PHYSICA )

ELSEVIER Physica D 119 (1998) 175-183

Floquet stability of discrete breathers in anisotropic
Josephson junction ladders

P.J. Marinez®?, L.M. Floria®*, J.L. Main®¢, S. Aubry4, J.J. Mazd®

@ Departamento de Bica Aplicada, Instituto de Ciencia de Materiales de AmagUniversidad de Zaragoza, 50009 Zaragoza, Spain
b Departamento de Bica de la Materia Condensada, Instituto de Ciencia de Materiales deokrag”
Universidad de Zaragoza, 50009 Zaragoza, Spain
¢ Department of Applied Mathematics and Theoretical Physics, University of Cambridge, CB3 9EW Cambridge, UK
d Laboratoire Leon Brillouin (CEA-CNRS), CE Saclay, 91191 Gif-sur-Yvette Cedex, France
€ Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, 02139 Cambridge, MA, USA

Received 28 May 1997; received in revised form 17 December 1997

Abstract

We report on preliminary numerical results on linear stability (Floquet) analysis of discrete breather solutions of the
resistively and capacitively shunted junction (RCSJ) dynamics of an anisotropic ladder of Josephson junctions biased by time
periodic, uniform currents. Different types of bifurcations, driven by exponentially localized eigenvectors of the monodromy
matrix, are shown to destabilize the intrinsic localized modes, when parameters such as Josephson coupling, resistive coupling
or external currents intensity are varied. We show some two-dimensional sections of the computed sector of the stability phase
diagram in the corresponding parameter space. © 1998 Elsevier Science B.V.

1. Introduction

Recent theoretical analyses of the dynamics of an anisotropic Josephson junction ladder with injected AC cur-
rents [1,2] have shown the existence of intrinsic localized modissrete breathepsas attracting solutions of the
equations of motion describing the dynamics of the system in the framework of the resistively and capacitively
shunted junction (RCSJ) approach [3]. Since nowadays one can have an excellent control over the parameters of the
fabricated arrays of Josephson junctions, these devices offer the opportunity of performing detailed experimental
studies omonlinear localizationwhere not only theoretical predictions can be adequately checked, but also new
guestions on discrete breathers challenging our present comprehension [4] could eventually arise.

The existence of discrete breathers in Josephson junction arrays should indeed be regarded as generic, given the
connection between the general description of these systems in terms of the superconducting Ginzburg—Landau
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order parametet (x) = |¥ (x)|€?®) (wherex denotes the island position), and tfiecrete nonlinear Sclodinger
equation for the case of ideal (perfect insulating) junctions [2]. In fact, the quantum Hamiltonian of a single ideal
Josephson junction corresponds to the problem of two coupled anharmonic quantum oscillators, for which the
asymmetric classical breather solutions have been shown to persist in the quantum regime as very long lifetime
states [5]. When the energy cost to add an extra Cooper pair on a neutral superconductinghslayiiclg energy
E¢) is much lower than the tunneling energloéephson energy;), the superconducting phagéx) becomes a
good (very weakly fluctuating) variable to describe the island state, thus validating the RCSJ approach [3]. This is
the case when the superconducting islands are of macroscopic size. The validity of the RCSJ approach in the regime
Ec/Ej <« 1is a well-established issue; see, for example, the excellent quantitative agreement of the RCSJ-based
predictions and experimental results on the (OEY characteristics for annular arrays of Josephson junctions,
recently reported by Watanabe et al. [6].

Here we will report on numerical results concerning the linear stability (Floquet) analysis of discrete breathers
in anisotropic Josephson junction ladders (see Fig. 1) within the framework of the RCSJ apg@raeacts, will
denote, respectively, the phases of upper and lower islands atiisitee ladder; the current&(r) = Iac cCoOSwt)
are injected into the islands in the upper row and extracted from those in the lowef/owe, ) are the junction
characteristics for junctions in horizontal links ad,, €,) for junctions in vertical links. With the change of
variablesy; = 3(6; +6)), ¢; = 3(6; — 6)), the RCSJ equations [1,2] become

Ki = Jx[Sin(xi+1 — xi) COPi+1 — ¢i) + Sin(xi—1 — xi) COPi—1 — )] + €x(Ki+1 + Xi—1 — 2%i), (1)
b1 = Je[cos(xi+1 — xi) SiN(gi+1 — ¢i) + COxi—1 — Xi) SIN(Bi—1 — )]
tex(Pit1 + dim1 — 2¢;) — Jy SINR¢;) — 2y — 1(1). (2)

