, where
millions of customers are served each day, generating an enormous quantity
of information about their habits. On the other hand, this innovation has
created the need for personalization in customer cares, and this has supposed
a great interest in generating algorithms that recommend items to users that
enter an “e-store”.

In the search for better recommendation algorithms using complex net-
works theory, properties of the system like Clustering Coefficient [13] or Jac-
card’s Coefficient [12] have been explored, obtaining different results. When
the growth of the recommendation system is considered, the Preferential At-
tachment strategy, has been recently proposed [12], but without much consid-
eration within the community working on recommendation algorithms.

In this paper, we want to go deeper in the idea of applying preferential
attachment to a recommendation system: after defining a base algorithm, we
study the effect of time in the network evolution, and find a better approxi-
mation to evaluate the users’ tastes.

2. Preparing the ground

The item-based strategy [8, 11] is one of the most popular in recommendation
systems: it presents interesting advantages, like short computation time and
low sensitivity to network sparsity. Since it is the most extended way of
generate a recommendation matrix, we take this algorithm as the ground to
compare with any other results.

The basic idea behind an item-based strategy is to look into the set of
items related with the target user, to compute the similarity of these items
with the others in the network, and select the most similar (see [8] for details).
For this purpose, a cosine-based similarity is commonly used. For each item, a
vector of length N is created, being N the total number of users. The vector
accounts for the relation between items thanks to user ratings: for example, if
the nth element of the vector has a value of 1, it means that the user number
n has selected that item. Then, the similarity between two items i and j is
defined as:

sim(i, j) = cos(~i,~j) =
~i ·~j
|~i| · |~j| . (1)
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In our experimental study we have used two datasets, each one with dif-
ferent characteristics, to observe results in different backgrounds.

The first dataset is the collection of ratings of NetFlix [9], a web page of
movie renting where users can also evaluate movies (from 1 to 5). In order
to work with a network of simple (unweighted) connections, we filter ratings
different from 5 (the highest mark), so that we only keep users connected with
their top-rated movies. The result is a set of 17770 items (movies), 2.6 millions
users and more than 23 millions of operations (links).

The second dataset, is from Art Of The Mix [10]. In this network, we have
90000 users, 472000 items (songs, in this case) and 1.3 millions of links. The
Art Of The Mix is a project started at the end of 1997 and consists of a web
site where users upload and interchange playlists of their favorite music. The
songs, somehow, fit in those lists, even though they do not need to belong to
the same country, decade or musical genre. In this way, a certain connection
results between songs of the list, whose origin is based on the musical taste of
the playlist’ author.

Once networks are defined, it is worth noting that the size of the present
datasets is much higher than previous results in other networks, like [12], where
10000 items and 2000 users where considered, or [13] with a dataset close to
40000 items.

3. Preferential attachment

The initial step to improve a recommendation algorithm taking advantage of
complex networks theory is to use the concept of preferential attachment; first
introduced by Barabási and Albert in [16]. The preferential attachment has
become a paradigmatic growing algorithm in order to explain the structures
and evolution of social networks.

The main idea in [16] is that nodes with higher degrees (i.e., with more
links) acquire new links at higher rates than low-degree nodes; the probability
that a link will connect a new node j with another existing node i is linearly
proportional to the actual degree of i:

p(j → i)=
ki∑N

j=1 kj

, (2)

where ki is the degree of node i and N is the total number of nodes. When
defining a recommendation algorithm, this is equivalent to suppose that a given
user has a higher probability of selecting a popular item than an unknown one.
Intuitively, it may be clear that in some cases it will be right: every time the
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algorithm is applied to a selling system, where goods being sold depend on
trendiness, items that are well-known will have a higher probability of being
bought. Nevertheless, there can be cases where popularity of an item, or the
existence of a certain fashion, do not affect the creation of new links, and users
make their choices only following personal criteria.

As we will see, both considerations should be taken into account and some
kind of balance between them should also be included. Another interesting
point is that the initial dataset consist on a bipartite network [14] with two
different kind of nodes, users or items (movies/songs). The bipartite net-
work could be projected in two different networks; one with users being the
fundamental nodes and other with movies/songs being the nodes. Neverthe-
less, both projected networks disregard part of the information when they are
considered independently and we must define a way of accounting for all the
information within the dataset.

