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Abstract. – The phenomenon of intrinsic localization in discrete nonlinear extended systems,
i.e. the (generic) existence of discrete breathers, is shown to be not restricted to periodic
solutions but to also extend to more complex (chaotic) dynamical behaviour. We illustrate
this with two different forced and damped systems exhibiting this type of solutions: In an
anisotropic Josephson junction ladder, we obtain intrinsically localized chaotic solutions by
following periodic rotobreather solutions through a cascade of period-doubling bifurcations.
In an array of forced and damped van der Pol oscillators, they are obtained by numerical
continuation (path-following) methods from the uncoupled limit, where its existence is trivially
ascertained, following the ideas of the anticontinuum limit.

Discrete homogeneous arrays of (Hamiltonian and non-Hamiltonian) nonlinear oscillators
(or rotors) exhibit generic solutions which are time-periodic and (typically exponentially)
localized in space. These solutions are called discrete breathers by analogy with non-topological
localized solutions of certain PDE’s. In contrast with continuous bona fide breathers, discrete
breathers posses a remarkable structural stability, and thus genericity. This localization is
often referred to as intrinsic to stress the fact that the system is homogeneous (no impurities
or disorder are present). For an updated and comprehensive review on discrete breathers,
see [1].

A general schematic way to describe a discrete breather in a one-dimensional lattice is the
following: Let us consider the phase space Γs of a single oscillator (or rotor), so that the phase
space Γ of the network is the Cartesian product of the single-site phase spaces. Let us denote
by A, B periodic orbits in Γs, eventually projections of trajectories of Γ onto Γs. A discrete
breather is a solution

{φi(t)} ≡ {. . . , B−2 , B−1 , A ,B1 , B2 , . . .} (1)

with lim|i|→∞Bi = B∞, and B∞ 6= A. Archetypical examples are Klein-Gordon Hamiltonian

breathers, where A is a periodic cycle of frequency ωb in the (φ, φ̇) phase space, B∞ is the
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Fig. 1. – Schematic picture of the JJ ladder showing the injection of the currents in the array.

rest solution (0, 0), and Bi are ωb-cycles with exponentially decreasing amplitude. In the case
of forced and damped arrays, A and B∞ are usually ωb-cycles of different amplitude. If A is
an ωb-cycle non-homotopic to zero (i.e. the central oscillator rotates), the term rotobreather
is used [2, 3].

In this letter we present numerical evidences as well as plausibility arguments strongly
supporting the conclusion that the phenomenon of intrinsic localization in discrete nonlinear
extended systems is not restricted to time-periodic solutions, but it extends to more complex
(chaotic) behaviour in a generic way for damped and forced systems. More specifically,
we show below examples of solutions of the type schematized in (1), where A is a chaotic
trajectory, B∞ is a “regular” ωb-cycle, and Bi are “noisy” cycles, with “noise intensity”
exponentially decreasing to zero as |i| grows. The first example concerns the operation of
a Josephson junction device, the Josephson junction ladder, which has recently received some
attention from both theoretical [4-7] and experimental [8] sides, in connection to the relevance
of nonlinear dynamics of discrete systems in Condensed Matter Physics. The second example,
though also experimentally realizable, serves us to illuminate possible pathways towards a
rigorous characterization of the genericity of intrinsically localized chaos in discrete nonlinear
extended systems, in the spirit of the ideas of the, so-called, anticontinuum limit [9-11]
approach to intrinsic localization. We end with a short discussion on the implausibility of
the existence of this type of solutions as exact ones in Hamiltonian arrays. Earlier numerical
observations of localized chaotic solutions seems to have been reported in [12](coupled map
lattices) and [13](domain walls in a parametrically excited lattice of oscillators). Our results
establish a precise (and very general) link between situations of spatio-temporal complex
behaviour in spatially extended discrete systems and the emergent new results and powerful
methods of intrinsic localization.

Recent theoretical analyses of the dynamics of an anisotropic Josephson junction ladder
(see fig. 1) with injected ac currents [5] have shown the existence of discrete breathers as
attracting solutions of the equations of motion describing the dynamics of the system in the
framework of the resistively and capacitively shunted junction (RCSJ) approach [14]. The
existence of discrete breathers in Josephson junction arrays should indeed be regarded as
generic, given the connection between the general description of these systems in terms of the
superconducting Ginzburg-Landau order parameter Ψ(~x) = |Ψ(~x)| exp[iθ(~x)], where ~x denotes
the superconducting island position, and the discrete nonlinear Schrödinger equation, for the
case of ideal (perfect insulating) junctions [5]. In fact, the quantum Hamiltonian of a single
ideal Josephson junction corresponds to the problem of two coupled anharmonic quantum
oscillators, for which the asymmetric classical breather solutions have been shown to persist
in the quantum regime as very long lifetime states [15] (see also [16]). When the energy
cost to add an extra Cooper pair on a neutral superconducting island (charging energy Ec)
is much lower than the tunneling energy (Josephson energy EJ) the superconducting phase
θ(~x) becomes a good (very weakly fluctuating) variable to describing the island state, thus
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validating the RCSJ approach [14]. This is the situation when the superconducting islands
are of macroscopic size. The validity of the RCSJ approach in the regime Ec/EJ � 1 is a
well-established issue and its predictions fit very well with experiments [17].

