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In this paper we address the question of the survival of metastable structures as steady states of
the dissipative dynamics of the Frenkel-Korntorova model. For constant driving force the answer is
negative as a consequence of the asymptotic uniqueness of the steady state. On the contrary, when
the system is driven by periodic external forces, synchronization to the frequency of the force sustains
under some conditions the stable motion of metastable structures. Plausibility arguments leading
to this conclusion are confirmed by numerical results on several types of metastable structures. We
discuss the applicability of these results to models for charge-density-wave dynamics and Josephson-

junction arrays.

L INTRODUCTION

The set of equilibrium states of many-body mod-
els with competing length scales! includes not only
minimum-energy configurations or ground states but also
an overwhelming variety of metastable states. Some
of them are simple periodic or quasiperiodic struc-
tures, but recently mathematical proofs are available?
on the existence of truly chaotic metastable states in
Frenkel-Kontorova type of models. The stability of these
metastable states against (small enough) local fluctua-
tions is assured by the existence of high pinning en-
ergy barriers which prevent their relaxation toward stable
states of lesser energy.

The dissipative (inertialess) dynamics of this type of
many-body model under external forces has received
some attention® due to its close connection with some
physical systems of current interest in condensed-matter
physics (charge- and spin-density waves,* Josephson-
junction arrrays,® flux lines motion in layered type-II
superconductors,® to mention some of them).

The question we address here is whether metastable
structures do survive as moving configurations in the dis-
sipative dynamics of this type of model under external
forces. In Sec. III we argue that, under suitable condi-
tions, in the presence of time periodic external forces,
metastable structures are true steady states of the dissi-
pative dynamics and present numerical evidences of this
assertion.

First, in the present introductory section, we intro-
duce the model and the three types of metastable struc-
tures on which the analysis will be carried out. Later,
in Sec. II, general results on the dissipative dynamics
of regular structures (commensurate, incommensurate,
and elementary discommensurations) are discussed, be-
fore entering into the arguments of Sec. II1. In Sec. IV we
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summarize the results and discuss their applicability to
models for charge-density-wave dynamics and Josephson-
junction arrays.

Let us consider an array of particles with positions u;,
each one coupled to its nearest neighbors by a convex
interaction (which for definiteness we will take as har-
monic), and in a periodic pinning potential V'

Viu) = [1 — cos(27u)]. (1)

K
(2m)?

The properties of the ground states depend crucially
on the average interparticle distance (winding number),
w = (uiy+1 — u;). Incommensurate ground states, which
correspond to (sufficiently) irrational values of w, are
sliding at low values of the pinning potential but above
certain critical value they become pinned. Commensu-
rate (C) ground states correspond to rational values of
w = po/go (Po,qo coprime integers); they are periodic,
Untgy — Po0 = Un, and pinned configurations; because
they are pinned, they admit defects or discommensura-
tions (DC). One can visualize an elementary DC as a

. localized compression or expansion of a C ground state,

with an “excess length” (or phase shift) equal to either
1/go (advanced DC) or —1/gp (delayed DC).”

If a configuration consists of a C structure of commen-
surability wp = po/qe, upon which an array of elementary
DC’s of the same type (either advanced or delayed) is su-
perimposed; its winding number is given by

w = wp + cA, 2

where c is the inverse of the average number of particles
between contiguous DC’s, and A is the excess length as-
sociated with each DC. If the spacing between DC’s is
regular, this is a correct phenomenological description of
a ground state of commensurability w (provided ¢ << 1),
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but when the DC’s are not regularly separated, the struc-
ture is only metastable; hereafter we will refer to this type
of structure as type-I metastable structure.

Suppose now that the array of DC’s contains an equal
number of advanced and delayed DC’s. Then, the wind-
ing number of the structure is wo (as for the underlying
C structure). This is a metastable structure which we
will refer to as type IL

The metastable structures of type III are formed by
connecting blocks of C structures of different commensu-
rabilities. If wy and wy are the winding numbers of the
C structures involved and A is the proportion (measured
in length units) of the first one, the winding number w
of the total structure satisfy

w = Aoyt 4+ (1= Nwy (3)

The region where the blocks are connected is usually
called an interface.” .

