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Abstract

We report on preliminary numerical results on linear stability (Floquet) analysis of discrete breather solutions of the
resistively and capacitively shunted junction (RCSJ) dynamics of an anisotropic ladder of Josephson junctions biased by time
periodic, uniform currents. Different types of bifurcations, driven by exponentially localized eigenvectors of the monodromy
matrix, are shown to destabilize the intrinsic localized modes, when parameters such as Josephson coupling, resistive coupling
or external currents intensity are varied. We show some two-dimensional sections of the computed sector of the stability phase
diagram in the corresponding parameter space. © 1998 Elsevier Science B.V.

1. Introduction

Recent theoretical analyses of the dynamics of an anisotropic Josephson junction ladder with injected AC cur-
rents [1,2] have shown the existence of intrinsic localized modes (discrete breathers) as attracting solutions of the
equations of motion describing the dynamics of the system in the framework of the resistively and capacitively
shunted junction (RCSJ) approach [3]. Since nowadays one can have an excellent control over the parameters of the
fabricated arrays of Josephson junctions, these devices offer the opportunity of performing detailed experimental
studies onnonlinear localization, where not only theoretical predictions can be adequately checked, but also new
questions on discrete breathers challenging our present comprehension [4] could eventually arise.

The existence of discrete breathers in Josephson junction arrays should indeed be regarded as generic, given the
connection between the general description of these systems in terms of the superconducting Ginzburg–Landau
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order parameterΨ (x) = |Ψ (x)|eiθ(x) (wherex denotes the island position), and thediscrete nonlinear Schr¨odinger
equation, for the case of ideal (perfect insulating) junctions [2]. In fact, the quantum Hamiltonian of a single ideal
Josephson junction corresponds to the problem of two coupled anharmonic quantum oscillators, for which the
asymmetric classical breather solutions have been shown to persist in the quantum regime as very long lifetime
states [5]. When the energy cost to add an extra Cooper pair on a neutral superconducting island (charging energy
Ec) is much lower than the tunneling energy (Josephson energyEJ), the superconducting phaseθ(x) becomes a
good (very weakly fluctuating) variable to describe the island state, thus validating the RCSJ approach [3]. This is
the case when the superconducting islands are of macroscopic size. The validity of the RCSJ approach in the regime
Ec/EJ � 1 is a well-established issue; see, for example, the excellent quantitative agreement of the RCSJ-based
predictions and experimental results on the (DC)I–V characteristics for annular arrays of Josephson junctions,
recently reported by Watanabe et al. [6].

Here we will report on numerical results concerning the linear stability (Floquet) analysis of discrete breathers
in anisotropic Josephson junction ladders (see Fig. 1) within the framework of the RCSJ approach.θi andθ ′

i will
denote, respectively, the phases of upper and lower islands at sitei in the ladder; the currentsI (t) = IAC cos(ωt)

are injected into the islands in the upper row and extracted from those in the lower row;(Jx, εx) are the junction
characteristics for junctions in horizontal links and(Jy, εy) for junctions in vertical links. With the change of
variablesχi = 1

2(θi + θ ′
i ), φi = 1

2(θi − θ ′
i ), the RCSJ equations [1,2] become

χ̈i = Jx [sin(χi+1 − χi) cos(φi+1 − φi) + sin(χi−1 − χi) cos(φi−1 − φi)] + εx(χ̇i+1 + χ̇i−1 − 2χ̇i), (1)

φ̈i = Jx [cos(χi+1 − χi) sin(φi+1 − φi) + cos(χi−1 − χi) sin(φi−1 − φi)]

+εx(φ̇i+1 + φ̇i−1 − 2φ̇i ) − Jy sin(2φi) − 2εyφ̇i − I (t). (2)

With uniform initial conditions in the “center of mass” coordinates and momenta, i.e.χi andχ̇i independent ofi,
Eqs. (1) have the solutionχi(t) = Ωt +α for all i. This effectively decouples Eqs. (2) for theφi variables from Eqs.
(1) for theχi variables. Then, using efficient continuation methods [7,8] from the uncoupled limit (Jx = εx = 0),
one easily computes discrete breather solutions. These turn out to be attractors of the dynamics of the ladder in a
wide range of parameter values (see, for example, [9]).

