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Josephson-junction arrays are excellent experimental systems for the
study of nonlinear phenomena in general and nonlinear localised exci-
tations in particular. This chapter is an introduction to the physics of
vortices, kinks and breathers in Josephson arrays. Special emphasis is
placed in the description of discrete breather solutions.

1. Introduction

The concept of coherent structures or coherent excitations has important

consequences when applied to condensed matter systems. Spatially or tem-

porally coherent structures appear in many nonlinear extended systems.

Such structures usually can be characterized by marked particle-like prop-

erties. In the past few years, these notions have become fundamental for

understanding many problems and their implications extend over different

fields of the physics of continuous and discrete systems.1

Josephson-junction (JJ) arrays are a very well example of an experi-

mental system where such type of structures appear. Examples are vortices,

kinks and discrete breathers. This article is an introduction to the physics

of these excitations with special attention given to the study of discrete

breather (DB) solutions.

In section 2, we will introduce the main aspects of the physics of single

1
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Fig. 1. Schematic of a Josephson tunnel junction

JJs. In section 3 we will present a method to model Josephson arrays. This

section is focused in the introduction of the equations that we will use

to study the different localized excitation in the arrays. In section 4 we

will review some aspects of the work about vortices in two-dimensional JJ

arrays and kinks in one-dimensional parallel arrays. Section 5 is the main

section of this report. There, we will study discrete breathers in Josephson

arrays. We focus on theoretical and numerical results since most of the

experimental details are included in the chapter ?? of this book written by

Alexey Ustinov.

2. The single Josephson junction

2.1. Josephson effect

In his work of 19622 Brian Josephson studied the tunnel of Cooper pairs

between superconducting metals and predicted the celebrated Josephson

effect. Since then, hundreds of works have been done which study the

behavior of single junctions, JJ arrays, and other more complex devices

with Josephson elements. Some books and references on Josephson effect

in weakly coupled superconductors are Refs. 3-7

It is important to say however, that although mainly used in the context

of superconductivity, the physics behind the name of “Josephson effect”

applies to other weakly coupled macroscopic quantum systems.8 Examples

are the studies of the Josephson effect in weakly coupled superfluids (see

Ref. 9 for instance) and the recent interest on Josephson effect in weakly

coupled Bose-Einstein condensates (see Ref. 10 for instance).

2.2. Superconducting tunnel junctions

A Josephson tunnel junction is a solid state physics device which consist of

two superconducting electrodes (usually Niobium or Aluminum) separated

by a thin insulating barrier (usually an Aluminum oxide), see Fig. 1.

The physics of the junction is controlled by the value of the gauge

invariant phase difference between the superconducting electrodes ϕ =



October 24, 2003 11:11 WSPC/Trim Size: 9in x 6in for Review Volume lecture3

Localized excitations in Josephson arrays. Part I: Theory and modeling 3

I/I (0)c

T/Tc

1.0

1.00 0.5

0.5

Fig. 2. Temperature dependence of the junction critical current.
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~A(~r, t)~dl, with θi the phase of the macroscopic wave function

in electrode i (Ψi =
√

|Ψi|e
iθi) and ~A the vector potential.

The basic equations for the Josephson effect are

Is = Ic sinϕ (1)

and

V =
~
2e

dϕ

dt
. (2)

They establish – DC Josephson effect – that at zero voltage (then ϕ is con-

stant) it is possible to have a dc current across the junction. The maximum

possible value of this current is Ic, the junction critical current. However

– AC Josephson effect – in the presence of a constant voltage the junction

responses with an ac current of frequency 2eV/~ (483.6 GHz/mV).

We want to mention here that the ~/2e quotient can be also written in

terms of the flux quantum unit Φ0 = h/2e. Thus ~/2e = Φ0/2π.

The potential energy associated with the supercurrent across the junc-

tion is given by

UJ = −EJ cosϕ, (3)

with EJ = ~Ic/2e. A first requirement to observe Josephson effect is

that the Josephson energy exceeds the thermal energy EJ À kBT (Ic À

2ekBT/~).
The junction critical current Ic has a strong temperature depen-

dence (Fig. 2) which is usually approached by the Ambegaokar-Baratoff

equation11

IcRn =
π∆

2e
tanh(∆/2kBT ). (4)
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Fig. 3. RCSJ circuit model of the junction and two mechanical analogs: the forced and

damped pendulum and the particle in the tilted washboard potential.

Rn is the normal state resistance of the junction and ∆(T ) the supercon-

ducting gap energy. At T=0 we get IcRn=π∆(0)/2e with ∆(0)=1.764kBTc
and for T → Tc, IcRn ' (2.34πkB/e)(Tc − T ).

To study the current-voltage (IV) characteristics of the junction we

use the so called RCSJ (resistively and capacitively shunted junction)

model12,13 (see Fig. 3). In this model the total current through the junction

is the sum of three contributions: the Josephson supercurrent, a resistive

normal current (tunneling of normal carriers from one electrode to the

other) and a capacitive channel (associated with the junction capacitance);

I = IJ + IR + IC with IJ = Ic sinϕ, IR = V/R and IC = CdV/dt. Then

I = CV̇ +
1

R
V + Ic sinϕ. (5)

If we apply the second Josephson relation [V = (Φ0/2π)(dϕ/dt)] and nor-

malize current with respect to the junction critical current, i = I/Ic, time

with respect to the Josephson plasma frequency ωp =
√

2πIc/Φ0C and

introduce the damping parameter Γ =
√

Φ0/2πIcCR2 a, we obtain

i = N (ϕ) = ϕ̈+ Γϕ̇+ sinϕ. (6)

This is the normalized equation for the dynamics of a single junction

biased by an external current. This equation is identical to the equation for a

forced and damped pendulum in a gravitational field or a particle in a tilted

washboard potential U(ϕ) = −EJ cosϕ − (~I/2e)ϕ [mass m = (~/2e)2C
and damping γ = (~/2e)2(1/R)], see Fig. 3. Both are simple mechanical

analogs for the junction and illustrate that JJ devices are ideal experimental

systems to probe basic nonlinear science results.

Figure 4 shows numerically computed IV curves of a junction at two dif-

ferent values of the damping. At large damping (figure at Γ=5) the voltage is

aThe damping can be also defined in terms of the so-called quality factor Q = 1/Γ or

the Stewart-McCumber parameter βc = 1/
√
Γ = 2πIcCR2/Φ0
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Fig. 4. IV curve for a JJ with a linear resistor biased by a dc current (Eq. 6). At

Γ = 0.2 two solutions coexist for currents between the critical and the retrapping currents
(underdamped case). At Γ = 5.0 (overdamped case) the voltage is a unique function of

the current.
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Fig. 5. Experimental IV curve of a single junction. The resistance of the junction below

the gap voltage (subgap resistance) clearly differs from the resistance above the gap
voltage (normal resistance).

a unique function of the current. It increases continuously from zero as soon

as I > Ic and approaches the ohmic relation (I = V/R, or i = Γ〈dϕ/dτ〉

in normalized units) at high currents. At smaller values of the damping

however the IV curve is hysteretic (see figure at Γ=0.2). Increasing the

current, at I = Ic the junction switches from the zero voltage state to

the resistive branch I = V/R. If we now decrease the current, the voltage

decreases continuously to zero at I = Iret. For small enough values of Γ,

Iret/Ic ' 4Γ/π.

Figure 5 shows the experimental IV curve of a Niobium-Aluminum

Oxide-Niobium tunnel junction. We observe that at Ic the voltages switches

from 0 to the gap voltage Vg = 2∆(T )/e (Vg/IcRn = 4/π at small T ). This
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voltage corresponds to the energy for breaking Cooper pairs. At larger val-

ues of the current the voltage increases and follows the ohmic dependence

with a resistance given by the normal state resistance Rn. Decreasing the

current the voltage decreases back to the gap voltage and then to zero at a

small value of the current. This nonlinear dependence shows the existence

of different dissipation regimes for voltages above and below the gap volt-

age. Transport above the gap voltage is governed by normal state electrons

meanwhile transport below the gap is usually governed by the number of

quasi-particles.

A simple approach to describe such behavior is to use the RCSJ model

with a nonlinear resistance R(V ) such that R=Rn if V >Vg and R=Rsg(T )

if V <Vg. The sub-gap resistance usually shows a marked temperature de-

pendence governed by Rsg(T ) ' Rne
∆/kBT .

An expression for the quasi-particle tunneling current valid for kBT ¿

∆ and V < Vg is given by14

Iqp =
2

eRn
e−∆/kBT

(

2∆

eV + 2∆

)1/2

(eV +∆) sinh

(

eV

2kBT

)

K0

(

eV

2kBT

)

.

(7)

For some investigations and applications it is convenient to shunt the

junction by a small resistance. In this case the equivalent resistance of the

junction is small and voltage independent. It gives a large value of Γ and

the overdamped limit of the RCSJ model is appropriate.

