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We propose a model of random diffusion to investigate flow fluctuations in complex networks. We
derive an analytical law showing that the dependence of fluctuations with the mean traffic in a network is
ruled by the delicate interplay of three factors, respectively, of dynamical, topological and statistical
nature. In particular, we demonstrate that the existence of a power-law scaling characterizing the flow
fluctuations at every node in the network cannot be claimed. We show the validity of this scaling
breakdown under quite general topological and dynamical situations by means of different traffic
algorithms and by analyzing real data.
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Communication networks [1] are nowadays the subject
of intense research as modern society increasingly depends
on them. On the one hand, the first studies have dealt with
the architecture of these systems, showing that the sys-
tems’ topological features [1–3] are at the root of the
critical behavior of several dynamical processes taking
place on top of them [1,4]. On the other hand, models for
traffic and information flow on complex networks have
been recently investigated as a way to improve our under-
standing on key issues such as the scalability, robustness,
performance, and dynamics of technological networks
[1,4]. In particular, much effort has been invested in finding
what are the conditions for an efficient performance of
communication networks, the latter being measured as
the ability of the system to avoid congestion and reduce
transit times [5–8]. Nevertheless, large communication
networks such as the Internet usually avoid the regime in
which congestion arises, and therefore the dynamics of
packets is not driven by congestion processes. Instead,
the fluctuations in traffic flow constitute the main factor
affecting the dynamics of these communication systems.

The relationship between the fluctuations � and the
average flux hfi in traffic dynamics on complex networks
is a controversial issue that has received a lot of attention
very recently [9,10]. The authors of Refs. [9,11] claimed
the existence of the relation �� hfi�, with real commu-
nication networks belonging to one of two universality
classes, the first one characterized by an exponent value
� � 1=2, the second one by � � 1. The authors of [10]
questioned the existence of the two universality classes.
They numerically showed that there is a wide spectrum of
possible values for �, depending on parameters such as the
persistence of packets in the network, the duration of the
time window during which statistics are recorded, and the
rate of service at the nodes’ queues [10].

In this Letter, we propose a model for traffic in complex
networks, the Random Diffusion (RD) model, that is amen-

able to analytical solution. The model predicts the exis-
tence of a simple law that relates the fluctuations at a node
i, �i to the average traffic flow fi, depending on the
delicate balance of three quantities: (i) the variation in
the number of packets in the network, (ii) the degree of
the node i, and (iii) the length of the time window in which
measures of traffic flow are performed. Notwithstanding its
simplicity, the RD model is able to capture the essential
ingredients determining the scaling of fluctuations empiri-
cally observed for traffic flow in real complex networks.
More important, we also show that the hypothesis of a
power-law scaling of flow fluctuations has to be abandoned
under certain conditions. Results of numerical simulations
of a traffic-aware model and analysis of real data of
Internet flow confirm our theoretical findings.

In the random diffusion (RD) model, we represent pack-
ets of information as w random walkers traveling in a
network made up of N nodes and K links. Under the
assumption that the packets are not interacting, it follows
that the average number of walkers �i at a node i is given,
in the stationary regime, by [12,13]

 �i�w� �
ki
2K

w: (1)

Let us assume that the total observation time T is divided
into time windows of equal length. Each window is made
of M time units. A window represents the minimal resolu-
tion for measurements of the flux in a node and its fluctua-
tions, being the first the result of accumulating the number
of packets traveling through the node during the M time
units. The average number of packets hfii processed by
node i in a time window is measured, together with its
standard deviation �i. These are the two quantities moni-
tored in Refs. [9,10] for real systems and in the numerical
simulations of network traffic models. The main interest is
to investigate the dependence of �i with hfii. In particular,
we want to verify whether a power-law relation �i � hfii�
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holds, and what factors determine the exponent �. In the
RD model, we can consider two possible situations: either
the number of packets in the network is constant over the
whole period of time T, namely w � W, or it can vary from
one time window to the other. In the latter situation, we
assume that the probability F�w� of having w walkers on
the network in a window of length M is equally distributed
in the range [W � �, W � �], i.e.,

 F�w� �
1

2�� 1
; (2)

with 1 � � � W. To find an expression for the average
number of packets hfii flowing through a given node i, we
first calculate the probability Pi�n� that, afterM time steps,
n packets have visited node i.