With uniform initial conditions in the “center of mass” coordinates and momentg;iandy; independent of,
Egs. (1) have the solutiop (1) = 2t +« for all i. This effectively decouples Egs. (2) for thevariables from Eqs.
(1) for the x; variables. Then, using efficient continuation methods [7,8] from the uncoupled Umit (€, = 0),
one easily computes discrete breather solutions. These turn out to be attractors of the dynamics of the ladder in a
wide range of parameter values (see, for example, [9]).
We will concentrate here on thietobreathertype of solutions, in which the phase half-differerfge trough a
vertical junction rotates, while the rest (i # j*) oscillate, and the “center of mass” variabjggemain uniformly
atrest 2 = o = 0; note that any other values for these parameters, fixed by the uniform initial conditions, would
show the same behavior). The period of the rotobreather solutin=s2r /wp = 47 /w, wherew is the frequency
of the external currents. Two characteristic features make this rotobreather solution particularly interesting. First, the
voltage through the vertical link gt*, where localization occurs, has non-zero mean value, so thisdct measure
of the mean voltage profile will reveal the presence of the intrinsic localized mode in a feasible experiment, provided
the device is adequately designed. Second, the excitation energy of this mode (which is a microscopic quantity due to
its exponentially localized character) manifests itself through the intermittent creation and subsequent annihilation
of a pair of fluxoid quanta of opposite sigmoftex—antivorteyair) located in the central plaquettes (Fig. 1(b)).
Rotobreathers were numerically found for the first time by Takeno and Peyrard [10], for a one-dimensional
Hamiltonian array of pendulums with periodic coupling. These authors have later worked out approximate analytical
expressions for them [11]. Their existence proof was implicitly envisaged in the general theorems of Mackay and
Aubry [7], and explicitly considered by Aubry [8,12]. Numerical computations of rotobreathers in Josephson
junction ladders have been discussed by iBlet al. [1,2]. Recently, for Egs. (2) with unifory and constant
(DC) currentl, Mackay and Sepulchre [9] have shown the attracting character of rotobreather solutions. Though at
presentthere are no experiments on Josephson junction ladders concerning these theoretical predictions, some earlier
experiments on two-dimensional Josephson junction arrays [13] are indeed suggestive of tempting interpretations



P.J. Marthez et al./ Physica D 119 (1998) 175-183 177

o

Fig. 1. Schematic picture of the JJ ladder showing the injection of the currents in the array (a), and the superconducting phase motion for
the rotobreather solution, along with the instantaneous central plaquettes vorticity (b).

in terms of rotobreather solutions. It is important to note that dtbretenessf the system angeriodic couplings
are prerequisites for these solutions to occur.

2. Linear stability analysis

For a time-periodic trajectory of a dynamical system, its linear stability can be reduced to that of the fixed point
of the Poincae map obtained from the trajectory after stroboscopic secEtmy(iet analysis

Let N denote the size (number of vertical links) of the ladder. To carry out the linear stability analysis of a breather
(periodic) solutionx; (r) = 0, ¢; (¢)}, we have to integrate the linearized equations of motion around the solution,

8Xi = Jx[cos(pi+1 — i) (S xi+1 — Sxi) + COLPi—1 — ¢i) (S xi—1 — S xi)]

tex(Oxi+1 + 8xi—1 — 20%:), 3)
8¢ = Je[cOS(Bit1 — $i)(3i+1 — 8i) + COAPi—1 — $i) (8hi—1 — S¢pi)]

Fex(8i41+ 81 — 25¢;) — 2J, COS2¢)S¢i — 2,5, 4)
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over a periodly, for each of the 4/-initial conditions of a vector basis of thevddimensional vector space formed
by the variablegsy;, 8¢i, 8xi, 8¢;}. With this calculation we obtain theonodromy(or Floquet) matrix of the
rotobreather,

81+ 81, 8 i 86i)[_g, = M xi. 8¢i. 8Xi. 86i),—o- (5)

where(8y, ...)T denotes column vector. The eigenvalues of the monodromy matrix are the Floquet multipliers.
They contain all the information about the linear stability of the periodic solution. Linear stability is assured when
all the eigenvalues lie inside the unit circle. Note that, since the system is real, for each eigerit@alc@mplex
conjugatev* is also an eigenvalue. Note also that the freedom in the choice of the valugsanfl« for the
x-components of the breather solution implies that two eigenvalue$ atill always be present in the spectrum of
M. The corresponding eigenvectors are extended modes, uniformdr theds x components, respectively (and
zero for thes¢ andsé components).