At this point, let us explain the way of implementing a preferential at-
tachment strategy in our recommendation algorithm, i.e., an algorithm that
favors the recommendation of the most connected items. The procedure can
be summarized in four steps:

• First, we define a distance between a target user and any other user.
As in the case of items, a vector is created for each user, accounting for
his/her selected items. The vector has length M which corresponds to
the total number of items, and it will have a value of 1 at position m
if the m item has been chosen by the user. Next, the cosine-distance
dis(j) with respect to the target user is calculated, and values are stored
in a linear array:

dis(j) = cos(~i,~j) =
~i ·~j
|~i| · |~j| (3)

where i is the target user, and j is other user of the network.

• For each item l of the network, a compatibility value comp(l) is calculated
as the sum of the closeness of users related with that item; closeness is
defined as 1− dis:

comp(l) =
∑

j

(1− dis(j)) (4)

where l is the item, and j accounts for users that have connections with
l.
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• Finally, items are ordered according to their compatibility, in descending
order. Items in the beginning of the list are the more compatible, i.e.
the more suitable for recommendation. In this way, items in the top
of the list are the best for the target user, and should be submitted to
his/her attention.

Two important features of this approach need to be explained in detail.

First of all, this scheme has a very small calculation time; the most expen-
sive operation, i.e. the calculation of distance between users, is executed only
one time. On the contrary, for the basic item-based scheme, the algorithm
should calculate the compatibility between an item and each one of the items
connected to the target user. This is equivalent to carry out this calculation
u times, where u is the number of items related with the target user. As a
result, the computational cost of the basic algorithm is many times worse, and
this can be an important feature when working with large datasets.

Second, unlike the basic algorithm, now we see that the global score (the
measure of the quality of the recommendation) of an item depends on how
many users have a connection with it: for each one of this connections, its
compatibility value (i.e. the compatibility between the selected and the target
user) is summed up, and the result of the sum is the global compatibility of that
item. This means that an item with many links will have a higher compatibility
value than another item with only a few links (because of the higher quantity
of values summed up); this is the basis of preferential attachment: the more
connections, the more the probability of being chosen by another user. On
the other side, not only the number of links is considered: the compatibility is
calculated, like in the basic algorithm, to be a representation of the user tastes;
if an item is well-known, but is far from the tastes of the target user, its total
compatibility value will be small, and that item will not be recommended.

4. Aging effect

4.1. Trendiness in real networks

As explained before, preferential attachment can improve the quality of recom-
mendations when the underlying network has a strong trendiness component,
where the trendiness component is the presence of some kind of preferential
attachment in its grown: in the case of buyers datasets, as the two being stud-
ied in this paper, the more an item is known, the more is likely for that item to
be chosen by the target user. Up to now, all data previous to prediction date
has been considered. This is the traditional approach, since it is a generalized
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opinion that the more data is used in calculation, the better the result will
be. Nevertheless, trendiness of an item greatly depends on time: one item can
have a high popularity on a time t0, but it can lose all interest after a certain
time t1.

Figure 1: Example of degree evolution for two items; item on the left has a
higher global degree, while item B has a higher degree in time t1.

This fact can be observed in Fig. 1. The left plot shows an hypothetical
evolution of the number of new links for an item A (i.e., the derivative of
its degree): in time t0 this item has a great instantaneous degree (i.e. a
great popularity in a given moment, with many new users connecting to this
item), while close to t1 its number of new links decreases. On the other side,
item B has an overall lower degree, with a greater degree close to time t1.
It is important to note, that item A has a greater number of connections
if we consider the global data, while B wins in instantaneous degree after
time t1. A simple recommendation algorithm, like the one exposed before,
would consider all data of the network, resulting in a greater probability for
item A; nevertheless, if we want a real-time suggestion, e.g. just after t1, the
recommendation algorithm should advantage B.

The example above explains the importance of the link aging: when the
global network is used in calculations, many data that are not strictly necessary
are included; sometimes, that unwanted data can lead to mistakes, and in
addition they always increase the calculation time.

In Fig. 2 we represent how the instantaneous degree of the items evolves
in time. The instantaneous degree takes into account the number of new links
per day. We can see in the inset of Fig. 2-(a) an example of the instantaneous
degree evolution for a given item. In order to account for all items, we add
the instantaneous degree of all items, but aligned at their absolute maxima.
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Figure 2: Global degree evolution for NetFlix (a) and Art Of The Mix (b)
networks: the central point represents the moment of greatest degree of every
item. In the insets, are represented the degree evolution of an example item
for each network; note as for (b), the degree shows no clear peak: the mean
degree evolution for that network is therefore flat.