Figure 1 shows schematically some examples of DC’s
and metastable states of different types. In Fig. 2 the
same are shown using a convenient variable, namely the
“relative local phase.” If {u?} denotes the sequence of
particle positions in a C structure of reference (wg =
Po/qo), and {u;} is the sequence for the DC or metastable
state under consideration, the relative local phase se-
quence ; is defined as

go—1
1

0i = — D (ujei ~uys). (4)

D

For the above description of the three types of
metastable structures to be a sensible one, it is, of course,
necessary that the width of the DC’s or interfaces in-
volved be small compared to the spacings between them.

FIG. 1. Schematic representation of different types of
states. (a) Commensurate state, wo = 1/2. (b) Advanced
DC on a wp = 1/2 state. {c) Delayed DC on a wo = 1/2
state. (d) A type-II metastable structure which consists of
an advanced and a delayed DC on a wo = 1/2 state. (e)
Type-IIT metastable structure formed by two commensurate
blocks (wy = 1/2, wa =1). |

(a)

e (b)
\ (c)
_—L_/—— ()

(e)

FIG. 2. Schematic representation of the “relative local
phase” variable for the five structures shown in Fig. 1. In
all the cases the C structure of reference is wo = 1/2.

II. GENERAL FEATURES
OF DISSIPATIVE DYNAMICS

The equations of dissipative motion of the system when
an external force F(t) is applied can be written as

Uy = Unp1 + Un_1 — 2Uup — o sin(2mu,) + F(t). (5)

For this type of equation, and with some sensible as-
sumptions on F(t), Middleton® has proved that (for fixed
model parameters, as well as w) the (particle and time)
average velocity 7 is unique. He was also able to prove
the uniqueness of the steady state itself in the case that
the applied force is constant. Simple additional con-
siderations show that, in this case, the unique steady
state is the one which corresponds to moving regular®
(not metastable) structures. Consequently, in the dis-
sipative dynamics under constant external force, initial

‘metastable configurations always relax toward regular

steady states. There is no place for moving complex spa-
tial structures in the dissipative dynamics under constant
external force.

For later purposes it is convenient to introduce the
notion of velocity 4 of a DC relative to the underlying
C structure. Consider a configuration which consists of
an elementary DC upon a C structure, and assume that
at time ¢ = to the DC is centered at particle jo. One
can naturally choose the center of the DC as where the
deviation from the reference C configuration is largest;
if this choice is ambiguous, jp can be always fixed by
some convention. If at some later time ¢ = ¢ + 7, the
configuration is related to the initial one by relabeling
and integer spatial translations, and the center of the
DC is now at particle jo+ .V, we will say that the (mean)
relative velocity 4 of the DC is

. N
v = ?. (6)
In terms of the relative local phase defined by Eq. (4)
the DC can be easily identified in the structure and such
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relative velocity implies that ¢;(t + 7) = p;_n(t). As
we see, this definition [Eq. (6)] requires the periodicity of
the motion, though extensions to the more general case
of recurrent (e.g., quasiperiodic) motion can be consis-
tently made. We note also that the relative velocity is
defined as the advance, measured in number of particles,
per unit time of the DC; then, the total displacement
of the structure that results from the motion of an ele-
mentary DC of relative velocity ¥ and of excess length
A during a time interval 7 is —97A. Here the sign of
the displacement reflects that the motion of an advanced
(delayed) DC with ¥ > 0 implies a backward (forward)
motion of the particles. Then, a configuration consisting
of a C structure moving at average velocity 9, and a cen-
sity ¢ of DC’s with relative velocity ¥ and excess length
A, has an average velocity

T = Ty — DcA. (7)

Although for an elementary discommensuration the
asymptotic relative velocity ¥ is a well defined (unique)
function of the external force, one should not expect it
to be independent on the DC’s concentration ¢, when
considering the motion of an array of elementary DC’s,
However, on physical basis, the expectation is that at
very low densities (¢ << 1) the DC relative velocity will
not differ substantially from the value ¥ corresponding to
zero density.