θi and θ′i will denote, respectively, the phases of upper and lower islands at site i in the
ladder; the currents I(t) = Iac cos(ωt) are injected into the islands in the upper row and
extracted from those in the lower row; (Jx, εx) are the junction characteristics for junctions
in horizontal links and (Jy , εy) for junctions in vertical links. With the change of variables
χi = 1

2 (θi + θ′i), φi = 1
2 (θi − θ′i), the RCSJ equations [5] are

χ̈i = Jx [sin(χi+1 − χi) cos(φi+1 − φi)+ sin(χi−1 − χi) cos(φi−1 − φi)] +

+εx (χ̇i+1 + χ̇i−1 − 2χ̇i) , (2)

φ̈i = Jx [cos(χi+1 − χi) sin(φi+1 − φi)+ cos(χi−1 − χi) sin(φi−1 − φi)] +

+εx
(
φ̇i+1 + φ̇i−1 − 2φ̇i

)
− Jy sin(2φi)− 2εyφ̇i − I(t) . (3)

With uniform initial conditions in the “center of mass” coordinates and momenta: χi and
χ̇i independent of i, eqs. (2) have the solution χi(t) = Ωt+α for all i; this effectively decouples
eqs. (3) for the φi variables from eqs. (2) for the χi variables. Then, using efficient continuation
methods [10,11] from the uncoupled (anticontinuum) limit (Jx = εx = 0), one easily computes
discrete breather solutions; these turn out to be attractors of the dynamics of the ladder in a
wide range of parameter values.

We will concentrate on the rotobreather type of solutions, in which the phase half-difference
φj∗ through a vertical junction rotates, while the rest φi (i 6= j∗) oscillate, and the “center
of mass” variables χi remain uniformly at rest (Ω = α = 0; note that any other values for
these parameters, fixed by the uniform initial conditions, would show the same behavior). The
period of the rotobreather solution is Tb = 2π/ωb = 4π/ω, where ω is the frequency of the
external currents.

By performing the Floquet analysis of rotobreather solutions, one can determine the re-
gions of linear stability in parameter space, whose borders correspond to different types of
bifurcations [7]. One of them (which occurs typically when varying the external frequency
ω) is a period-doubling bifurcation: The (destabilizing) eigenvector of the Floquet matrix,
which is associated to the eigenvalue exiting the unit circle (in complex plane) at −1, is
(exponentially) localized at the center of the rotobreather and then, a new (linearly stable)
rotobreather with frequency ωb/2 exists past the bifurcation. This new rotobreather can be
easily and safely obtained by slightly perturbing the unstable rotobreather along the direction
of the destabilizing eigenvector. In other words, although one cannot continue the localized
solution in a bifurcation, local bifurcation analysis helps to throw a bridge over the bifurcation,
so arriving safely to the new localized solution at the other side.

Continuously varying the external frequency ω, further period-doubling bifurcations are
often found leading to a chaotic solution. In order to characterize unambiguosly this solution
as chaotic, we have computed its Lyapunov spectrum {λi}, which is shown in fig. 2. There
is only one positive Lyapunov exponent, λ1 = 0.049 bits/s. As we are dealing here with a
continuous time dynamical system, a null exponent is also present. The rest of the spectrum
is negative. Thus, there is only one expanding direction (degree of freedom) in phase space.
The estimated Lyapunov dimension, DL, defined [18] as

DL = j +
1

|λj+1|

j∑
i=1

λi , (4)
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Fig. 2. – Lyapunov spectrum of a chaotic rotobreather in the JJ ladder.

with j such that
∑j
i=1 λi > 0 and

∑j+1
i=1 λi < 0 (exponents are ordered in decreasing order),

is DL = 4.7 .
A look at the profile (at different times) of the Lyapunov vector associated with the positive

Lyapunov exponent reveals that it is strongly localized in space. As the period-doubling
bifurcations leading to the chaotic solution are driven by exponentially localized eigenvectors
of the Floquet matrix, it is not surprising that this chaotic solution is exponentially localized.
In fig. 3 we show the Poincaré (stroboscopic, with period 2Tb) section of the central rotor
trajectory φ0(t) (mod 2π) of the intrinsically localized chaotic solution for parameter values
Jx = 0.05, Jy = 0.5, εx = 0.03, εy = 0.01, ω = 1.623 and Iac = 0.72. As shown also in
fig. 3, the trajectories φi(t) for |i| > 0 are noisy (or chaotically perturbed) oscillations. As a
rough measure of “noise intensity”, we adopt the radius ri of the smallest circle containing the
Poincaré section of the i-th oscillator. This quantity decreases exponentially ri ' C exp[−|i|/ξ]
(ξ ∼ 1.13), as evidenced in fig. 3.