In our numerical investigations of linear stability of rotobreathers solutions in the anisotropic Josephson junction
ladder, we have up to now kept fixed the value of the paramétes0.5, ¢, = 0.01 andw = 1.5, while exploring
in the three-dimensional parameter spake €., Iac).

2.1. x-Instability bifurcation

The first type of instability that we describe here is generally found when the Josephson coupling in the horizontal
directionincreases above values arodpd- 0.105. As the value af, increases, two complex conjugate eigenvalues
are seen to collide on the negative side of the real axis, in the interior of the unit circle, then separate apart moving in
opposite directions along the real axis, so that one of them leaves the unit circle Blhe associated eigenvector
has zero components alodg; ands#;, and non-zero components alatyg ands x; exponentially localized around
j*, the center of the rotobreather solution. The localization length scale (width) of this eigenvector is much larger
than that of the rotobreather, by more than an order of magnitude, typically. This is likely due to the absence of
on-site pinning potential term in the equations of motion (1) fortheariables.

Fig. 2 shows a snapshot of the periodic solution obtained by integration of the full equations of motion (1) and
(2), with initial conditions prepared by slightly perturbing the rotobreather along the direction of the destabilizing
eigenvector, for the parameter valugs= 0.01, Iac = 0.3, andJ, = 0.108 (just above the bifurcation). As
seen in the figure, the periodic solution obtained can be described as a rotobreathep;ivdhables (almost
unchanged from the rotobreather before the bifurcation) and an oscillating localized modg;ivani@bles. This
x -breatherhas a period twice the one of the rotobreather before bifurcation, is spatially symmetric and exhibits an
“antiferro-like” profile, like the destabilizing eigenvector driving the bifurcation.

The value of the Josephson horizontal coupliRgvhere thisy -instability bifurcation occurs is observed to be
almost insensitive to changes in the paramefggsande, . In order to get some insight into the mechanism of this
bifurcation, and based on this last observation, let us consider the linearized equations (3) and drop out the “phonon
damping” term in their right-hand side:

8%i = Jx [CONit1 — ¢i) (S xis1 — 8xi) + COLi—1 — ¢i) (S xi—1 — 8x1)] - (6)

These equations can be reinterpreted as the equations of motion of an acoustic chain of harmonic oscillators,
with couplingsC; = J, coS¢;+1(¢) — ¢;(¢)) which are periodic functions in time. This system is expected to be
stable for small values of the coupling parametgrand develops a parametrgupharmonitinstability whenJ,
becomes large enough, in analogy with the well-known sipgtametric oscillatofMathieu—Hill equation). Since
the coefficients”; become time-independent and uniform for large valueg ef j*|, the instability of the chain
necessarily occurs by a localized mode.
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Fig. 2. Snapshot of the profiles gf and x; for the attracting rotobreather solution above jhénstability bifurcation ¢, = 0.01,
Inc = 0.3, andJy; = 0.108). The central rotating variabfe~ is drawn modulo 2. Note the different localization width scales for both

profiles.
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Fig. 3. Period-doubling bifurcation. We plot hege: (t + Tj) — ¢;+(¢) as a function ofiac, where j* is the the central site of the
rotobreather. (a) Far, = 0.0275 and/, = 0.05; a second period-doubling is observed. (b)&oe 0.0275 and/, = 0.055, an inverse
period-doubling occurs after increaselag.

The linear stability analysis of the attracting periodic solutigrbfeather plug-rotobreather) above the bifur-
cation is hard to perform properly, due to the large size of the system needed to allocate the widghbfeather
(which in factincreases witl, ). Our numerical computations with sizes upio= 3 x 10% indicate that it becomes
unstable shortly aftef, is increased further by a very small amount, of the ordet &f ~ 0.01.

2.2. Period-doubling bifurcation

A second type of instability is found when the currents intenkityis increased, while keeping fixeld ande, .

Like in the bifurcation previously analyzed, two complex conjugate eigenvalues collide inside the unit disk, on the
real axis close te-1, then separate apart along opposite directions on the real axis, one of them eventually reaching
—1. The associated eigenvector has now zero components &tpaads x;, and non-zero components alosyy

ands¢; which are exponentially localized around= j*, the center of the rotobreather. The localization width of

this eigenvector is about the same as the one for the rotobreather solution.