Now, let us consider external periodic forces,

F(t) = F + F,. cos(2mvot), (8)

acting on the system. Numerical studies of the dissipative
dynamics under forces [Eq. (8)] have shown'® that the
average velocity ¥ of C structures locks at resonant values
¥ = yo(rw+m)/s (r,m, s integers), i.e., for each resonant
value of ¥ there is a finite interval of values of F' for
which the function #(F) remains constant. For values of
F inside the locking intervals, the motion is periodic and
the largest Liyapunov exponent of the system trajectories
is negative: small fluctuations around the steady-state
motion are exponentially damped out; in other words,
inside the resonant steps, the particles are synchronized
with the external periodic force and this synchronization
is robust against small fluctuations.

For incommensurate structures, there are two distinct
dynamical regimes. At low values of the pinning poten-
tial, the function #(F) does not show resonant steps. For
each resonant value of ¥ there is a critical value of the
pinning parameter K, above which #(F') locks at that; res-
onant value. This transition has been characterized as a
dynamical Aubry transition. Below the transition, the
steady state admits an analytical description in terms of
a smooth hull function, while in the mode-locking regime
such analytical description is not possible anymore.?

The dissipative dynamics of discommensurations under
periodic forces is rather similar to that for incommensu-
rate structures. When we consider values of F' for which
the mean velocity of the underlying commensurate struc-
ture remains constant and then study the relative veloc-

ity of the DC we find that at low values of the parameter
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K, the relative velocity as a function of F, §(F), is in-
vertible [Fig. 3(a)], but above some critical value of K, ¥
locks at values which are resonant with the frequency v
of the external force [see Fig. 3(b)]. In this mode-locking
regime, for values of F' well inside the locking intervals,
both the average velocity of the underlying C structure,
@g, and the DC relative velocity, ¥, are synchronized; this
synchronization is structurally stable, i.e., robust against
parameter fluctuations, which is of the utmost impor-
tance for the discussion below.

In Fig. 4 we represent the function 4(F) for two dif-
ferent commensurate structures defined by w = 1/2 and
w = 6/11. The latter can be seen as an array of advanced
DC’s with density ¢ = 1/11 upon a simpler wy = 1/2
structure. Even for this (not too low) value of the DC
concentration, Eq. (7) fits exactly in all the observable
steps.

) I S |

0,09 0,10 0,11

s

1 1 1 1 s -
0,17 0,21 0,25 0,29

EF

FIG. 3. 9(F)/uvo in the case of a delayed DC for two differ-
ent values of K. (a) K = 1 (low K case); § is not locked. (b)
K = 4 (high K case); ¥ is locked. The underlying structure
is a wo = 1/2 structure moving in a locked state. In (b) even
steps (#/vo = ... — 2,0,2,...) correspond to subharmonics of
the motion of the DC; they really exist but cannot be well

appreciated in the figure. (Foc = 0.2, =0.2.)
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FIG. 4. Characteristic curve, #(F), for two differ-
ent structures defined by w = 1/2 and w = 6/11.
(K = 4.0, Fac = 0.2, 10 = 0.2.)
III. MOTION

OF METASTABLE STRUCTURES

Let us now consider a metastable structure of type I
and fix F (as well as the model parameters) to a value
well inside one of the locking intervals of the DC velocity
4. As the spacing between DC’s is irregular, the particle
configuration in the DC’s is slightly different from the one
in the DC’s of the regularly spaced structure; however,
as far as these deviations are small enough and provided
the F value is well inside the locking interval, the motion
of each individual DC proceeds with the locked velocity
value. This is what should be expected on the basis of
the robustness of mode locking. The synchronous motion
of the DC’s relative to the commensurate substrate as-
sures then that the irregular spacing between the DC’s is
preserved as time proceeds, and therefore the metastable
structure does survive as a moving metastable configura-
tion without relaxing to a regular array of moving DC’s.