Vaguely speaking, one could say that the uniformly oscillating solution is robust enough to
exponentially damp out the penetration of the chaotic perturbation produced by the central
rotor; equivalently, one could say that the uniformly oscillating solution posses finite coherence
length ξ, so that an oscillator does not feel the effect of any sustained local perturbation located
at distances much greater than ξ (lattice units) from it. On intuitive basis, it is clear that
finite coherence length is required for intrinsic localization to occur [19].

Now we turn to the question on genericity, i.e. should one expect that these intrinsically
localized chaotic solutions exist generically in discrete arrays of coupled nonlinear oscillators?
Though arguably there is little doubt that finite coherence length is ubiquitous in discrete
nonlinear extended systems, at least some degree of robustness of the chaotic trajectory in the
central oscillator (not to speak of the mere possibility of a chaotic behaviour) is also needed.
In an attempt to pave the way towards rigorous answers to the question, we have considered
the perspective on intrinsic localization opened by the “anticontinuum limit” [9-11] approach,
as explained below.

Let us consider a chain of forced and damped identical uncoupled oscillators, and assume
that there is coexistence of a chaotic attractor and an attracting cycle in the single oscillator
phase space. Now, consider the Cartesian product of a (central site) chaotic attractor and
attracting regular cycles in the rest of lattices sites. This set is an attractor in the phase space
of the uncoupled chain, which could plausibly be continued when coupling is turned on.

In order to check this idea, we have chosen a chain of harmonically coupled, forced van der
Pol oscillators:

φ̈i = −µ(φ2
i − 1)φ̇i − φi + b cos(ωt) + C(φi+1 − 2φi + φi−1) . (5)
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Fig. 3. – Poincaré (stroboscopic) sections of the trajectories φi(t) at times t + n2Tb. The pictures

show in quite different scales the planes φ̇ (in radians per unit time) vs. φ (in radians) for the rotor
(a), its fifth neighbour (b) and the ninth one (c). In (d), the logarithm of the “noise amplitude”
plotted vs. the neighboring index shows the exponentially localized character of chaos.

For µ = 4.033, b = 9.0 and ω = π, the single forced van der Pol oscillator phase space shows
coexistence of two strange attractors and a periodic cycle of frequency ω/3 (see [20]). We
have numerically continued the solution of the uncoupled chain in which the central oscillator
follows a chaotic trajectory in one of the strange attractors, while the rest of the oscillators
follow the periodic cycle, for non-zero values of the coupling constant C, up to values of the
order of 0.5× 10−3, which are small but significantly different from zero.

The continuation from the uncoupled limit provides a systematic way of obtaining intrin-
sically localized chaotic solutions, provided the coexistence of strange and periodic attractors
for a single oscillator. It may also serve, like in the simpler case of periodic discrete breathers,
as a basis for the construction of a proof of existence which we see as a difficult problem.
Indeed, Mackay [21] already mentioned this approach for the case of the Plykin attractor,
where continuation is ensured due to uniform hyperbolicity; unfortunately, as usual in chaos
theory, strong conditions which simplify mathematical proofs do not seem to fit easily into
realistic physical models.

The examples we have shown here concern systems of forced and damped oscillators, and
one may wonder about Hamiltonian arrays of oscillators. Though we do not have a definite
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answer on the existence of intrinsic localized chaos in discrete nonlinear Hamiltonian extended
systems, it seems plausible that the typical ”broad band” structure of the power spectrum
of chaotic trajectories would imply a violation of the condition of non-resonance with the
phonons [10]. In the extent that this condition plays an essential role in the proof of existence
of Hamiltonian discrete breathers, we think that the answer is negative. However, chaotic
breathers in discrete Hamiltonian arrays easily appear as long-lived transient solutions. An
observation of erratically moving transient chaotic breathers in Hamiltonian Fermi-Pasta-Ulam
chains has been recently reported [22]. After completion of this work, we became aware of the
numerical observation of chaotic rotobreathers by Bonart and Page [23] in a 1d driven damped
lattice of dipoles.
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[8] Barahona M., Tŕıas E., Orlando T. P., Duwell A. E., Van der Zant H. S. J., Watanabe

S. and Strogatz S. H., Phys. Rev. B, 55 (1997) 11989; Van der Zant H. S. J. et al., Physica
D, 119 (1998) 219.

[9] Aubry S., Physica D, 71 (1994) 196; 86 (1995) 284.
[10] Mackay R. S. and Aubry S., Nonlinearity, 7 (1994) 1623 .
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