In the case w � W, due to the fact that the packets are
not interacting, the arrival of walkers at a node is a Poisson
process. Therefore, after a period ofM time units, the mean
number of packets (the average flux) at a node i is hfii �
�i�w�M, and the probability of having n packets reads

 Pi�n� � e��i�w�M
��i�w�M	n

n!
; (3)

with � �
�����������������
�i�w�M

p
�

��������
hfii

p
. Thus, the scaling exponent is

� � 1=2.
In the more general case in which the number w is

distributed as in Eq. (2), the probability Pi�n� is

 Pi�n��
Xj�2�

j�0

e��ki=2K��W���j�M

2��1

� ki2K �W���j�M	
n

n!
: (4)

Calculating first and second moments of Pi�n�, one obtains

 hfii �
X1
n�0

nPi�n� �
kiWM

2K
; (5)

 hf2
i i �

X1
n�0

n2Pi�n� � hfii
2

�
1�

�2

W2

�
� hfii: (6)

Finally, the standard deviation can be expressed as a func-
tion of hfii as

 �2
i � hfii

�
1� hfii

�2

W2

�
: (7)

The above derivation provides an understanding of the
origins of Eq. (7), proposed in [9], and shows that the
relation between �i and hfii depends on the concurrent
effects of three factors, namely: (i) the noise � associated
to the fluctuations in the number of packets in the network
from time window to time window; (ii) the length M of the
time window; and (iii) the degree of the node ki (since hfii
depends on ki). Consequently, real traffic rarely falls in
either of the two limiting cases of Eq. (7), i.e., �� hfi�

with � � 1=2 or 1.
Expression (7) contains all the behaviors previously

observed in Refs. [9,10], and also predicts new dependen-
cies that can be tested to be valid in more refined traffic

models as well as in real data. In fact, if the three quantities
�, M, and ki are such that

 

kiM�
2

2KW

 1; (8)

expression (7) reduces to a power-law scaling �� hfi�

with exponent � � 1=2. On the contrary, whenever the
ratio kiM�2

2KW is not negligible anymore, the exponent � differs
from 1=2 and approaches 1. In other words, it may well be
the case in which, even for small values of the noise
parameter �, a large value of M cancels out the effect of
the ratio �

W being too small in Eq. (7). This behavior was
already explored in [10] by means of numerical simula-
tions. However, the fact that the ratio in formula (8) de-
pends quadratically on � and only linearly on ki andM, has
gone unnoticed. The RD model puts such dependence on
solid theoretical grounds, and also reveals the role played
by the other two parameters M and ki on the observed
scaling.

In Fig. 1, we plot the dependence of�with hfi in the RD
model for several values of the parameters M and �. Panel
(a) corresponds to the case in which the ratio �

W � 10�1 is
fixed and the length of the time windows used to measure

FIG. 1. Flow fluctuation � as a function of hfi for the RD
model with various parameter values. In panel (a), � � 103 and
W � 104. In panel (b), W has the same value while M has been
fixed to 10. In both figures, points correspond to the solution of
Eq. (7) for different values of ki (1. . .18). The total number of
links is K � 33500. Dashed lines are guides to the eyes and
correspond to �� hfi�, with � � 1=2 (lower curves) and � � 1
(upper curves). See the text for further details.
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the flow of packets through different nodes is varied. For
each value of M, we have superimposed the results ob-
tained for nodes with different connectivity values, ranging
from ki � 1 to ki � 18. If one follows the arguments given
in [9], a value of � � 1=2 should be expected for this
choice of �=W. Instead, as shown in the figure, ��
hfi1=2 only for small values of M, while the scaling ex-
ponent approaches 1 as M is increased. This means that,
whenever the temporal resolution in the measurements is
not small enough and packets are counted and accumulated
over long periods, � tends to 1.

A novel striking feature revealed by law (7), and not
revealed in previous studies, is the dependence with the
degree of the nodes. An example of the effects of node
degrees is shown in Fig. 1(a). It turns out that, for some
values of M (e.g., M � 102 in the figure), the fluctuations
at lowly connected nodes are characterized by an exponent
� � 1=2, whereas for highly connected nodes, the expo-
nent turns out to be � � 1. Hence, there is not a single
exponent characterizing the fluctuations at every node of
the network, regardless of its connectivity. This is again a
clear indication that a power-law behavior, �� hfi�, even
with nonuniversal exponents ranging in [1=2, 1], is not the
most general situation when characterizing the flow fluc-
tuations for a whole network [9,10]. Admittedly, � is not
constant for every possible choice of the parameters �, W,
and M along the whole set of ki values. This effect is par-
ticularly relevant for highly heterogeneous networks like
the Internet, where degree classes span several decades. In
these kinds of networks, one should therefore expect differ-
ent scaling laws depending on whether the packets are
flowing through lowly or highly connected nodes.

The influence of the noise level on � for a fixed time
window length (M � 10) is depicted in Fig. 1(b). When �
is small, so that the number of packets in the network from
one time frame to the following does not change signifi-
cantly, � � 1=2. On the contrary, when � is sufficiently
large, the exponent is 1. This is more in consonance with
the results in [9], where the dependence with the noise level
was addressed only for a low value of M, getting that as �
increases �! 1. On the other hand, we observe again that
fixing M and varying � does not guarantee the existence of
a unique exponent for the scaling of fluctuations in traffic
flow, though in this case the dependence is smoother than
that observed in Fig. 1(a).