Figure 5 shows an example of stable motion of a type-I
structure using the variable “relative local phase” defined
in Eq. (4). When the external force F' is tuned out of
the locking interval for the relative velocity of the DC,
the structure relaxes to a regular array of DC’s. Such
relaxation can be extremely slow, however. There is also
a point here, concerning the assertion of being out of a
locking interval. Even at moderately high values of the
parameter K, the measure (in F axis) of locking intervals
could be the full measure,1®1! and then the probability
of being out of any locking interval is null.

The stable motion of metastable structures of type II
requires the condition that the velocities 7, and o of the
advanced and delayed DC’s relative to the underlying
C structure have the same value Uq = Up, on a finite
interval of . With this proviso, the situation is very
much like for the type I above, in the sense that the locked
motion of the DC’s will preserve the initial distribution
of (moderately large) separated DC’s. Figure 6(a) shows
an example of moving metastable structure of type IL. In
Fig. 6(b) the value of F was fixed out of the “common

Q;(t)

FIG. 5. Moving type-I metastable structure which sur-
vives as a true steady state. It consists of a 3/53 con-
centration of advanced DC’s on a wp = 1/2 structure. In
this case %o/vo = 1/2 and ¥/ = 25/53 so ifve = 1.
(K =4.0,F =0.2,Fac = 0.2, = 0.2.)

locking” interval, and the pair of DC’s annihilates.

Finally, we consider a metastable structure of type III,
made of building blocks of commensurability w; and wy,
so that the commensurability of the total structure is
given by Eq. (3), where A is the proportion (length) of
the wy phase. Let 7, #;, and 95 denote the average veloc-
ities associated to the commensurabilities w, wy, and ws,
respectively [notice that, for fixed model parameters, 7
is a unique function of w (Ref. 8)]. In order that the sta-
ble motion of the metastable structure be possible, the
following kinematical condition:

Elw

Uy Ug
= /\wl +(1 /\)wz 9)
must hold on a finite interval of values of F, of common
locking for the three velocities. Provided the interface
width is much shorter than their separation, and the F
value is well inside the interval of common locking, the ro-
bustness of the mode-locked steady-state motion of each
commensurate block will plausibly prevent the spreading
of the interfaces; these will keep their separation, while
moving at a mean velocity Ti:

-1 _
1 1 ]
Vint = (— —_ —) (‘01 2) . (10)
W  wa Wy w2
In order to obtain this last result, it is useful to realize
that as the structure moves, particles are passing from
one phase to the other. The mean number of particles

per unit time crossing the interface (density x relative
velocity) can be expressed as

w;l(‘l_l'l — ‘l_jint) = w{l(ﬁz - t_)int) (11)

and from this continuity equation one obtains Tint [Eq.

(10)].
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Figures 7 (a)—(c) show examples of stable and unsta-
ble motion of metastable structures of type IIL. In case
(b) the metastable structure relaxes to a different asymp-
totic metastable structure, while in (c) the homogeneous
steady state is reached.

IV. CONCLUSION

The dissipative dynamics of Frenkel-Kontorova models
with convex interparticle interactions, under constant ex-
ternal force greater than the threshold (depinning) force,
has a unique attractor for all initial conditions, for a given
set of parameter values.® This asymptotically unique (up
to trivial time translations) steady state is a regular
moving configuration which admits an analytical descrip-
tion.

0;(t)

FIG. 6. Type-II structures which consist of two opposed
DC’s on a wp = 2/3 structure. (a) F' = 0.18; at this value of
the external force ¥ is the same for both DC’s assuring the
stability of the structure. (b) F = 0.164; each DC moves
here with a different value of ¥, extinguishing themselves.