In other cases, especially when dealing with small junctions, in order

to describe the behavior of the system it is essential to consider also the

impedance of the external circuit.

Thermal fluctuations can be included in the model by the addition of a

noise current source Ĩ(t) with 〈Ĩ(t)〉 = 0 and 〈Ĩ(t)Ĩ(t′)〉 = (2kBT/R)δ(t −

t′). The total current, in normalized units, is

i = N (ϕ) = ϕ̈+ Γϕ̇+ sinϕ+ ĩ (8)

with 〈̃i(τ)〉 = 0 and 〈̃i(τ )̃i(τ ′)〉 = (2ΓkBT/EJ )δ(τ − τ ′).

In the presence of temperature, close to Ic the junction can escape from

the zero voltage state via thermal fluctuations, and close to Iret can retrap

to the zero voltage state (Fig. 6). Such process can be analyzed in terms of

the escape of a single particle from a potential well. The escape rate Γesc
in the classical regimen can be approached to

Γesc = at
ω

2π
exp

(

−
∆U

kBT

)

, (9)
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Fig. 6. The escape from the superconducting state of a junction in the presence of

thermal fluctuations is a problem analogous to the escape of a particle from a well in a

tilted cosine potential.
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Fig. 7. Schematic of a long JJ (left) and phase and phase derivative for a soliton in the

junction (right).

where at is a prefactor which depends on the value of the damping.15,16

2.3. Long Josephson junctions

A long Josephson junction (Fig. 7) is a junction which has one dimension

(say x) long with respect to the so called Josephson penetration depth.4

Then the phase difference is also a function of the spatial coordinate: ϕ(x, t).

The electrodynamics of the junction is described by a nonlinear partial

differential equation that, neglecting dissipative effects, can be written as

ϕxx − ϕtt = sinϕ. (10)

This is the sine-Gordon equation, which has coherent localized particle-like

solutions or soliton solutions. ϕ(x) can be though of as the phase difference

or the normalized magnetic flux. Then a soliton in the junction corresponds

to a solution for which the phase difference goes from 0 to 2π; or the flux

from 0 to Φ0; that is, a fluxon of magnetic field.

When losses and bias are included the dynamics of the fluxon is de-

scribed by the perturbed sine-Gordon equation

ϕxx − ϕtt − sinϕ = αϕt − βϕxxt − γ. (11)
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In this lecture we are not going to deal with long JJ. For a good recent

review on the subject see17 and references within.

2.4. Quantum effects in Josephson junctions

In despite of its quantum mechanical origin, we have considered above that

ϕ behaves as a classical function. This is right for large enough junctions

where quantum effects can be neglected and a classical description of the

junction observables is correct.

In a Josephson junction the phase difference across the junction and the

charge on the junction electrode behave as quantum-mechanically conjugate

variables. The Hamiltonian for the junction can be written as the addition

of Josephson and charging energy

H = −EJ cosϕ+
Q2

2C
(12)

where Q ∼ dϕ/dt.

To study the dynamics of the junction we will follow canonical quanti-

zation rules and treat ϕ and Q as operators which satisfy the usual com-

mutation rule [ϕ,Q] = i2e. Then, in phase representation, we substitute

Q/2e = N by i∂/∂ϕ to get

H = −EJ cosϕ− 4EC
∂2

∂ϕ2
. (13)

By analogy with the problem of a particle in a periodic potential the solu-

tions of this Hamiltonian will take the form of Bloch functions.

In the junction there are two energy scales, defined by EJ = ~Ic/2e
and EC = e2/2C, which compete. The ratio EJ/4EC measures the relative

importance of the charging energy of the pairs. When EJ is dominant the

quantum fluctuations in the phase are small. When EJ ∼ EC the kinetic

energy term induces delocalization of the phase. In the other limit, EJ ¿

EC tunneling is weak and large charge transfers are energetically prohibitive

(Coulomb blockade).

The classical behavior assumed in Sec. 2.1 corresponds to junctions

for which EJ À EC . Since EJ increases with the junction area and EC

decreases with the junction area, the classical description fails for small

enough junctions, which have small critical currents and large capacitances.

In addition to an appropriate EJ/EC ratio, in order to observe quantum

behavior we need to have the thermal energy kBT ¿ EJ , EC and large tun-

neling resistances R > h/4e2 = 6.45kΩ (to avoid quantum fluctuations).7
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Many experimental evidences of quantum mechanical behavior of small

JJs were found in the late 80’s and 90’s. Some of the highlights were: the ob-

servation of macroscopic quantum tunneling of the phase and energy level

quantization in a single JJ junction.18 The evidence of single Copper-pair

tunneling.19 The demonstration of the Heisenberg’s uncertainty principle in

a superconductor.20 More recently, it has been studied a dissipative quan-

tum phase transition in a single junction,21 and the quantum mechanical

behavior of a single vortex in a long JJ.22

We want also to mention the recent works directed to operate with

quantum states of single JJs and simple JJ circuits. For instance the

achievement of coherent control of macroscopic quantum states in a single-

Cooper-pair box.23 The observation of the quantum superposition of dis-

tinct macroscopic states in a rf SQUID24 and a superconducting loop with

3 junctions.25 The manipulation of the quantum state of a superconducting

tunnel junction circuit.26 The generation and observation of coherent tem-

poral oscillations between the macroscopic quantum states of a Josephson

tunnel junction.27 The report of quantum coherent dynamics of a supercon-

ducting flux qubit.28 And the recent observation of quantum oscillations in

two coupled charge qubits.29

3. Modeling Josephson arrays

Systems with superconducting wires interrupted by JJs are usually known

with the name of JJ arrays. Figure 8 shows examples of such arrays. All of

them are easy to fabricate and have been widely studied. The first device

consist of a series array of JJs. This type of arrays have been employed for
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studying phase locking phenomena and build the voltage standard.30 Super-

conducting loops interrupted by one or two junctions are known as SQUIDs

(for superconducting quantum interference device).4,5,31–33 SQUIDs pro-

vide a sensitive measure of magnetic flux and today are used as stan-

dard magnetic field detector in many laboratories. Parallel arrays have

been designed for studying fluxon transport devices but from a fundamen-

tal point of view they are interesting because constitute an experimen-

tal realization of the Frenkel Kontorova model or the discrete sine-Gordon

equation.34–38 Ladder arrays were designed for studying the transition from

one-dimensional to two-dimensional physics and allowed an experimental

observation of discrete breathers,39,40 the main topic of this lecture. Two di-

mensional arrays are an ideal model system to study 2D phase transitions,

frustration and disorder effects, vortex dynamics, phase synchronization

and other non-linear dynamics results.41

To derive the equations of the dynamics of the array we have to apply

Kirchoff’s conservation law (for the current and for the voltage) and fluxoid

quantization. Fluxoid quantization condition establishes that for any loop l

in the array (with at least one junction) the sum of all the phase differences

around the loop is given by

∑

jεl

ϕj = 2π(nl − fl). (14)

The integer nl is the vorticity of the loop and results from the multivalued-

ness of the phase θ of the superconducting wave function in each supercon-

ducting island. fl accounts for the total (external plus induced) flux of the

magnetic field through the loop measured in terms of Φ0 (fl = Φl/Φ0). In

general, to compute the total induced flux in a cell one must take into ac-

count the full inductance matrix of the circuit. However, in many cases

we can work with a simpler approximation and consider only the self-

inductance L of each cell. The parameter λ = Φ0/2πIcL measures the

importance of the induced fields.

We can leave out the nl termsb and write

∑

jεl

ϕj = −2π(f
ext
l + f indl ) = −2πf extl −

1

λ

I loop

Ic
. (15)

bIn the RCSJ model the dynamical equations depend only on ϕ̈, ϕ̇ and sinϕ. Then

the equations of motion are independent of the nl and we can eliminate them from our

equations
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Depending on the importance of the induced fields, Josephson circuits

can be divided in two general types. Circuits of the first type have λ À 1

so the induced flux in the loop is not important (these circuits are typically

made of aluminum). Otherwise the circuits belong to the second type and

the flux caused by the circulating currents is important (these circuits are

typically made of niobium).

If inductive effects can be neglected, fluxoid quantization (Eq. 14) im-

poses a constraint to the equations and then reduces the number of inde-

pendent variables of the system.

3.1. Series arrays

Figure 9 shows a series array of JJs biased by an external current and a

load circuit. The equations of the array can be written as42

ϕ̈k + Γϕ̇k + sinϕk + IL(t) = I (16)

V (t) =
N
∑

k=1

ϕ̇k = F (IL(t)). (17)

Thus, the junctions behave as independent elements biased by the same

current and coupled through the load circuit.
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Fig. 11. dc-squid device and equivalence with the two coupled pendula system.

3.2. rf-SQUID

This device consist of a superconducting loop with a single JJ in it (Fig. 10).