We will concentrate here on therotobreathertype of solutions, in which the phase half-differenceφj∗ trough a
vertical junction rotates, while the restφi (i 6= j∗) oscillate, and the “center of mass” variablesχi remain uniformly
at rest (Ω = α = 0; note that any other values for these parameters, fixed by the uniform initial conditions, would
show the same behavior). The period of the rotobreather solution isTb = 2π/ωb = 4π/ω, whereω is the frequency
of the external currents. Two characteristic features make this rotobreather solution particularly interesting. First, the
voltage through the vertical link atj∗, where localization occurs, has non-zero mean value, so that adirect measure
of the mean voltage profile will reveal the presence of the intrinsic localized mode in a feasible experiment, provided
the device is adequately designed. Second, the excitation energy of this mode (which is a microscopic quantity due to
its exponentially localized character) manifests itself through the intermittent creation and subsequent annihilation
of a pair of fluxoid quanta of opposite sign (vortex–antivortexpair) located in the central plaquettes (Fig. 1(b)).

Rotobreathers were numerically found for the first time by Takeno and Peyrard [10], for a one-dimensional
Hamiltonian array of pendulums with periodic coupling. These authors have later worked out approximate analytical
expressions for them [11]. Their existence proof was implicitly envisaged in the general theorems of Mackay and
Aubry [7], and explicitly considered by Aubry [8,12]. Numerical computations of rotobreathers in Josephson
junction ladders have been discussed by Florı́a et al. [1,2]. Recently, for Eqs. (2) with uniformχi and constant
(DC) currentI , Mackay and Sepulchre [9] have shown the attracting character of rotobreather solutions. Though at
present there are no experiments on Josephson junction ladders concerning these theoretical predictions, some earlier
experiments on two-dimensional Josephson junction arrays [13] are indeed suggestive of tempting interpretations



P.J. Martı́nez et al. / Physica D 119 (1998) 175–183 177

Fig. 1. Schematic picture of the JJ ladder showing the injection of the currents in the array (a), and the superconducting phase motion for
the rotobreather solution, along with the instantaneous central plaquettes vorticity (b).

in terms of rotobreather solutions. It is important to note that bothdiscretenessof the system andperiodic couplings
are prerequisites for these solutions to occur.

2. Linear stability analysis

For a time-periodic trajectory of a dynamical system, its linear stability can be reduced to that of the fixed point
of the Poincaŕe map obtained from the trajectory after stroboscopic section (Floquet analysis).

LetN denote the size (number of vertical links) of the ladder. To carry out the linear stability analysis of a breather
(periodic) solution{χi(t) = 0, φi(t)}, we have to integrate the linearized equations of motion around the solution,

δχ̈i = Jx [cos(φi+1 − φi)(δχi+1 − δχi) + cos(φi−1 − φi)(δχi−1 − δχi)]

+εx(δχ̇i+1 + δχ̇i−1 − 2δχ̇i), (3)

δφ̈i = Jx [cos(φi+1 − φi)(δφi+1 − δφi) + cos(φi−1 − φi)(δφi−1 − δφi)]

+εx(δφ̇i+1 + δφ̇i−1 − 2δφ̇i) − 2Jy cos(2φi)δφi − 2εyδφ̇i , (4)
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over a periodTb, for each of the 4N -initial conditions of a vector basis of the 4N -dimensional vector space formed
by the variables{δχi, δφi, δχ̇i , δφ̇i}. With this calculation we obtain themonodromy(or Floquet) matrix of the
rotobreather,

(δχi, δφi, δχ̇i , δφ̇i)
T
t=Tb

= M(δχi, δφi, δχ̇i , δφ̇i)
T
t=0, (5)

where(δχ, . . .)T denotes column vector. The eigenvalues of the monodromy matrix are the Floquet multipliers.
They contain all the information about the linear stability of the periodic solution. Linear stability is assured when
all the eigenvalues lie inside the unit circle. Note that, since the system is real, for each eigenvalueν its complex
conjugateν∗ is also an eigenvalue. Note also that the freedom in the choice of the values ofΩ andα for the
χ -components of the breather solution implies that two eigenvalues at+1 will always be present in the spectrum of
M. The corresponding eigenvectors are extended modes, uniform in theδχ̇ andδχ components, respectively (and
zero for theδφ̇ andδφ components).

In our numerical investigations of linear stability of rotobreathers solutions in the anisotropic Josephson junction
ladder, we have up to now kept fixed the value of the parametersJy = 0.5, εy = 0.01 andω = 1.5, while exploring
in the three-dimensional parameter space (Jx, εx, IAC).

