Paths to Synchronization on Complex Networks

Jesús Gómez-Gardeñes,1,2 Yamir Moreno,1 and Alex Arenas3

1Institute for Biocomputations and Physics of Complex Systems (BIFI), University of Zaragoza, Zaragoza 50009, Spain
2Departamento de Física de la Materia Condensada, University of Zaragoza, Zaragoza E-50009, Spain
3Departamento d’Enginyeria Informàtica i Matemàtiques, Universitat Rovira i Virgili, 43007 Tarragona, Spain

(Received 14 August 2006; published 18 January 2007)

The understanding of emergent collective phenomena in natural and social systems has driven the interest of scientists from different disciplines during decades. Among these phenomena, the synchronization of a set of interacting individuals or units has been intensively studied because of its ubiquity in the natural world. In this Letter, we show how for fixed coupling strengths local patterns of synchronization emerge differently in homogeneous and heterogeneous complex networks, driving the process towards a certain global synchronization degree following different paths. The dependence of the dynamics on the coupling strength and on the topology is unveiled. This study provides a new perspective and tools to understand this emerging phenomena.

DOI: 10.1103/PhysRevLett.98.034101 PACS numbers: 05.45.Xt, 89.75.Fb

In 1998 Watts and Strogatz in an effort to understand the synchronization of cricket chirps, which show a high degree of coordination over long distances as though the insects where “invisibly” connected, end up with a seminal Letter about the small-world effect [1] that was the seed for fixed coupling strengths local patterns of synchronization. The basic idea is that nonidentical interacting units occupies a privileged position among emergent collective phenomena because of its various applications in Neuroscience, Ecology, Earth Science, among others [5–7]. One of the most successful attempts to understand it is due to Kuramoto [8,9], who analyzed a model of phase oscillators coupled through the sine of their phase differences. The Kuramoto model (KM) consists of a population of N coupled phase oscillators where the phase of the i-th unit, denoted by $\theta_i(t)$, evolves in time according to

$$\frac{d\theta_i}{dt} = \omega_i + \sum_j A_{ij} \sin(\theta_j - \theta_i) i = 1, \ldots, N,$$

where ω_i stands for its natural frequency, A_{ij} is the coupling strength between units and A_{ij} is the connectivity matrix ($A_{ij} = 1$ if i is linked to j and 0 otherwise). The original model studied by Kuramoto assumed mean-field interactions with $A_{ij} = 1, \forall \ i \neq j$ (all-to-all), and $A_{ij} = K/N, \forall \ i, j$. The model can be solved in terms of an order parameter r that measures the extent of synchronization in a system of N oscillators as

$$r e^{i\Psi} = \frac{1}{N} \sum_{i=1}^{N} e^{i\theta_i}$$

where Ψ represents an average phase of the system. The parameter $0 \leq r \leq 1$ displays a second order phase transition in the coupling strength, being $r = 0$ the value of the incoherent solution, and $r = 1$ the value for total synchronization.

The synchronization problem has been solved in some other cases, mainly those where a mean-field approach is also valid [10]. Unfortunately, the mean-field approach requires of several constraints that are not usually fulfilled in real systems. Natural, social, and technological systems show intricate patterns of connectivity between their units that are, nowadays, described as complex networks [3,4]. The problem of synchronization in complex networks inherits the technical difficulties of the non mean-field approaches and incorporates new questions to be considered: What are the new pertinent parameters to deal with synchronization and, what is the role of the topology in the synchronization process? Several works have partially addressed these issues by studying the stability of the synchronized state [11–17] using the master stability function (MSF) formalism [18]. However, the onset of synchronization, which posses more theoretical and phenomenological challenges is much less explored, and only a few works have dealt with the study of the whole synchronization dynamics in specific scenarios [19–23].

The main goal of this Letter is to study the synchronizability of complex networks as a function of the coupling strengths. To do this, first, we propose and discuss a new measure of synchronization for the KM in complex networks. Second, we scrutinize and compare the synchronization patterns in Erdős-Rényi (ER) and scale-free (SF) networks and show that even in the incoherent solution, $r = 0$, the system self-organizes towards synchronization following different paths. Our study reveals that the synchronizability of these networks does depend on the coupling between units, and hence, that general statements about their synchronizability are eventually misleading. Moreover, we show that even in the incoherent...
solution, \(r = 0 \), the system is self-organizing towards synchronization.

Let us start by mapping the KM model in finite complex networks as

\[
\frac{d\theta_i}{dt} = \omega_i + \lambda \sum_{j=1}^{N} A_{ij} \sin(\theta_j - \theta_i) \quad i = 1, \ldots, N, \tag{3}
\]

where \(\lambda \) is a constant.