The behavior is governed by the value of total flux through the SQUID, Φ.

From the fluxoid quantization condition ϕ = −2π Φ
Φ0

. Then,

Φ = Φext − LIc sin 2π
Φ

Φ0
(18)

and the potential energy of the system is given by

U(Φ) = −EJ cos 2π
Φ

Φ0
+

(Φ− Φext)
2

2L
. (19)

Since in this circuit there is no bias current, the rf-SQUID is operated

coupled to a radio-frequency circuit (resonator).

In addition to magnetic flux measurements rf-SQUIDs are important

for the study of fundamental problems on quantum mechanics (see Ref. 24

and references within).

3.3. dc-SQUID

This device consist of a superconducting loop with two JJs (Fig. 11). Now

current conservation reads:

i1 = ϕ̈1 + Γϕ̇1 + sinϕ1 = imesh + iext,

i2 = ϕ̈2 + Γϕ̇2 + sinϕ2 = −i
mesh + iext; (20)
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and fluxoid quantization:

(ϕ1 − ϕ2) = −
2π

Φ0

(

BapplS + LImesh
)

. (21)

Normalizing, we get

imesh = −λ (ϕ1 − ϕ2 + 2πf0) (22)

(f0 = BapplS/Φ0).

Then the equations for the dynamics of the array are

ϕ̈1 + Γϕ̇1 + sinϕ1 = −λ (ϕ1 − ϕ2 + 2πf0) + iext

ϕ̈2 + Γϕ̇2 + sinϕ2 = λ (ϕ1 − ϕ2 + 2πf0) + iext. (23)

Where Iext=Itotal/2. These equations show that the problem of two junc-

tions connected in parallel by an inductive element is equivalent to the

problem of two pendula coupled by a torsion spring (see Fig. 11).

If inductive effects can be neglected, fluxoid quantization imposes a

constraint on the variables and we have that

ϕ1 − ϕ2 = −2πf0. (24)

Then, current conservation reads

iext =
i1 + i2

2
= ϕ̈1 + Γϕ̇1 + cos(πf0) sin (ϕ1 + πf0). (25)

The system behaves like a single junction with the critical current modu-

lated by the external field.

3.4. JJ parallel array

A JJ parallel array is formed by a set of junctions connected in parallel

by superconducting wires. The mechanical analog for this system is a set

of pendula connected by torsion springs (see Fig 12). An important conse-

quence of this harmonic interaction is that all the junction must have the

same dc voltage.

The equations for the array can be easily generalized from the dc

SQUID. For the parallel array we get,

ϕ̈j + Γϕ̇j + sinϕj = λ (ϕj+1 − 2ϕj + ϕj−1) + iext (26)

with j = 1, ...N . The boundary conditions are given by ϕ0 = ϕ1−2πf0 and

ϕN+1 = ϕN+2πf0 for the case of open-ended arrays and ϕN+1 = ϕ1+2πnk
and ϕ0 = ϕN−2πnk for ring arrays. In this last case the integer nk computes

the number of kinks or fluxons trapped in the array.

Equations (26) are also the equations of the dynamics of the forced and

damped Frenkel-Kontorova model or the discrete sine-Gordon equation.
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3.5. JJ ladder array

A Josephson ladder array (Fig. 13) is a quasi-one-dimensional array made

when the superconducting horizontal wires of the parallel array are inter-

rupted by Josephson junctions. We can think of this system as a set of

pendula (the vertical junctions) connected in parallel by nonconvex springs

(the horizontal junctions). Consequence of the non-convex interaction, one

of the more notable differences with respect to the parallel array is that

now the vertical junctions are not constrained to have the same dc voltage.

Also, now fluxoid quanta can go into and escape from the array through

the horizontal junctions.

Let us consider the case of an anisotropic ladder. Then the critical cur-

rent of junctions in the vertical direction is different from the critical current

of junctions in the horizontal direction. It can be easily made by changing
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Fig. 14. 2D JJ array

the area of the junctions. Critical current and capacitance are proportional

to this area and resistance is inversely proportional to the area.

Applying current conservation and fluxoid quantization, the equations

for the ladder read

N (ϕtj) = −
λ

h
ξj ,

N (ϕvj ) = λ(ξj−1 − ξj) + iext,

N (ϕbj) =
λ

h
ξj . (27)

Here we have defined

ξj = −2πf
ind
j = ϕvj + ϕtj − ϕvj+1 − ϕbj + 2πf0, (28)

where ξ0 = ξN = 0. For a ladder with N vertical junctions, j runs from

1 to N for vertical junctions and from 1 to N − 1 for horizontal ones. We

have normalized with respect to the parameters of the vertical junctions.

Thus, h = Ich/Icv = Ch/Cv = Rv/Rh and λ = λv = Φ0/2πIcvL (λ/h =

λh = Φ0/2πIchL).

3.6. 2D arrays

Figure 14 shows a sketch of a square 2D Josephson array. Following our

approach to model Josephson arrays, the junctions are coupled via the flux

quantization condition with the inclusion of cell self induced magnetic fields.
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In this approach, the equations for the dynamics of the array are:

N (ϕxij) =
λ

h
(ξij − ξij−1) +

iextx

h
,

N (ϕyij) = λ(ξi−1j − ξij) + iexty (29)

ξij measures the intensity of the induced field

ξij = −2πf
ind
ij = ϕyij + ϕxij+1 − ϕyi+1j − ϕxij + 2πf0 (30)

and we have normalized with respect to the parameters of the y junctions.

Thus h = Icx/Icy = Cx/Cy = Ry/Rx and λ = λy = Φ0/2πIcyL (λ/h =

λx = Φ0/2πIcxL).

This is a model for a 2D array when only self-inductances are taken into

account. Sometimes, depending on the problem to be studied, inductances

are not needed at all; in some others a full inductance matrix is necessary.

In general, in a square 2D (N×N) array we have to solve equations for the

dynamics of 2N2−2N (for free boundary conditions) gauge-invariant phase

differences, ϕij . However, when induced fields can be neglected (λ À 1

limit), flux quantization condition imposes (N − 1)2 constrains on these

variables. Then, it is more convenient to express the system equations in

terms of the phase in each island, θi, which areN2−1 independent variables.

This is made by writing ϕij = θi − θj −Aij [where (for a given gauge) the

Aij =
2π
Φ0

∫ j

i
~A(~r, t)~dl, depend only on the external magnetic field] and the

dynamical equations result after applying current conservation.

In the EJ À EC limit of the system the total Josephson energy is the

relevant energy contribution:

HJ = −
∑

<ij>

EJ cos (θi − θj −Aij). (31)

In the opposite limit of ultrasmall junctions (EC À EJ ), the charging

energy is the more important contribution:

HQ =
1

2

∑

ij

(Qi + qi)C
−1
ij (Qj + qj) (32)

where Qj is the charge in island j, qj are possible offset charges or charges

induced by external sources (charge frustration) and C is the capacitance

matrix of the circuit.

The more complex case is that of intermediate values where both terms
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should be considered c and

H =
1

2

∑

ij

(Qi + qi)C
−1
ij (Qj + qj)−

∑

<ij>

EJ cos (θi − θj −Aij). (33)

4. Localized excitations in Josephson arrays: vortices and

kinks

In this section we are going to summarize some aspects of the physics of

vortices in 2D Josephson arrays and kinks in Josephson parallel arrays.

Both are broad topics and we do not intend to review them here. A nice

review with many references on the physics of 2D Josephson-junction arrays

which extensively covers the role of vortices can be found in Ref. 41 For an

introduction to the study of kinks in parallel arrays and similar systems see

Refs. 34-38

4.1. Vortices in 2D arrays

Consider a two-dimensional array of N×N superconducting islands coupled

by Josephson junctions. The relevant energy of the array is the sum of

the Josephson energies of the junctions, which (in the absence of magnetic

fields) is given by:

HJ = −
∑

<ij>

EJ cos (θi − θj). (34)

This is the Hamiltonian of the two-dimensional XY model and thus 2D

JJ arrays are a physical realization of this model. The XY model describes

many systems but is particularly interesting because it shows the Kosterlitz-

Thoules-Bereziinski (KTB) phase transition. Thus, many of the theoretical

and experimental works with 2D arrays are focused in the observation and

study of this type of phase transition.41

The linear excitations of Hamiltonian (34) are known as spin waves.

They correspond to small amplitude and energy wave-like variations of the

phase over the array. In addition to them, the system supports large energy

nonlinear excitations that are called vortices (and antivortices). A vortex

(see Fig. 15) is an energy localized solution defined by the value of the total

phase differences along a path containing the vortex, which is equal to 2π

(−2π for antivortices) [For a vortex (antivortex),
∑

(θi − θj) = ±2π].

cThe inclusion of self-induced magnetic fields would give an additional contribution to

the hamiltonian of the array
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Fig. 15. Sketch of a vortex configuration in a Josephson array. Arrows represent phase

of superconducting islands.