We can see in Fig. 2 that we obtain different results for both networks. For
the NetFlix dataset, a great peak is observed, with the degree value increasing
and decreasing continuously around the central point: from the aging point of
view, that means that, first, there is a certain correlation time in the process
of achieving the highest popularity. Second, popularity depends on time, and
therefore, we must take it into account at the moment of recommending an
item.

The opposite case is Art Of The Mix, where the instantaneous degree level
of the whole dataset is quite constant, with only a central delta-shaped peak.
In fact, the central peak is an artifice, since we align all items at their absolute
maxima, we will always have the highest value at time zero. Nevertheless, the
flat spectrum of the rest of the series indicates that fluctuations of the instan-
taneous degree are filtered when adding all items. The absence of correlation
in the degree evolution indicates that relations between users and items do
not depend on time, and that trendiness is not important to explain network
growth: aging should not help in improving results.

4.2. The cut-off time

Starting from the above considerations, we define an improvement of the basic
preferential attachment algorithm: before calculating the result, the network
is filtered to include only data (i.e. links) enclosed in a time window. We
assign a cut-off time d to the window, and for a given time t1 and a target

141



M. Zanin, P. Cano and J.M. Buldú

item, only links within the window t1 and t1−d are considered.

Results of applying aging-based filtering to both networks are shown in
Fig. 3 (NetFlix) and Fig. 4 (ArtOfTheMix). In order to evaluate the rec-
ommendation algorithm we compute the score of the predictions, which will
be explained in detail in the next section. For the time being, the score must
be taken as an indicator of the quality of the recommendation. As expected,
thanks to the strong trendiness in the NetFlix dataset, the cut-off dimension
of the window results in an improved score. Obviously, when the window is
too small, there is not enough information to perform a good recommendation
and the score decreases. When applying an aging filtering to Art Of The Mix
network we do not obtain an improvement of the score (see Fig. 4): as degree
evolution is not important in this kind of network, reducing the dimension of
the window excludes important data from the analysis, and therefore the score
decreases.

When network growth is based on rules that are equivalent to preferen-
tial attachment, an important improvement in recommendation results can be
achieved; as summarized in Table I, we go from the 0.924 of the item-based al-
gorithm, to 0.933 of the preferential attachment algorithm without aging, and
finally to 0.939 when link aging is considered. At the same time, calculation
time can be optimized: when window size is small, there is less information to
be processed and the recommendation speeds up (Table 2).

4.3. Score calculation

In the previous section, he have used a score value to compare results com-
ing from different algorithms: it is time to explain how it is calculated, and
moreover, why we have used this strategy.

When we evaluate a recommendation system, we randomly choose a target
user and a target item already selected by this user: that item should be
recommended by the algorithm for the given user, using only data prior to
link date and time. No restriction is applied to links position: it can be at the
beginning of the dataset (thus, only a few data can be used), or it can be at
the end (improving the amount of information available, but also increasing
the computational cost). The recommendation algorithm would return a list
of items, ordered by compatibility, so that the items on the top of the list
should be the best for the target user.

The Score value is simply calculated as a function of the position of the
target item in that list:
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Figure 3: Recommendation score as a function of cut-off window dimension
d, for NetFlix dataset. The horizontal line represent the score for the basic
item-based algorithm, while the right point, marked with no cut-off, is the
result of using the preferential attachment algorithm without filtering data
(as if d = ∞).

Score = 1− Positem

#items

The more the target item is in the upper part of the recommendation list,
the more score approximates to 1.

The usual way to check the performance of recommendation algorithms is
quite different. As seen in [15], a great part of the dataset is used for training
the system, while the last part is the testing period; using data of the first
set, the algorithm should generate a ranked list of recommendations for each
user, and the quality of the recommendation system is then measured using
the number of hits and their position in the ranked list.