We study the dynamics of Eq. (3) in ER and SF networks, preserving the total number of links, \(N_l \) and nodes, \(N \) for a proper comparison [24]. We concentrate in two aspects: global and local synchronization. First, we follow the evolution of the order parameter \(r \) as \(\lambda \) increases, to capture the global coherence of the synchronization in the networks. Second, we propose and follow the same evolution for a new parameter, \(r_{\text{link}} \). This parameter measures the local construction of the synchronization patterns and allows for the exploration of how global synchronization is achieved. We define

\[
r_{\text{link}} = \frac{1}{2N_l} \sum_i \sum_{j \in I_i} \left| \lim_{\Delta t \to \infty} \frac{1}{\Delta t} \int_{t_i}^{t_i+\Delta t} e^{i[\theta(i) - \theta(j)]} dt \right|, \tag{4}
\]

that represents the fraction of all possible links that are synchronized in the network (averaged over a large enough time interval \(\Delta t \), after the system relaxes at some large time \(t_j \)), being \(I_i \) the set of neighbors of node \(i \).

We solved Eq. (3) using a 4th-order Runge-Kutta method for different values of \(\lambda \), with a uniform distribution of natural frequencies \(g(\omega) \) in the interval \([-\pi, \pi]\) up to achieving the stationary state. The networks are built following a model [25] that generates a one parameter family of complex networks. This parameter, \(\alpha \in [0,1] \), measures the degree of heterogeneity of the final networks.

A network of size \(N \) is generated starting from a fully connected core \(m_0 \) nodes and a set \(\mathcal{U}(0) \) of \(N - m_0 \) unconnected nodes. At each time step, a new node (not selected before) is chosen from \(\mathcal{U}(0) \) and linked to \(m \) other nodes. Each of the \(m \) edges is linked with probability \(\alpha \) to a randomly chosen node (avoiding multiple and self-connections) from the whole set of \(N - 1 \) remaining nodes and with probability \((1 - \alpha) \) following a linear preferential attachment strategy [26]. Repeating these steps \((N - m_0) \) times, networks interpolating between the limiting cases of ER (\(\alpha = 1 \)), and SF (\(\alpha = 0 \)) topologies are generated [27].

In Fig. 1 we represent the evolution of both order parameters, \(r \) and \(r_{\text{link}} \), as a function of the coupling strength \(\lambda \). The global coherence of the synchronized state, represented by \(r \), shows that the onset of synchronization first occurs for SF networks. A detailed finite size scaling analysis performed for both topologies shows that the critical value of the effective coupling, \(\lambda^*_c \), corresponds in SF networks to \(\lambda^*_c = 0.05(1) \), and in ER networks to \(\lambda^*_c = 0.122(2) \), accordingly, with Fig. 1. If \(\lambda \) is further increased, there is a value at which \(r \) for the ER crosses over the SF curve. From this value up in \(\lambda \), the ER network remains slightly more synchronized than the SF network.

The behavior of \(r_{\text{link}} \) shows a change in synchronizability between ER and SF and provides additional information. Interestingly, the nonzero values of \(r_{\text{link}} \) for \(\lambda \leq \lambda^*_c \) indicate the existence of some local synchronization patterns even in the regime of global incoherence (\(r = 0 \)). Right at the onset of synchronization for the SF network, its \(r_{\text{link}} \) value deviates from that of the ER. While the synchronization patterns continue to grow for the ER network at the same rate, the formation of locally synchronized structures occurs at a faster rate in the SF network. Finally, when the incoherent solution in the ER network destabilizes, the growing in its synchronization pattern increases drastically up to values of \(r_{\text{link}} \) comparable to those obtained in SF networks and even higher.

The above results show that statements about synchronizability are dependent on the coupling strength value. Additionally, the previous discussion suggests that synchronization is attained following two different paths that depend on the underlying topology. We have studied the characteristics of the synchronization patterns along the evolution of \(r_{\text{link}} \). Synchronization patterns are formed by pairs of oscillators, physically connected, whose phase difference in the stationary state tends to zero. Note that the contribution into Eq. (4) of every pair of connected oscillators can be written in terms of a matrix \(D_{ij} = A_{ij} \lim_{\Delta t \to \infty} \frac{1}{\Delta t} \int_{t_i}^{t_i+\Delta t} e^{i[\theta(i) - \theta(j)]} dt \). This matrix is filtered.
of smaller synchronization clusters. From this point on, in
the largest cluster of synchronized pairs of oscillators invol-
ving a threshold T such that the fraction of synchronized
pairs equals r_{link}. In this way, if $D_{ij} > T$ oscillators i and j
are considered synchronized and the synchronized patterns
are extracted.

In Fig. 2 we represent the number of synchronized
clusters and the size of the largest one (GC) as a function of
λ. The local information extracted from it is unveiling
an astonishing and novel feature of the synchronization
process that cannot be derived from Fig. 1, and that in some
sense is counterintuitive. The emergence of clusters of
synchronized pairs of oscillators (links) in the networks
shows that for values of $\lambda \approx \lambda_{\text{crit}}^\text{SF}$, i.e., still in the incoherent
solution $r = 0$, both kind of networks have developed a
largest cluster of synchronized pairs of oscillators involv-
ing 50% of the nodes of the network, and an equal number
of smaller synchronization clusters. From this point on, in
the SF network the GC grows and the number of smaller
clusters goes down, whereas for the ER network the growth
exploits. These results indicate that although SF networks
present more coherence in terms of r and r_{link}, the micro-
sopic evolution of the synchronization patterns is faster in
ER networks, being these networks far more locally syn-
chronizable than the heterogeneous ones.