4.1.1. Single vortex properties at zero temperature

Vortices and antivortices are topological excitations and behave like oppo-

site charges in a two-dimensional system. The ground state configuration

for Hamiltonian (34) correspond to the configuration {θi} =const. For a

large array this configuration has an energy E = −2N 2EJ . We can cal-

culate also the energy of an isolated vortex in a large square array of size

L=Na→∞, which is E = πEJ lnL/a− 2N2EJ .

In the presence of external fields the vortex has a marked single-particle

behavior. When an external current is uniformly applied to the array the

vortex sees an effective Lorenz-type force perpendicular to the applied cur-

rent, of magnitude FV = (Φ/2π)(Itot/Na). Due to the discreteness of the

array, there exist an energy barrier that the vortex has to overcome before

moving trough the array. This barrier is the Peierls-Nabarro barrier for the

vortex and has a value of EPN = 0.2EJ for square cells and EJ = 0.043EJ

for triangular ones. When the vortex moves along the lattice it experiences a

two-dimensional Peierls-Nabarro potential. The potential along the x direc-

tion UPN ' −(EPN/2) cos 2πx/a. Following this picture we can compute

the vortex depinning current IcV = (π/Φ0)EPN = 0.1Ic, for the square

array.

In many cases we can describe the motion of a vortex in the array with

an effective equation for the center of the vortex which includes an external

force (caused by the external current), a viscous force (power dissipated

in the resistive channels), kinetic energy (stored in the capacitors) and

potential energy (Josephson energy):

I = IcV sin

(

2πx

a

)

+
Φ0
4πR

d(2πx/a)

dt
+

Φ0C

4π

d2(2πx/a)

dt2
. (35)
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4.1.2. Array properties at non-zero temperatures

The energy that we need to put a vortex into a large array in its ground

state is EV = πEJ lnL/a. This energy diverges with the size of the array

and thus there are not free vortices in the system at low enough tempera-

tures. However, as soon as T 6= 0, the thermal generation of bound vortex-

antivortex pairs is energetically favored since the energy to create one of

these pairs behave as Ep = 2πEJ ln r/a, with r the distance between the

vortex and anti-vortex cores. Increasing the temperature we reach the KTB

phase transition, TKT∼πEJ/2kB where vortex-antivortex pairs unbind and

free vortices are present in the array.

Such temperature can be estimated with a simple argument. If we add

a single vortex to the array the free energy changes in

∆FV = EV − T∆SV = πEJ lnL/a− kBT ln (L/a)2, (36)

here (L/a)2 is the number of places where we can put the vortex in the

array. ∆FV becomes zero at T = πEJ/2kB .

This is the simplest description of the physics of the system. In general

the results are affected by the inclusion of external magnetic fields, finite

size-effects, self-induced fields, disorder,... In any of the cases the concept

of vortex is essential to understand the physics of the array.

4.2. 2D arrays with small junctions

In arrays of ultrasmall tunnel junctions the relevant energy is the charging

energy,43

HQ =
1

2

∑

ij

QiC
−1
ij Qj (37)

where Qi is the charge in the island. For metallic “normal state” islands

this charge is an integer multiple of the electronic charge e. In the super-

conducting state, at low temperatures and voltages below the gap voltages,

Cooper pairs are dominant and the charge appears in multiples of 2e.

In any of the cases (normal or superconducting arrays) at zero temper-

ature no free charges are present in the array. The system is insulating. In

arrays where mutual capacitances are dominant the charges interact loga-

rithmically over long enough distances. Then, free charges are expected to

be created by thermal activation through a KTB phase transition where

pairs of opposite charges unbind, and the array becomes resistive. The esti-

mated temperature for the transition is Tcn = EC/4πkB for normal islands
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and Tcs = EC/πkB for superconducting ones (EC = e2/2C). In real cir-

cuits this transition is strongly affected by dissipation [measured by the

coefficient αT = h/(4e2RT )], presence of offset charges, disorder,...

In small capacitance superconducting junctions we have to include both

the charging and the Josephson coupling. If we ignore quasiparticles, the

Hamiltonian of the system is

H =
1

2

∑

ij

QiC
−1
ij Qj −

∑

<ij>

EJ cos (θi − θj), (38)

where we have ignored also charge or phase frustration (offset or induced

charges and magnetic fields).

If charging energy can be neglected (EC=0 limit) the vortices undergo

a KTB transition where vortex dipoles unbind. This transition separates a

superconducting low temperature phase from a resistive high temperature

one. If the Josephson coupling is weak (EJ=0 limit), the charges show a

KTB transition where the dipoles, formed by a Cooper pair and a miss-

ing pair, unbind. The transition separates an insulating from a conducting

phase.

At finite EJ and EC , both charge and vortex excitations have to be

considered simultaneously. The charging energy provides a kinetic energy

for the vortices, and the Josephson coupling allows the tunneling of Cooper

pairs and provides dynamics for the charges. If EC ¿ EJ or EJ ¿ EC

perturbative approaches can be used.

However, to fully understand the physics of the system we have to con-

sider also the influence of the quasiparticle tunneling. We have a quantum

dissipative system.

We have also seen that vortices can be described as particles moving

in a substrate potential with a mass given by the charging energy. For

small junctions we can expect strong quantum mechanical effects. At finite

temperatures vortex motion can be thermally excited. At low temperatures

it is possible to observe quantum mechanical tunneling of vortices.

A review on quantum phase transitions and vortex dynamics in super-

conducting networks can be found in Ref. 44

4.3. Kinks in parallel arrays

We have seen in Sec. 3.4 that the equations for the dynamics of a parallel

array of JJs correspond to the equations of the dynamics of the Frenkel-

Kontorova model or the discrete sine-Gordon equation. Reviews of the

physics of these systems are Refs. 34-36
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The equations for the dynamics of the junctions in the parallel array

are given by

ϕ̈j + Γϕ̇j + sinϕj = λ (ϕj+1 − 2ϕj + ϕj−1) + iext (39)

(with j = 1, ...N and boundary conditions are ϕ0 = ϕ1− 2πf0 and ϕN+1 =

ϕN + 2πf0 for an open array and ϕN+1 = ϕ1 + 2πnk and ϕ0 = ϕN − 2πnk
for a ring. nk is the number of kinks or fluxons trapped in the ring).

The system supports different types of excitations. Linear waves are

small amplitude and energy wave-like variations of the phase over the array.

When the phases are small, the solution of the linearized equations (for zero

damping and current) is: ϕj(t) ∼ exp(i(ωkt− kj)) with

ω2k = 1 + 4λ sin2(k/2) (−π < k ≤ π). (40)

This dispersion relation is characterized by a finite band with gap

ωmin=ω0=1 and maximum frequency ωmax = ωπ=(1 + 4λ)1/2.

When the phases are not small the linear approximation is not valid and

the dynamics is pretty rich supporting new type of localized excitations:

kinks and breathers

Kinks and anti-kinks are the only excitations which can exist in the

array in the static case. Depending on the context, they are also called

discrete solitons or elementary discommensurations. They correspond to

solutions where the phases go from 0 to 2π(−2π) along the array. Since

(ϕj+1 − ϕj) = −2πΦj/Φ0; then (ϕN − ϕ1) = 2π = −2πΦtot/Φ0 and one

kink corresponds to one fluxon of magnetic field.

The existence of kinks does not depend crucially on the discreteness of

the system. Moreover, in many aspects the kinks are similar to the solitons

found in the continuous version of the equation (the sine-Gordon equation).

However, many other properties of the kinks do depend crucially on the

discreteness of the array. The existence of a discrete lattice breaks the

invariance under continuous translations of the solitons of the continuous

model. In the lattice, the kink is invariant only under discrete translations

along the array and, due to discreteness, the kink is pinned to the lattice:

there exists a minimun energy barrier the kink needs to overcome in order

to move through the lattice. This energy is the so-called Peierls-Nabarro

(PN) barrier (Fig. 16) and decreases rapidly with λ (Fig. 17).

We can go further and define not only a PN barrier but also a PN

potential for the kink. To compute the kink potential profile we let the

kink configuration to relax following the overdamped dynamics,

ϕ̇j = − sinϕj + λ (ϕj+1 − 2ϕj + ϕj−1) , (41)
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Fig. 16. Three different representations of the minimum energy configuration (top fig-
ures) and the saddle configuration, maximum of the PN potential, of a kink in the parallel

array (bottom figures): phase representation (left), potential energy representation (cen-

ter) and angular representation (right).
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Fig. 17. EPN vs the coupling parameter λ for a kink in the parallel array.

from the saddle-point configuration to the minimun energy configuration.

During the relaxation we work out the energy,

E/EJ =
∑

j

[

(1− cosϕj) +
λ

2
(ϕj+1 − ϕj)

2

]

, (42)

and center of mass,

XCM = C ±
∑

j

ϕj , (43)

of the configuration obtaining the potential profile E(XCM ).