This method of evaluation is not suitable when preferential attachment
is used, and even more when an aging effect is applied, due to the fact that
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Figure 4: Recommendation score as a function of cut-off window dimension d,
for Art Of The Mix dataset.

time has a great influence in calculations. When we choose a time t0 and
a given user for evaluating the recommendation, all data related with item’s
rank depend on t0. If an item i is a hit at a distant time t1, let us say t1 << t0,
we should disregard that result.

5. Links weight

Finally, let us mention some details about the link heterogeneity. When defin-
ing recommendation algorithms, links are normally identical, and the network
is defined as unweighted. In our case, we have a parameter that can be used
to discriminate the importance of each connection: the age of that link.

For a given link, we can assign a weight that is defined as a function W
of the number of days passed since its creation. Although any function can be
used for this purpose, we have chosen a piecewise linear function, that can be
tuned by two parameters α and β:
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W (i) =

{
1, ai > β

1 + β−ai

β α, ai ≤ β

where ai is the age of the link. In this way, we modify the compatibility of a
given item l, which now reads:

comp(l) =
∑

j

(1− dis(j))W (j → l) (5)

where (j → l) is the link connecting user j to item l.

Figure 5: Effect of considering weighted links. Results refer to the NetFlix
dataset for a window dimension of 120 days.

The obtained score for different values of α and β on the NetFlix data col-
lection is shown in Fig. 5. A maximum is detected around β = 20 for different
α, while large values of β lead to a reduction of the score. This behavior is
expected since high values of β are equivalent to increase the importance of
old links, a fact that is not favorable for a preferential attachment strategy.
On the other side, low values of β are equivalent to include only very young
links, excluding a great quantity of information, and making the score value
to decrease.
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6. Some examples

In order to better explain how preferential attachment algorithm works, we
report an example of recommendation for the NetFlix dataset. The target
user, randomly chosen, is the user number 658088, and the target item is item
number 872 (for privacy issues, users and items are encoded with sequential
numbers). Target user has links with 24 other items in the moment of the
recommendation.

First, we calculate the score using the basic algorithm. After making the
ranking ordered by compatibility, in firsts positions the followings items are
founded, along with their compatibility score:

Item (1st) 7843 (2nd) 5085 (3rd) 11038 (4th) 14241
Compatibility 0.16734 0.14864 0.14591 0.14381

Target item is in position 830, with a compatibility of 0.04993: that is,
we get a score of 0.95329 (Score = 1 − 830/17770, where 17770 is the total
number of items) for this case.

Next step is executing the preferential attachment algorithm with aging
on the same user and item. The dimension of the window d used for data
filtering can take different values, and for each value the results obtained (i.e.
number of connections of the target user, rankings, score) are different.

To show an example, we report what can be obtained with d = 70 days.
In this case, after filtering the dataset, we have only 2.26 millions operations
(about ten time less than original data), and target user has 3 more links to
other items. Target item 872 is connected with 198 users in that interval of
time, and their compatibility with target user are the following:

User (1st) 698478 (2nd) 2081171 (3rd) 1558760 . . .
Compatibility 0.04352 0.06337 0.05803 . . .

Summing up all 198 values give a total compatibility of 14.69987. In this
example, we can see as the compatibility value is greater than the one obtained
with the basic algorithm: this is because we are summing up hundreds of
values, so the system must work with wider ranges. For this value of d, the
ranking obtained starts with the following values:

Item (1st) 13728 (2nd) 14240 (3rd) 2782 (4th) 11521
Compatibility 756.14 165.59 160.98 146.96
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Target item is at position 357, that represent a score of 0.9799: comparing
the result of the item-based algorithm, target item climbed 515 positions.

Scores obtained with different values of d are shown below:

d 30 50 100 140 180 ∞
Score 0.87530 0.97794 0.97766 0.97535 0.9740 0.97840

7. Conclusions

In recommendation systems, it is a common opinion that the bigger the
dataset, the better the result will be. In this paper, we show that in cer-
tain case this reasoning is not true. When recommendation systems refer to
networks with strong trendiness component, a preferential attachment strat-
egy can improve results, while at the same time, smaller computational cost is
required. This fact is due to the aging of the existing information, which can
be crucial in certain kind of networks. We demonstrate that, when fashion
or trends are present in the evolution of a given network, the age of the links
must be taken into account when developing a recommendation algorithm.
Moreover, we have seen that weighted links, based on its age, are suitable for
discriminating between recent and old information, increasing the quality of
the prediction in trendiness networks.
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