2.1. χ -Instability bifurcation

The first type of instability that we describe here is generally found when the Josephson coupling in the horizontal
direction increases above values aroundJx ' 0.105. As the value ofJx increases, two complex conjugate eigenvalues
are seen to collide on the negative side of the real axis, in the interior of the unit circle, then separate apart moving in
opposite directions along the real axis, so that one of them leaves the unit circle at−1. The associated eigenvector
has zero components alongδφi andδφ̇i , and non-zero components alongδχi andδχ̇i exponentially localized around
j∗, the center of the rotobreather solution. The localization length scale (width) of this eigenvector is much larger
than that of the rotobreather, by more than an order of magnitude, typically. This is likely due to the absence of
on-site pinning potential term in the equations of motion (1) for theχ variables.

Fig. 2 shows a snapshot of the periodic solution obtained by integration of the full equations of motion (1) and
(2), with initial conditions prepared by slightly perturbing the rotobreather along the direction of the destabilizing
eigenvector, for the parameter valuesεx = 0.01, IAC = 0.3, andJx = 0.108 (just above the bifurcation). As
seen in the figure, the periodic solution obtained can be described as a rotobreather in theφi variables (almost
unchanged from the rotobreather before the bifurcation) and an oscillating localized mode in theχi variables. This
χ -breatherhas a period twice the one of the rotobreather before bifurcation, is spatially symmetric and exhibits an
“antiferro-like” profile, like the destabilizing eigenvector driving the bifurcation.

The value of the Josephson horizontal couplingJx where thisχ -instability bifurcation occurs is observed to be
almost insensitive to changes in the parametersIAC andεx . In order to get some insight into the mechanism of this
bifurcation, and based on this last observation, let us consider the linearized equations (3) and drop out the “phonon
damping” term in their right-hand side:

δχ̈i = Jx

[
cos(φi+1 − φi)(δχi+1 − δχi) + cos(φi−1 − φi)(δχi−1 − δχi)

]
. (6)

These equations can be reinterpreted as the equations of motion of an acoustic chain of harmonic oscillators,
with couplingsCi = Jx cos(φi+1(t) − φi(t)) which are periodic functions in time. This system is expected to be
stable for small values of the coupling parameterJx , and develops a parametric (subharmonic) instability whenJx

becomes large enough, in analogy with the well-known singleparametric oscillator(Mathieu–Hill equation). Since
the coefficientsCi become time-independent and uniform for large values of|i − j∗|, the instability of the chain
necessarily occurs by a localized mode.



P.J. Martı́nez et al. / Physica D 119 (1998) 175–183 179

Fig. 2. Snapshot of the profiles ofφi andχi for the attracting rotobreather solution above theχ -instability bifurcation (εx = 0.01,
IAC = 0.3, andJx = 0.108). The central rotating variableφj∗ is drawn modulo 2π . Note the different localization width scales for both
profiles.
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Fig. 3. Period-doubling bifurcation. We plot hereφj∗ (t + Tb) − φj∗ (t) as a function ofIAC, wherej∗ is the the central site of the
rotobreather. (a) Forεx = 0.0275 andJx = 0.05; a second period-doubling is observed. (b) Forεx = 0.0275 andJx = 0.055, an inverse
period-doubling occurs after increase ofIAC.

The linear stability analysis of the attracting periodic solution (χ -breather plusφ-rotobreather) above the bifur-
cation is hard to perform properly, due to the large size of the system needed to allocate the width of theχ -breather
(which in fact increases withJx). Our numerical computations with sizes up toN = 3×103 indicate that it becomes
unstable shortly afterJx is increased further by a very small amount, of the order of∆Jx ' 0.01.

2.2. Period-doubling bifurcation

A second type of instability is found when the currents intensityIAC is increased, while keeping fixedJx andεx .
Like in the bifurcation previously analyzed, two complex conjugate eigenvalues collide inside the unit disk, on the
real axis close to−1, then separate apart along opposite directions on the real axis, one of them eventually reaching
−1. The associated eigenvector has now zero components alongδχi andδχ̇i , and non-zero components alongδφi

andδφ̇i which are exponentially localized aroundi = j∗, the center of the rotobreather. The localization width of
this eigenvector is about the same as the one for the rotobreather solution.