In some cases is possible to identify the kink motion with the motion of

a single particle over a sinusoidal periodic potential defined by:

VPN (X) =
EPN

2
(1− cosX) . (44)

In the presence of external bias, an effective equation of motion for the kink

is given by

mẌ +mΓẊ +
EPN

2
sinX = i. (45)
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Fig. 18. Two different designs of parallel arrays where fluxons experiment a ratchet

periodic potential.

The picture of the kink or fluxon as a single particle is particularly useful

in arrays which are larger than the fluxon width and are driven by small

currents (far from the whirling mode).

When the kink moves it radiates energy in form of small amplitude

waves. This radiation is very strong for the case of underdamped arrays.

There, phonons are easily excited by the kink in its wake and resonances

between the kink velocity and these waves appear.37,38

A particularly interesting configuration is a ring of JJ connected in par-

allel. There, once the array is superconducting magnetic field gets trapped

as an integer number of fluxons.

4.3.1. Fluxon ratchet potentials

We have considered arrays where all the junctions are identical and all the

cells have the same size. However, it is possible to design different arrays

which are adequate for studying new physical problems.

One example is the use of Josephson parallel arrays to study the dy-

namics of kinks subjected to substrate ratchet potentials.47–49

A ratchet potential is a periodic potential without inversion symmetry:

V (x) 6= V (−x), then it is easier to move a particle in one direction than in

the other.

The equations for a non-uniform array (made of junctions with different

areas and cells of different sizes) are

hj (ϕ̈j + Γϕ̇j + sinϕj) = λj(ϕj+1 − ϕj)− λj−1(ϕj − ϕj−1) + iext (46)

with hj = Icj/I
∗

c = Cj/C
∗ = R∗/Rj , where the ∗ superscript stands for

the parameters of the junction with respect to which we normalize, and

λj = Φ0/2πI
∗

cLj .

A kink ratchet potential can be obtained with different suitable com-

binations of junctions and inductance. The simplest ones (see Fig. 18) are

made alternating junctions of two critical currents and cells of two areas,

and alternating junctions of three critical currents.
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Fig. 19. Four studied arrays: (a) regular ring, (b) ring with alternating critical currents,
(c) ring with with alternating cell areas, (d) ratchet ring with alternating critical currents
and cell areas; and the corresponding energy profiles E(XCM ). Only configuration (d)
gives a ratchet profile.

0,0 0,5 1,0 1,5 2,0 2,5 3,0
0,00

0,25

0,50

0,75

1,00

Ratchet array

Ratchet array

Regular array

λ

∆
��� � � � ���

� �	



λ

0,0 0,5 1,0 1,5
0,0

0,1

0,2

Fig. 20. Fluxon depinning currents Idep as a function of λ for the regular and ratchet

arrays. Solid lines stand for predictions from EPN values and symbols stand for numerical

computation of the depinning currents.49 The inset show the difference (∆Idep) between

the absolute values of the two depinning currents for the ratchet array.

Figure 19 shows four different arrays and the computed PN potentials.

As we should expect only array (d) shows a ratchet fluxon potential. Such

arrays were built and experimentally studied.48

Figure 20 shows the dependence as a function of λ of the positive and

negative values of the fluxon depinning current (the minimum current to

move the fluxon) for the cases of the regular and ratchet arrays.49 We see

that for the ratchet array I+dep and I−dep are significantly different for values

of λ between 0.1 and 0.9. The inset shows the difference (∆Idep = I−dep−I
+
dep)
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between the values of the two depinning currents for the ratchet array. As we

can see there exist a moderate range of values of λ for which an important

ratchet behavior is expected. The maximum of this curve is obtained for

λ ∼ 0.2.

4.4. Charge solitons in 1D arrays

We want to mention also the case of a one-dimensional array of ultra-small

junctions. There the Josephson coupling is weak, EJ ¿ EC and the normal

resistance large R > h/4e2.

Then, if a single electron (or a single pair) is added to or subtracted

from an intermediate island the resulting localized state, the single charge

plus the polarization cloud, is called charge soliton (or anti-soliton). It cor-

responds to a localize voltage profile and some of their properties have been

studied by means of the sine-Gordon equation.45,46

5. Discrete breathers in Josephson arrays

Discrete breathers50–54 excitations (also called intrinsic localized modes)

are solutions of the dynamics of nonlinear lattices for which the energy re-

mains exponentially localized in a few sites of the array. As we have seen,

Josephson arrays are ideal experimental discrete system to study nonlinear

dynamics, thus much effort in the last years has been devoted to the predic-

tion and experimental observation55,56 of discrete breathers in Josephson

arrays. E. Tŕıas and P. Binder wrote their thesis on this subject 57,58 and

some recent review articles are Refs. 39,40,59.

Josephson circuits are externally biased dissipative systems. Thus, the

breather solutions that we are going to present are attractors of the dynam-

ics of the array. We will distinguish between two types of localized modes:

oscillobreathers, where all the phases oscillate (a few of them with large

amplitude and the rest with small amplitude); and rotobreathers where

most phases oscillate but some other rotate. Since the main object is to

experimentally study the modes, much effort has been put in the study of

rotobreathers because they show a dc signal. The plasma frequency for a

Josephson junction is close to 100GHz. Thus it is not possible to follow the

instantaneous dynamics of the phases. A quantity easy to measure however

is the dc voltage of the junction (only rotating junctions have nonzero dc

voltage).

An approach to the study of DB solutions is to build the breather from

some appropriate uncoupled limit (which is not going to be experimentally
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Fig. 21. Simulation of IV curves for a single junction with a linear resistor: (a) DC bias,
Γ = 0.2 (inset: experimental curve showing the gap voltage branch). (b-d) Underdamped

junction biased by an rf field. (b) Γ = 0.02 and ω = 2π× 0.125, at a certain value of the
amplitude of the field, an “small” amplitude oscillating state destabilizes to a “large”

amplitude one. Both states coexist for certain range of values of iac. (c) Γ = 0.02 and
ω = 2π × 0.25, for a certain range of values of iac an oscillating state coexist with two

rotating states with 〈ϕ̇〉 = ±ω. (d) Γ = 0.003 and ω = 2π × 0.5, depending on the value
of iac different attractors coexist with rotation velocities in general given by 〈ϕ̇〉 = n

m
ω.

(The figure shows only one of the possible subharmonic (m > 1) states).

accessible) of the model. The idea is to set one of the junctions in a dynam-

ical state, the other in a different one and then switch on the coupling. All

junctions are identical and see the same external force. Thus we are going

to start by exploring the dynamics of a single junction looking for regions

where two or more states can coexist.

Figure 21(a) shows an IV curve for an underdamped junction (RCSJ

model) in the presence of dc bias. We see that for currents between Ic and

Iret two different solutions are possible. One of them is a superconducting

(zero voltage) state, the other a resistive one. The inset shows a measured

IV curve (see also Fig. 5). In a range of external currents two states, with

V=0 and V=Vg, coexist.
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Fig. 22. Numerical simulation of an oscillobreather solution in an ac biased Josephson
parallel array

Figures 21(b-d) show IV curves for an underdamped junction (RCSJ

model) in the presence of ac bias, i(t) = iac sin (ωt). (b) shows a situation

where two solutions with zero dc voltage but different amplitude coexist.

The dc voltage is zero so we plot vac =
√

〈ϕ̇2〉 − 〈ϕ̇〉2, which measures

the oscillation amplitude. (c) and (d) show situations where non-zero dc

voltage solutions coexist with a zero voltage one. The junction voltage is

synchronized to the frequency of the external field and, in the general case,

〈ϕ̇〉 = n
mω.

5.1. Oscillobreather in an ac biased parallel array

The simplest Josephson array with breathers is the parallel array, which is

described by a discrete sine-Gordon equation. This system supports only

oscillobreather solutions. They are attractors of the dynamics of the array

biased by ac external currents. In the breather one junction describes a large

amplitude oscillation meanwhile the other follow the external force and

oscillates with a small amplitude. Figure 22 shows a picture of an oscillating

discrete breather solution in a Josephson parallel array. In the parallel array

all the junctions have the same dc voltage (V=0 in the oscillobreather

solution) since they are connected by superconducting wires.



October 24, 2003 11:11 WSPC/Trim Size: 9in x 6in for Review Volume lecture3

28 J. J. Mazo

Oscillobreather solutions can be excited in other Josephson arrays. How-

ever, due to the high frequencies involved in the Josephson effect, the oscil-

lobreathers are very hard to experimentally detect. Thus, the experimental

effort and much of the theoretical one have been focused to study roto-

breathers.