When initial conditions are prepared by slightly perturbing the rotobreather along the direction of the destabilizing
eigenvector, a rotobreather solution with period double than the one before bifurcation is reached. In Fig. 3 we show
¢+ (t + Tp) — ¢j+(¢) for the new breather solution as a functionIgg. The bifurcation is thus a typical period-
doubling bifurcation. Sometimes, as shown in Fig. 3(a), further period-doubling bifurcations occur, though we
have not found any clear example of a complete subharmonic cascade. Further inciggaesohlly leads to the
destruction of the rotobreather, which falls into the basin of attraction of the uniformly oscillating solution, often
before a second period-doubling bifurcation could take place. Interestingly, for some ranges of va|umsdsf, ,
when the current intensitiac is increased beyond the first period-doubling bifurcation, an inverse period-doubling
occurs, which brings the rotobreather solution back to the previous period (see Fig. 3(b)). In this case, further
increase ofiac ends in a bifurcation of the type which we will analyze in the next Section.

2.3. Dangerous bifurcation

The third type of bifurcation destabilizing the rotobreather is generally found when the parajristecreased.
As shown in Fig. 4, two complex conjugate eigenvalues collide inside the unit disk, on the positive part of the real
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Fig. 4. Dangerous bifurcation. The Floquet multipligfsfor values ofe, in the interval [0.0279, 0.0279822], are drawn in the complex
plane (/x = 0.05, Iac = 0.3). Only one colliding pair of eigenvalues varies significantly in tiisnterval.

axis, then separate apart in opposite directions along the real axis, so that one of them eventually leaves the unit

disk at+1. The eigenvector has zero components albyngands x;, and non-zero components alohyg andse;

which are exponentially localized arouhe-= j*, with localization width of the order of that of the rotobreather.
Perturbation of the rotobreather solution along the destabilizing eigenvector brings it into the basin of attraction

of the uniformly oscillating solution. According to some recently proposed classification of generic codimension-

1 attractor bifurcations of dissipative dynamical systems [15], this one would fit the descriptaangérous

bifurcations, which are characterized by “the blue sky disappearance of the current attractor, giving rise to a jump to

a remote attractor of any type”. In our case it is likely a saddle-node bifurcation, though this issue deserves further

confirmation. The bifurcation value ef increases with increasing current intendify:, a fact which agrees with

the simple physical intuition that the effects of both parameters on the central ragatingoppose each other.

3. Concluding remarks

In Fig. 5 we show some two-dimensional sections of the stability phase diagram of the family of rotobreathers
of period T}, in the three-dimensional parameter spagg €., Iac), for fixed values of the parametefs = 0.5,
€, = 0.01 andw = 1.5. For the sake of clarity, we have not included there the bifurcation lines correspond-
ing to second, third, etc. period-doubling transitions which, as mentioned, have been observed to occur in some
regions.
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Fig. 5. Two-dimensional sections of the stability phase diagram. Widely dotted lines correspond to period doubling bifurcations, broken
lines represeny -instability bifurcations, and continuous lines indicate dangerous bifurcations. Some @bjitsCandD) which are

common to a pair of planes are indicated, to help 3d mental reconstruction of the diagram. Tightly-dotted straight lines in each plane are
the corresponding intersections with the other planes. The insets show enlargements of the corresponding areas.

Besides the three types of bifurcation we have analyzed heiastability, period doubling and dangerous),
which are always mediated by localized eigenmodes, we have observed instabilities driven by extended eigenmodes.
However, these were not true extended instabilities of the full lattice, which in principle are possiblefesytbiem
of Egs. (2). They were found to be finite size effects, similar to the ones encountered generically for breathers in
Hamiltonian lattices. In such systems it has been conjectured [14], on the basis of heuristic arguments, that extended
instabilities necessarily become marginal in the limit of the infinite lattice. }fsystem of equations (2) can
be shown to exhibit this behavior too, since its associated linearized problem for the reference breather solution
{¢>f’(1), x; = 0} yields a lattice with a parametric forcing that vanishes as we go away from the centgr. That
is, no extended instabilities are allowed in phaystem in this case, and the numerical results confirm this: extended
instabilities were observed near theinstability, but they vanished as the siXeof the lattice was progressively
increased, leaving the localized (though broad), unstable mode out in the clear. In the view of the broad width of
this mode, it is not surprising to have hit these finite size effects.

Further work on linear stability of rotobreather solutions in anisotropic Josephson junction ladders has to be
done, by varying parameters like the frequency of the external currents and vertical junction characteristics. Also,
oscillating breather solutions have to be considered in this respect. Finally, one should consider the role of a small
DC current superimposed to the AC current in causing possibly different types of instabilities. These are only a very
small part of the issues that remain open concerning the general problem of nonlinear localization in Josephson
junction devices.
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