In the following, we show that expression (7) predicted
by the RD model is indeed valid for more elaborated traffic
models and that the RD approximation captures the phe-
nomenology of real communication systems. We report the
results obtained on top of synthetic scale-free (SF) net-
works with N � 104 nodes and power-law degree distri-
butions pk � k��, with an exponent � � 2:2 as the one
empirically observed for the Internet at the autonomous
system level [2]. However, we stress that since the topo-
logical properties of the underlying graph only enter into
Eq. (7) through the degree of the nodes ki and the total

number of links in the network, K, the results hold for any
graph with an arbitrary degree distribution pk as our own
simulations using SF networks, random graphs, and a real
autonomous system map of the Internet [2] reveal.

On the other hand, to mimic the way packets flow in real
communication networks, we consider a dynamical model
that is able to simulate the Internet’s most important dy-
namical characteristics [6,7]. The dynamics of the packets
is simulated as follows. Each node represents a router with
an infinite size buffer. The delivery of packets is made
following a First In First Out (FIFO) policy. At each time
step, p new packets are introduced in the system with
randomly chosen sources and destinations [14]. Packets
routing is based on a traffic-aware scheme [6,7] in which
the path followed by a packet is the one that minimizes the
effective distance dieff � hdi � �1� h�ci, where di is the
distance between node i and the packet destination, ci is
the number of packets in i’s queue, and h is a tunable
parameter that accounts for the degree of traffic awareness
incorporated in the delivery algorithm [6,7]. It is worth
recalling that h � 1 recovers a shortest-path delivery pro-
tocol, mimicking most of the actual Internet routing
mechanisms.

Figure 2 shows � as a function of hfi obtained through
extensive numerical simulations of the traffic model with
h � 1 and p � 2. Different panels in the figure correspond
to different values of the time-window length M. The
results indicate that the main responsible of the value of
� (interpolating between the two extreme � � 1=2 and
� � 1) is the interplay between the node degree and the
time resolution used to record the flux of packets, exactly
as predicted by the scaling law (7) obtained in the RD
model. In fact, Fig. 2(a) corresponds to the choice of
parameters for which formula (8) holds for all values of
ki, leading to � � 1=2. On the contrary, when M is large
enough and the other parameters are kept fixed as in
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FIG. 2 (color online). Flow fluctuation � as a function of hfi
from numerical simulations of the Internet traffic model (see text
for details) on synthetic scale-free networks with N � 104

nodes, K � 37551 links, and degree exponent � � 2:2.
Different panels correspond to different values of M, respec-
tively M � 1, 5� 102, 35� 103, 105. Color-coded values rep-
resent the logarithm of node degree. The continuous line is the
curve y � x0:5, while the dashed line is y� x.
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Fig. 2(d), relation (8) is not satisfied whatever the value of
ki used, hence giving an exponent � � 1. Finally, the
breakdown of the scaling law �� hfi� anticipated by
the RD model is captured in Figs. 2(b) and 2(c), where it
is clearly revealed that there is not a unique exponent
characterizing the flow of packets through every node of
the network. Indeed, there is a crossover from �� hfi1=2

for lowly connected nodes to �� hfi for the highly con-
nected ones. We also note that a similar behavior is ob-
served (figures not shown) when traffic-aware routings
(h < 1) are taken into account.

Finally, we have also analyzed the data corresponding to
the traffic between routers of the Abilene backbone net-
work [15]. As the data collected for the routers in the
backbone correspond only to the flow between them, this
backbone network can be viewed as an isolated communi-
cation system where the routers create, deliver, and receive
data packets. Therefore, the measures effectively corre-
spond to a small network handling a large amount of traffic
and with all its nodes having a similar degree. For this
reason, we are not able to observe here the dependence
with the node degree. However, at variance with the analy-
sis performed in [10], we have varied the length of the time
windows used to extract the flux and its deviation [16].
Once again, the results, depicted in Fig. 3, show that the
exponent � is not universal and radically depends on M.
Note that, although the lower bound of � � 0:706> 1=2 is
determined by the minimal resolution (M � 5 minutes) of
the raw data, further increasing M will recover the upper
bound � � 1.

In summary, in this Letter, we have derived a theoretical
law for the dependence of fluctuations with the mean traffic
in a network. Such a dependence is governed by three
factors: one related to the dynamics, one related to the
topology, and one of statistical nature. More importantly,
the theoretical law reveals that the previously claimed
power-law scaling (with universal or nonuniversal expo-

nents) has to be abandoned. Our numerical results and the
analysis of real data confirm that, even in the presence of
correlations between packets, one cannot assume a single
exponent to characterize the fluctuations of traffic for the
whole network. Finally, we note that the scaling break-
down predicted here is amenable to experimental confir-
mation by measuring the traffic flow in large communi-
cation networks to capture the predicted (topological) ef-
fects of degree heterogeneity.
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FIG. 3 (color online). Flow fluctuation � as a function of hfi
for the Abilene Interfaces. The values of M used in each panel
are: M � 5 (a), M � 30 (b), M � 60 (c), and M � 720 (d).
Time is in minutes. The value of � for each M is also reported.
Averages are taken over one month of data corresponding to the
period between January 11 to February 11 of 2006.
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