5.2. Rotobreathers in Josephson arrays

A rotobreather corresponds to a solution where one junction rotates (V 6= 0)

meanwhile the others oscillate (V=0). This is a voltage localized solution

in the array. Such state is easy to detect by measuring the local dc voltages

throughout the array. Another important advantage of the rotobreather

states is that in principle they can be obtained by either biasing the array

with ac currents or with a dc current. This last possibility requires a simpler

experimental approach.

One may wonder if these rotating localized modes exist in JJ parallel

arrays. In principle, they exist in the uncoupled limit of the model. However,

the convex character of the coupling between junctions in the array shows

that any localized mode will not be stable since the difference between

neighboring phases can not grow without limits. Physically, in a parallel

array the dc voltage is the same for all the junctions since they are connected

by superconducting leads, thus preventing dc voltage localized solutions. To

have rotobreathers in Josephson arrays we will need non-convex interaction

terms between neighbors.

The simplest manner to overcome this difficulty is to substitute the hor-

izontal wires connecting neighboring junctions by new Josephson elements.

Such a new configuration is known as Josephson ladder.

5.3. The ladder array

From our perspective a Josephson ladder can be thought of as a set of

parallel pendula, the vertical junctions, coupled by sinusoidal terms (the

non-convex terms) provided by the horizontal junctions. The intensity of

the coupling is governed by the ratio of the critical current for the horizontal

junctions Ich to the critical current for the vertical junctions Icv. Thus, it is

natural to study anisotropic ladders where the anisotropy is controlled by

the parameter h = Ich/Icv. A large value of h means that coupling between

vertical junctions will be strong meanwhile a small value of h means weakly

coupled vertical junctions. Anisotropic arrays are fabricated by varying the

area of the junctions. Critical current and capacitance are proportional
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Fig. 23. Two different voltage patterns for a one-site rotobreather in a Josephson ladder.

Arrows represent rotating junctions, junctions with dc voltage different from zero.

to this area and the resistance is inversely proportional to it. Thus, also

h = Ch/Cv = Rv/Rh and the damping Γ and the plasma frequency ωp are

the same for all the junctions.

We want to recall the equations for the system, introduced in Sec. 3.5:

N (ϕtj) = −
λ

h
ξj

N (ϕvj ) = λ(ξj−1 − ξj) + iext

N (ϕbj) =
λ

h
ξj . (47)

Where we have defined

ξj = −2πf
ind
j = ϕvj + ϕtj − ϕvj+1 − ϕbj + 2πf0, (48)

and normalized with respect to the parameters of the vertical junctions,

thus h = Ich/Icv = Ch/Cv = Rh/Rv and λ = λv = Φ0/2πIcvL and λ/h =

λh = Φ0/2πIchL.

5.4. Rotobreathers in a dc biased ladder

The simplest rotobreather solutions in a dc biased ladder array are shown

in Fig. 23. One vertical junction and some of its neighbors are excited at

the gap voltage meanwhile the other oscillate around the superconducting

state. Such solutions can be continued from the uncoupled limit or excited

by adding local dc currents to the central junction.60

The rotobreathers in the ladder can be unambiguously detected by mea-

suring local dc voltages and have been found in numerical simulations of

the model and experimentally observed. Other more complex patterns and

multi-site DB solutions have been also excited and detected.61–63 Multi-site
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Fig. 24. Simulation of 9x1 array with λ = 0.05,Γ = 0.1 and h = 0.25. We have plotted
the absolute value of the DC flux per unit cell at I = 0.7. The flux decays exponentially

with a decay length of 0.32 for both solutions.

Fig. 25. Picture of the ladder

solutions are characterized by a breather core with more than one rotating

vertical junction.

Figure 24 shows the absolute value of the dc flux per unit cell for a type-
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Fig. 26. Measured time-averaged voltages of five junction in the center of the array
as the applied current is varied. V4, V5, V6 stand for the voltage in vertical junctions
number 4,5 and 6 in a 9 junction ladder. V4T and V5T for horizontal junctions in the

top branches connecting the three previously mentioned vertical junctions. The breather
state was excited at a current close to 1.4mA. When the current was increased the
breather solution became unstable at a current close to 2mA and the array switches to a
uniform resistive state, where all the vertical junction rotate with a same voltage. We can

see that for the breather state V4 = V6 = 0 and V4T = −V5T = V5/2 which corresponds
to the breather state that we have coined as type-B state. In a second experiment, a new
breather was excited but now the current was decreased. We observed that the breather

becomes unstable at a current close to 0.8mA and a new breather state is excited. This

is a multi-site breather state. New instabilities between different multi-site states occur

and finally the array reaches its zero-voltage state at about 0.2mA.

A and type-B (Fig. 23) breather solution. It can be seen that, as expected,

the flux decays exponentially.

Figure 25 shows a picture of one of the anisotropic arrays where DB

were excited and detected.55,62,40 It is a ladder array with nine vertical

junctions biased by an external current source. The array was designed

with voltage probes in different vertical junctions (junction 4,5,6, and 9) to

measure local voltage at different points of the array (we can measure for in-

stance V4, V5, V6, V9, V4T , V5T and any other combination of the terminals).

Sometimes, when we swept the applied current we found that DB solutions

appear spontaneously. However for the experiments, we developed a simple
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Fig. 27. LTSM image of four different multi-site breather states in an annular Josephson

ladder array. Figure from http://www.pi3.physik.uni-erlangen.de/ustinov/.

reproducible method of exciting a breather: (i) Bias the array uniformly to

a current below depinning current; (ii) increase the current injected into

the middle vertical junction (V5) until its voltage switches to the gap; (iii)

reduce this extra current in the middle junction to zero. Other procedures

are also possible.

Fig. 26 shows the result after we have excited the breather and we

have increased or decreased the array current. The breather was excited

at Ia ≈ 1.4mA and then the junction voltages were measured as the ap-

plied current was increased or decreased. The DB is initially in the fifth

vertical junction (V4=V6=0 and V5 6= 0). When increasing the external cur-

rent, the breather exists until a maximum current where all the junctions

switch to the gap. When decreasing the external current different scenarios

were found but typically the breather enlarges from one-site to multi-site

breather solutions and then at small enough current the array decays to
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Fig. 28. Ladder array biased by an external current and equivalent circuit for the dc
model of a one-site type-B breather.

the uniform superconducting state. More details about the experiment can

be found in Ref. 62

Figure 27 shows a low temperature scanning microscopy image of an

annular ladder with different multi-site breather solutions. Such pictures

were obtained by the group of Alexey Ustinov at Erlangen39. The exper-

imental results confirmed the existence of many different breather states

in open and annular ladders. In the figure we can observe breathers where

two vertical junction are rotating and large multi-site breather states where

most of the vertical junctions rotate.

5.4.1. Analysis of the breather solutions using a dc model

The simplest theoretical approach to the study of the dynamics of breathers

in Josephson arrays is the use of a dc model for the circuit. In this model

rotating vertical junctions have a resistance of Rv and rotating horizon-

tal junctions have a resistance of Rh. Oscillating junction will be modeled

as shorts. Then we reduce the array to a simple network of resistors and

calculate DC properties. The equivalent resistor network for a single-site

symmetric breather (type-B breather) located on junction 5 in our 9 junc-

tion array is shown in Fig. 28. In addition to its simplicity this model allows

to include the effect of the bias resistors (used to distribute uniformly the

current through the array).

We will also make the following assumptions: Vv = sVh, Rv = hRh;

where s=1 for type-A solutions and s=2 for type-B solutions and h is the



October 24, 2003 11:11 WSPC/Trim Size: 9in x 6in for Review Volume lecture3

34 J. J. Mazo

parameter which describes the anisotropy of the array.

Using this model we make the following predictions for type-A (s=1)

or type-B (s=2) m-site breathers.62 We present here results for large bias

resistances Rb À Rh (uniform driving condition).

• The IV curve is given by

Ia/N = (1 + 2h/sm)Vv/Rv (49)

• The minimun current for the breather solution Imin (defined from

junction retrapping) is given by

imin = Imin/NIcv = (2h/m+ s)(4/π)Γ (50)

• The maximum current for the breather solution Imax (defined from

junction switching) is given by

imax = Imax/NIcv = (2h+ sm)/[(2 +m)h+ sm] (51)

• The effect of the bias resistors in the current distribution is

I5 = [1 +mh/(2h+ sm)(1−m/N)Rh/Rb]
−1(Ia/N) (52)

For N=9, m=1, s=2, Rh/Rb ∼ 0.8 and h=0.25, we have I5 =

0.934Ia/N and Ij = 1.008Ia/N (j 6= 5).

Figure 29 shows a comparison of the theoretical predictions obtained

from the dc model with the experimental results. The different values of Γ

in the figure correspond with experiments done at different temperatures

from 4.2 to 6.7 K

Although the analysis based on the dc model has been found to be help-

ful, it presents some important limitations: The model can not account for

any λ dependence. It can not explain resonances between breather dynam-

ics and normal modes of the ladder. Such resonances can drive the breather

to destabilizate. The model allows for an estimation of parameter values

where the breather solution ceases to exist but it gives no information on

the dynamical state after the destabilization of the localized solution.