When initial conditions are prepared by slightly perturbing the rotobreather along the direction of the destabilizing
eigenvector, a rotobreather solution with period double than the one before bifurcation is reached. In Fig. 3 we show
φj∗(t + Tb) − φj∗(t) for the new breather solution as a function ofIAC. The bifurcation is thus a typical period-
doubling bifurcation. Sometimes, as shown in Fig. 3(a), further period-doubling bifurcations occur, though we
have not found any clear example of a complete subharmonic cascade. Further increase ofIAC usually leads to the
destruction of the rotobreather, which falls into the basin of attraction of the uniformly oscillating solution, often
before a second period-doubling bifurcation could take place. Interestingly, for some ranges of values ofJx andεx ,
when the current intensityIAC is increased beyond the first period-doubling bifurcation, an inverse period-doubling
occurs, which brings the rotobreather solution back to the previous period (see Fig. 3(b)). In this case, further
increase ofIAC ends in a bifurcation of the type which we will analyze in the next Section.

2.3. Dangerous bifurcation

The third type of bifurcation destabilizing the rotobreather is generally found when the parameterεx is increased.
As shown in Fig. 4, two complex conjugate eigenvalues collide inside the unit disk, on the positive part of the real
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Fig. 4. Dangerous bifurcation. The Floquet multipliersλj , for values ofεx in the interval [0.0279, 0.0279822], are drawn in the complex
plane (Jx = 0.05,IAC = 0.3). Only one colliding pair of eigenvalues varies significantly in thisεx -interval.

axis, then separate apart in opposite directions along the real axis, so that one of them eventually leaves the unit
disk at+1. The eigenvector has zero components alongδχi andδχ̇i , and non-zero components alongδφi andδφ̇i

which are exponentially localized aroundi = j∗, with localization width of the order of that of the rotobreather.
Perturbation of the rotobreather solution along the destabilizing eigenvector brings it into the basin of attraction

of the uniformly oscillating solution. According to some recently proposed classification of generic codimension-
1 attractor bifurcations of dissipative dynamical systems [15], this one would fit the description ofdangerous
bifurcations, which are characterized by “the blue sky disappearance of the current attractor, giving rise to a jump to
a remote attractor of any type”. In our case it is likely a saddle-node bifurcation, though this issue deserves further
confirmation. The bifurcation value ofεx increases with increasing current intensityIAC, a fact which agrees with
the simple physical intuition that the effects of both parameters on the central rotatingφj∗(t) oppose each other.

3. Concluding remarks

In Fig. 5 we show some two-dimensional sections of the stability phase diagram of the family of rotobreathers
of periodTb in the three-dimensional parameter space (Jx, εx, IAC), for fixed values of the parametersJy = 0.5,
εy = 0.01 andω = 1.5. For the sake of clarity, we have not included there the bifurcation lines correspond-
ing to second, third, etc. period-doubling transitions which, as mentioned, have been observed to occur in some
regions.
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Fig. 5. Two-dimensional sections of the stability phase diagram. Widely dotted lines correspond to period doubling bifurcations, broken
lines representχ -instability bifurcations, and continuous lines indicate dangerous bifurcations. Some points(A, B, CandD) which are
common to a pair of planes are indicated, to help 3d mental reconstruction of the diagram. Tightly-dotted straight lines in each plane are
the corresponding intersections with the other planes. The insets show enlargements of the corresponding areas.

Besides the three types of bifurcation we have analyzed here (χ -instability, period doubling and dangerous),
which are always mediated by localized eigenmodes, we have observed instabilities driven by extended eigenmodes.
However, these were not true extended instabilities of the full lattice, which in principle are possible for theφ-system
of Eqs. (2). They were found to be finite size effects, similar to the ones encountered generically for breathers in
Hamiltonian lattices. In such systems it has been conjectured [14], on the basis of heuristic arguments, that extended
instabilities necessarily become marginal in the limit of the infinite lattice. Theχ -system of equations (2) can
be shown to exhibit this behavior too, since its associated linearized problem for the reference breather solution
{φb

i (t), χi = 0} yields a lattice with a parametric forcing that vanishes as we go away from the centeri = j∗. That
is, no extended instabilities are allowed in theχ -system in this case, and the numerical results confirm this: extended
instabilities were observed near theχ -instability, but they vanished as the sizeN of the lattice was progressively
increased, leaving the localized (though broad), unstable mode out in the clear. In the view of the broad width of
this mode, it is not surprising to have hit these finite size effects.

Further work on linear stability of rotobreather solutions in anisotropic Josephson junction ladders has to be
done, by varying parameters like the frequency of the external currents and vertical junction characteristics. Also,
oscillating breather solutions have to be considered in this respect. Finally, one should consider the role of a small
DC current superimposed to the AC current in causing possibly different types of instabilities. These are only a very
small part of the issues that remain open concerning the general problem of nonlinear localization in Josephson
junction devices.
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