The observed differences in the behavior at a local scale
are rooted in the growth of the GC. It turns out that for the
ER networks, many different clusters of synchronized pairs
of oscillators merge together to form a GC when the
effective coupling is increased. The coalescence of many
small clusters leads to a giant component of synchronized
pairs that is almost the size of the system once the inco-
herent state destabilizes. This is not anymore the case for
SF networks, where oscillators are incorporated to the GC
practically one-by-one (forming new pairs) in terms of λ
(or r_{link}), but starting from a core made up of half the nodes
of the network. This picture is confirmed in Fig. 3, where
we have represented the evolution of local synchronization
patterns in ER and SF networks for several values of λ. The
ultimate reason behind these two different routes to com-
plete synchronization is the heterogeneous character of the
SF network and the role played by the hubs. In Fig. 4, we
have plotted the probability that a node with degree k
belongs to the GC as a function of its degree k and the
coupling λ for the SF network. This probability is an
increasing function of k for every λ, hence the more
connected a node is, the more likely it takes part in the
cluster of synchronized links. Recently [23], Zhou and
Kurths have reported the study of hierarchical organization
in complex networks, using the MSF and a mean-field
approach in the weak coupling limit. Our results thus
substantiate and generalize those about the role of hubs
in the synchronization process presented in [23].

In summary, we have shown that synchronizability of
complex networks is dependent on the effective coupling λ
among oscillators. For small values of λ, SF networks
outperform ER topologies, but the tendency is reverted
for intermediate to large values of the coupling. On the
other hand, the detailed analysis of evolution of patterns of
synchronization showed that there are two radically differ-
ent mechanisms to attain synchronization. In the presence

FIG. 2 (color online). Size of largest synchronized connected
component (GC) and number of synchronized connected com-
ponents (N_c), as a function of λ for the different topologies
considered. Despite r being vanishing and hence no global
synchronization is yet attained, a significant number of clusters
show up. This indicates that for any $\lambda > 0$ the system self-
organizes towards macroscopic synchronization. The network
parameters are as in Fig. 1.
FIG. 4 (color online). The plot shows the correlation between the likelihood that a node belongs to the GC of pairs of synchronized oscillators and its degree k as a function of the coupling strength λ. This probability, $P^{GC}(k)$, is color coded as indicated in the right panel. The figure convincingly demonstrates that highly connected nodes are those that recruit poorly connected nodes as the GC grows. Network parameters are those used in Fig. 1.

of hubs, a giant component of synchronized pairs of oscillators forms and grows by recruiting nodes linked to them. On the contrary, in homogeneous structures, many small clusters first appear and then group together through a sharp merging process. These results are as far reaching as the ones obtained for percolation and epidemic spreading on top of homogeneous or heterogeneous graphs, where the radical differences of the system’s dynamics are rooted in the topology of the underlying networks, demonstrating that the same behavior may hold for nonlinear dynamical systems coupled to complex structures. However, at variance with percolation processes, here the synchronization patterns could be directly related to the growth and evolution of the network. Therefore, we have naturally incorporated a dynamics relevant for the emergence of cooperative behavior, showing that the same organizing principle may drive network evolution, i.e., if synchronization is a relevant issue, natural networks (whether they are homogeneous or heterogeneous in degree) can indeed be efficient by adaptively selecting their coupling strengths. Our study then opens new paths to clarify how synchronization is attained in complex topologies and provides new tools to analyze this ubiquitous phenomenon.

We thank J. A. Acebron, A. Díaz-Guilera, C. J. Pérez-Vicente, and V. Latora for helpful comments. J. G. G. and Y. M. are supported by MEC through a FPU grant and the Ramón y Cajal Program, respectively. This work has been partially supported by the Spanish DGICYT Projects No. FIS2004-05073-C04-01 and FIS2005-00337.

[24] Note that for a proper comparison of the synchronizability of different complex networks, the global and local measures of coherence should be represented according to their respective time scales. Therefore, given two complex networks A and B with $k_{max}^A = k_A$ and $k_{max}^B = k_B$, respectively, the comparison between observables must be done for the same effective coupling $\alpha_1 = \alpha_2 = \lambda$.
[27] The study reported henceforth has also been conducted for intermediate values of α. Starting from $\alpha = 0$ and increasing its value, the networks generated are successively more homogeneous [25] with a heavy tail whose exponent is equal to $(\alpha = 0)$ or larger than $(\alpha > 0)$ $\gamma = 3$. We advance that the results for $0 < \alpha < 1$ are consistent with the picture described in the rest of the Letter.