5.4.2. Simulations

The breather dynamics has been extensively studied by numerical integra-

tion of the Eqs. (47) using an standard 4th order RK scheme. Such inte-

grations are complemented with Floquet stability analysis64,65 of periodic

solutions and the study of the robustness of the breather solutions against
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Fig. 30. Experiment (left) and simulation (right) of a type-B breather. The simulations

have been done considering different subgap resistances. The experiment, and one of the

simulations (upper curve), when decreasing the current show that the type-B breather

destabilizes to a type-A one.

thermal fluctuations, modeled by including a noise term in the junction

current (see Eq. (8)).

In addition to the noise, in order to get a more detailed description of
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Fig. 31. Floquet multipliers of the type-A (a) and type-B (b) periodic DB showed in

Fig. 30 (upper simulation). Figures (c) and (d) show as a function of the current the
value of voltage (solid circles) and the modulus of the Floquet multipliers whenever the

solution is periodic (open circles).

the system, the model defined in Eqs. (47) can be extended to take into

account the nonlinear character of the junction resistance or to include

the bias circuit. We usually work at zero external field, however the model

allows for the inclusion of other external magnetic fields. Finally, we can

also study the effect of considering the full-inductance matrix of the circuit

and incorporate disorder, randomizing the junctions critical currents.

In this section we will present simulations made at Γ ' 0.1, h ' 0.25

and λ ' 0.05. Such values of the parameters are close to the expected

parameter values for the experiments reported above.

Figure 30 shows an experimental IV curve of a breather solution that

decreasing the current destabilizes from a 1-site type-B solution to a 1-

site type-A one. The figure also shows the result of a simulations done

including in the model the subgap resistance (as explained in Sec. 2.1) and
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for different values of this subgap resistance.

Figure 31 shows numerically computed Floquet multipliers for the sim-

ulation presented in the previous figure. Fig. 31(b) shows the distribution

of the Floquet multipliers at several values of the applied current close

to the destabilization current for the type-B breather. Fig. 31(d) shows

the voltage and the modulus of the Floquet multipliers (only for periodic

solutions) when we decrease the current. This is the typically observed bi-

furcation scenario for small λ. It seems that for small λ and underdamped

junctions, this instability introduces more frequencies in the solution. When

the periodic type-B breather losses stability the solution becomes a quasi-

periodic type-B breather. This quasi-periodic type-B solution persists up to

a smaller current when the array jumps to a periodic type-A solution. For

large λ, however, we usually observe a period-doubling bifurcation where a

multiplier crosses the unit circle at −1, though the behavior also depends

on the damping.

Fig. 31(a) shows the Floquet multipliers for a type-A breather at dif-

ferent current values. In Fig. 31(c) we decrease the current and show the

value of the voltage and the modulus of the Floquet multipliers. Below

I ∼ 0.25 the periodic breather is unstable and the solution switches to the

superconducting state.

5.4.3. Breather existence diagrams

Now we are going to show a series of figures with breather existence dia-

grams calculated from the results of the dc model and computed with a

numerical integration of the system equations.

The equations found in Sec. 5.4.1 allow for a calculation of the IV curves

and the maximum and minimum values of external currents supporting

DBs. If we write the equations for the single-breather state and use nor-

malized parameters we find

i = (1 + 2h/s)Γvv,

i− = (2h+ s)4Γ/π,

i+ = (2h+ s)/(3h+ s), (53)

where currents are normalized by NIcv and vv = 〈ϕ̇v〉.

Figs. 32 and 33 show the predictions given by the circuit model. The

size of the existence regions decreases rapidly when the damping or the

anisotropy increase. On the other hand, if the damping is small enough the

equations predict the existence of localized solutions even at large values of
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h. We also see that the existence regions are larger for type-A solutions.

This simple model, however, does not account for any dependence of

the curves with the parameter λ. This is an important limitation of the dc

model and we have confirmed in the numerical simulations that λ affects

our predictions in two important ways. First, it affects the value of the

array retrapping current. The value used in our circuit models has been

calculated from a single junction and should be corrected by λ in the case

of the array. Second, it governs the values of the voltage at which resonances

between the breather and the normal modes of the array play an important

role. Roughly speaking, the resonances split the diagrams in three different
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Fig. 34. Numerical calculation of the existence region of single-site DBs when λ = 0.04
and I = 0.6. Open circles correspond to type-A and solid circles to type-B solutions.
Vertical lines correspond to cuts show in Fig. 36 and the asterisk to the experiments.

regions: The small, the moderate and the large λ regions. When λ is small,

the resonance frequency is smaller than the breather frequency, and when λ

is large the resonance frequency is larger. Thereby, complications of damped

resonances between the DB and the lattice eigenmodes are avoided in these

limits

Far from the resonance values the effect of λ is a small correction to

our IV curves. This is shown by the numerical simulations. See for instance

Figs. 37 and 41, where can be seen that the IV curves numerically integrated

agree quite well with the predictions of the dc model.

We have also done numerical simulations based on Eqs. (47) with f0 = 0

in order to study the λ dependence of the breather existence region. The

results are presented in Figs. 34, 35, and 36. In these diagrams we show

the maximum and minimum values of the parameters for which a localized

solution has been numerically found. In some cases the characterization

of the solutions inside the existence regions is quite complex and several

resonances and transitions between periodic and aperiodic localized states

appear.

Figure 34 shows the existence regions in the anisotropy versus damping

plane when λ = 0.04 and I = 0.6. The figure confirms that DBs exist at

large values of h if Γ is small enough. Fig. 35 shows the existence regions

in the current versus λ plane when Γ = 0.08 and h = 0.25. These are the

estimated values of h and Γ in our experiments. Fig. 36 shows the diagram
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in the anisotropy versus λ plane for I = 0.6 and Γ = 0.2 (left) and 0.08

(right). The asterisk in the Γ = 0.08 figure approximately corresponds to

the value of the parameter where our experiments were done. We can see

in the figures that at moderate λ there is a substantial deviation from the

predictions of the dc model. This deviation is caused resonances and other

dynamical effects.
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5.4.4. Different λ regimes

In order to understand the role of λ in the simulations we need to study

the basic linearized excitations that can occur. Complex behavior appears

when the frequency of the rotating junction resonates with the ladder eigen-

modes. To calculate the resonant frequencies, we linearize Eq. (47) around

a solution. The linear analysis allows to compute such frequencies and the

decay length.62,66,59 The dispersion relation has two branches defined by

ω+ =

√

1 +
2λ

h
+ 4λ sin2

q

2
ω− = 1, (54)

and we can also estimate the decay length for our waves,

ζ = cosh−1
∣

∣

∣

∣

2λ(h+ 1) + h

2λh
−

ω2

2λ

∣

∣

∣

∣

. (55)



October 24, 2003 11:11 WSPC/Trim Size: 9in x 6in for Review Volume lecture3

42 J. J. Mazo

1000 1002 1004
-4

-2

0

2

4

6
λ=0.55V

5T

5B

5T

5B

5V

time

v(
t)

v(
t)

time
1000 1002 1004
-4

-2

0

2

4

6
λ=5.0

Fig. 38. Time evolution of the time derivative of the phase, v(t) = dϕ/dt, for the large
λ type-B solution labeled B1α in Fig. 37(a) and the small λ type-B solution depicted as
B1 in Fig. 37(d). We plot v(t) for the rotating vertical junction (5V) and two neighbor

horizontal junctions (5T and 5B). Here, h = 0.25, Γ = 0.1 and I = 0.8.

-0.4 -0.3 -0.2 -0.1 0.0 0.1 0.2 0.3
-1.0
-0.8
-0.6
-0.4
-0.2
0.0
0.2
0.4
0.6
0.8

. ϕ

ϕ
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I = 0.7.

Equation (54) defines three physical regimes in the system:

(i) ω > ωR (small λ)

(ii) ω ∼ ωR (moderate λ)

(iii) ω < ωR (large λ)

The existence of such regimes has been confirmed by the numerical simu-



October 24, 2003 11:11 WSPC/Trim Size: 9in x 6in for Review Volume lecture3

Localized excitations in Josephson arrays. Part I: Theory and modeling 43

-3 -2 -1 0 1 2 3
-1.0
-0.5
0.0
0.5
1.0
1.5
2.0
2.5
3.0

(a)

ϕ 5

ϕ5

-3 -2 -1 0 1 2 3
-1.0
-0.5
0.0
0.5
1.0
1.5
2.0
2.5
3.0

(b)

. .