(K = 4.0, Fac = 0.2, = 0.2.)
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On the contrary, when the system is driven by a pe-
riodic force, there exist, in general, a rich multiplicity of
disequivalent attractors, each having its own basin of ini-
tial conditions. All the attractors, however, share a com-
mon value for the average velocity. The origin of this
phase portrait complexity of the dynamics under time
periodic forces, in contrast to the simplicity of the con-

FIG. 7. Three different evolutions for a same initial type-III
structure. (a) The initial configuration remains as a true
steady state. (b) The initial configuration relaxes to an-
other type-III metastable structure which remains as a true
steady state. (¢) Here the system relaxes to a regu-
lar moving structure. The initial condition is defined by
wi =1/2,we = 1,A = 32/52. (a) F =0.19, (b) F = 0.22, (c)
F =0.225. (K = 4.0, Fac = 0.2, 9 = 0.2.) In this picture the
commensurate structure of reference chosen to calculate the
“relative local phase” variable is a wo = 1/2 structure.
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stant force driven dynamics, lies on the synchronization
of the motion of defective structures.

In a similar manner as static defective structures of
the model are prevented to relax toward minimum-energy
configurations by the energy barriers created by the pin-
ning potential, the trajectories corresponding to initial
defective structures under time periodic forces are kept
off the regular attractor by dynamical barriers created by
synchronization of the motion to the external force.

Several previous works'? on the dynamics of discrete
elastic chains under periodic driving forces have pointed
out the close connection between mode locking and the
existence of pinned metastable states. These works fo-
cused the analysis on pulsed driving forces of the form

F if0<t<ton
F(t)=¢ 0 fton <t <ton+tog=T
F~T) ift> T,

(12)

where ¢, is small and #.g is very large (these conditions
being crucial in their analysis). The point of view in
those works is that subharmonic!® mode locking arises
from the presence of many pinned metastable states. On
the contrary, the connection between metastability and
mode locking which emerges from the present work is
clearly different: the robustness of mode locking is a nec-
essary condition for the existence of moving steady-state
metastable configurations. One should notice that regu-
lar structures do show subharmonic’® mode locking un-
der sinusoidal driving forces and then, in this case, one
cannot attach the origin of subharmonic mode locking to
the presence of many pinned metastable states.

We have considered in this paper three types of
metastable structures, simple enough to allow for the
analysis. For each of these types we have discussed the
conditions for the possibility of their survival as true at-
tractors of the dissipative dynamics under periodic forces,
and found excellent agreement with the numerical re-
sults. Though numerical studies are restricted to pe-
riodic metastable configurations, the plausibility argu-
ments given here apply as well to spatially chaotic arrays
of DC’s or interfaces; that is to say that chaotic spatial
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configurations could be observable in the dissipative dy-
namics of models with convex interparticle interactions.

Dynamical defective structures in the vortex lattice
have been shown in recent experiments on Josephson-
junction arrays.'* Numerical simulations of the dynam-
ics of these systems also show the persistence of defective
structures as true steady states. However, the dynam-
ical stability of these metastable structures cannot be
unambiguously adscribed to the synchronization mecha-
nism described here: first, the interaction energy between
phases of neighbor superconducting islands is nonconvex,
and second, the equations of motion for the RSJ (resis-
tively shunted junctions) model of the array contains a
sort of global coupling between phase velocities. Both
features constitute major differences between the Joseph-
son array and the Frenkel-Kontorova model regarding the
issue of the multiplicity of attractors in the dynamics of
these models.

Our results are directly applicable to the Fukuyama-
Lee-Rice (FLR) model of CDW (charge-density-wave)
dynamics,'! but not to modifications of it'® which in-
corporate a global coupling between velocities. Conse-
quently, the FLR model under combined dc and ac forces
exhibits multiple disequivalent mode-locked states, for a
given set of parameters, though all of them display the
same average velocity value, and no hysteresis can be
observed in the I-V curves.
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