ϕ4

ϕ 4

Fig. 40. Poincaré sections of the fourth and fifth vertical junctions for a type-B chaotic
solution. The phases are shown at times t = t0 + nτ where τ = 2π/V5 and h = 0.15,
Γ = 0.2 and λ = 0.2 and I = 0.6. (a) Shows the sections for the rotating vertical junction
5 and (b) for its first neighbor, 4.
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Fig. 41. Simulated IV’s for 9 × 1 ladder of type-A breather as a function of λ. Here,

Γ = 0.1, f = 0 and (a) λ = 5, (b) λ = 1, (c) λ = 0.2, and (d) λ = 0.02. The vertical

dashed lines are ω+(λ) and ω
−

= 1 from Eq. (54). The horizontal dashed line is I
−

and

the diagonal dashed line is the IV curve, both from Eq. (53).
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Fig. 42. A vortex configuration in the ladder (I = 0). Arrows represent phase differ-

ences. The phases of the vertical junctions change from 0 to 2π as we move from one

edge to other of the ladder.

lation of IV curves at different values of λ.

Figure 37 shows IV curves at different values of λ of a ladder with a

type-B breather (h=0.25, Γ=0.1). From (a) to (d), λ =5, 2, 0.8, 0.5. Labels

indicate different types of solutions. Dashed lines are voltage resonances

and prediction for Imin. We have observed that for large λ the solution

is up-down symmetric (see Fig. 38 at λ = 5.0). However, at small val-

ues of λ top and bottom junctions show a dephase of half period (Fig. 38

at λ = 0.5). Intermediate values of λ show more complex solutions: for

instance quasiperiodic (Fig. 39) and chaotic (Fig. 40) solutions. Stable res-

onant breather solutions appear at moderate values of λ. Such solutions

have been also experimentally observed.67

Figure 41 shows IV curves at different values of λ of a ladder with

a type-A breather (h=0.25, Γ=0.1). From (a) to (d), λ =5, 1, 0.2, 0.02.

Dashed lines are voltage resonances and prediction for Imin. Again, we can

see the existence of resonant breather solutions at intermediate values of λ.

5.4.5. Breather-vortex collision in the Josephson ladder

In the same way that kinks exist in parallel arrays and vortices in 2D arrays,

the nonlinear static excitations in the ladder are called vortices.

The static properties of a vortex in the ladder are in many aspects

similar to those of a kink in the Frenkel-Kontorova or discrete sine-Gordon

system.68–70 There are however some differences, the most important of

which is the existence of a critical magnetic field fc(λ) for which if f < fc a

single vortex is not stable in the ladder. Below this critical field the vortex

is expelled from the ladder through the horizontal junctions. Thus, vortices

are stable static solutions of the array at adequate parameter values. In the

absence of external currents, a static vortex in the ladder correspond to a

solution for which the phase of the vertical junctions ϕvj go from 0 to 2π

(see Fig. 42).



October 24, 2003 11:11 WSPC/Trim Size: 9in x 6in for Review Volume lecture3

Localized excitations in Josephson arrays. Part I: Theory and modeling 45

Ι=0.45Ι=0.45Ι=0.45Ι=0.45

Ι=0.55Ι=0.55Ι=0.55Ι=0.55 Ι=0.59Ι=0.59Ι=0.59Ι=0.59

Ι=0.5Ι=0.5Ι=0.5Ι=0.5

Fig. 43. Simulations a vortex-breather collisions in a Josephson ladder.71 For all the

cases the initial condition is a 1-site rotobreather in junction 11 of the ladder and a
vortex in junction 47. The figures plot the value of the instantaneous voltage at every

vertical junction.

We have studied vortex-breather collision in a Josephson-junction ladder

array.71 We have computed parameters values of the system for which both

types of structures coexist in the ladder. Then, by increasing the circuit

bias current, we have found different possible scenarios for vortex-breather

collisions (Fig. 43). (i) The breather acts as a pinning center for a single

vortex. (ii) Increasing the current, the vortex excites multi-site breathers

on its way and is finally pinned by the breather. (iii) Now a whirling mode

front is excited by the vortex. However the breather still acts as a pinning

center, now for the front. (iv) At higher values of the bias, the front is able

to destroy the breather.

For scenario (i), we have also studied thermal activation properties as-

sociated with the presence of the vortex-breather pair in the array. We

have seen that noise causes the depinning of the vortex and the breather

decays into a 2-site breather. The escape time for this process showed an

exponential dependence in temperature with an activation energy of 22K.
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Fig. 44. Sketches of generalized breather solutions in single cell arrays with four and

three Josephson junctions.

5.5. Single-plaquette arrays

Rotobreather-like solutions can be also studied in single-plaquette arrays.

Fig. 44 sketches such solutions in cell arrays with three or four JJs. The

case of a square cell with four JJs was considered in Refs. 60 and 62. In

this case the breather can be seen as a reduction of the solutions found in

the ladder when we impose mirror symmetry with respect to the rotating

junction and neglect the dynamics of junctions beyond the first neighbor of

the rotating ones. Doing so, we are left with a square plaquette with four

junctions. The equations for the ladder can be mapped onto the equations

of the plaquette with hplaq. = 2hladd. and λplaq. = 2λladd.. Then it was

found that many of the main aspects concerning DB solutions in the ladder

can be studied in single cell arrays.

The analytical and numerical study of the rotobreather states in a sin-

gle plaquette with three junctions72,73 showed that this system is complex

enough to present most of the phenomena observed in Josephson ladders.

The experimental study of the array74 confirmed the theoretical and nu-

merical results.

5.6. DBs in two-dimensional Josephson junction arrays

Two-dimensional Josephson-junction arrays have already been studied in

Sec. 4.1 in the context of vortices. Here we are going to present numerical

results on the existence of rotobreathers in such arrays.75

Based on theoretical arguments from the uncoupled limit of the lattice

and on numerical simulations, rotobreather solutions have been predicted

to exist in 2DJJA biased by ac currents. The rotobreathers in 2D arrays

correspond to voltage localized solutions sketched in Fig. 45. There, four

junctions sited in the bulk of the array are in the resistive state, two with

voltages +V and two with −V , while the rest follow the ac field in a oscil-
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Fig. 45. Sketch of the 2DJJA with breather

lating state of mean voltage V = 0. From the pictures of the dynamics of a

single junction (Fig. 21) we see that such scenario of coexistence of three dif-

ferent attractors (0, +V , and −V ) is only possible under ac bias [Figs. 21(c)

and (d)]. Thus in the case of 2D arrays we will study rotobreather solutions

biased by ac fields.

It can be seen that uncoupled limits can be obtained when λ → 0

or when h → 0 in the array (Eqs. (29) and (30)). In any of these limits

the junctions behave as independent oscillators where -trivial- localized

solutions can be obtained when the array is biased by ac external fields

iext = iac sinωt.

We have been able to excite and study DBs in many different regions

of the parameter space and under diagonal or vertical bias. We have tried

large and small values of λ, large and small values of h, different values of

the frequency, damping, field amplitude, different array sizes,...

Figure 46 shows four snapshots along one period of the phase dynamics

for two rotobreather solutions simulated in two very different situations (see

caption).

In addition to the numerical integration of Eqs. (29) we have found that

the obtained breather solutions are linearly stable in the framework of the

Floquet stability theory and persist in the presence of thermal fluctuations

(current noise). We also checked that the solutions also exist when applying
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Fig. 46. Four snapshots of the phase evolution for two different DB solutions in a 2DJJA
with different bias and very different parameter values. Arrows represent phases of the
junctions and we show the central part of a 11×11 array. The solutions are time periodic
(period T ) and time increases form 0 (arbitrary) to 3T/4 as labeled. The rotobreather

solution is localized in the four central junctions which rotate. Left: current is biased in
the diagonal or (11) direction (λ = 0.1, h = 1.0, iac = 5.0, Γ = 0.003 and ω = π). Right:

current is biased along the y or (01) direction (λ = 5.0, h = 0.05, iac = 0.7, Γ = 0.02
and ω = π/2).

an external magnetic field and studied the mechanisms involved in the

destabilization of the localized solution when changing some of the system

parameters.

In relation to the issue of a possible experimental observation of DB’s in

2DJJA, the simulations were done at experimentally accessible parameter

values and it was found a numerical protocol to excite DB’s in the array.

The protocol is based in the possibility of adding a local dc current that

should be injected in one central island of the array and extracted from the

four neighboring islands. With respect to a detection, it can be done for

instance by measuring local voltages in different points of the array.

To finish we want to mention that we have also studied and obtained

rotobreather solutions in the dynamics of the array in the infinite λ (no

induced magnetic flux) limit.76 In this limit the equations correspond to a

realization of the dynamics of the two-dimensional XY model.
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48. E. Tŕıas, J. J. Mazo, F. Falo and T. P. Orlando, “Depinning of kinks in a
Josephson-junction ratchet array”. Phys. Rev. E 61, 2257-2266 (2000).

49. F. Falo, P. J. Mart́ınez, J. J. Mazo, T. P. Orlando, K. Segall and E. Tŕıas,
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