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Abstract

When the two arcs of the continuous phonon spectrum of the Floquet matrix of a discrete breather overlap on the unit
circle, the breather solution in the infinite lattice might be stable while the corresponding solutions in finite systems appear
to be unstable. More precisely, when the model parameters vary, the breather in the finite system exhibits a large number
of collisions between the Floquet eigenvalues belonging to the phonon spectrum. These collisions correspond to complex
cascades of instability thresholds followed near after by re-entrant stability thresholds.

We interpret this complex structure on the basis of the band analysis of the matrix of the second variation of the ac-
tion. Then we can predict that in the limit of an infinite system the number of instability and stability thresholds in
the cascade diverges, but simultaneously the maximum amplitude of the instabilities vanishes, so that the breather in
the infinite system recovers its linear stability (as long as all its other localized modes remain stable). This is the situa-
tion which is required in Cretegny et al. [Physica D 119 (1998) 73–87] for having inelastic phonon scattering with two
channels.

We also analyze the size effects when a Floquet eigenvalue associated with a localized mode collides with the Floquet
continuous phonon spectrum with different Krein signature. In contrast to the previous case, the infinite system is unstable
after the collision. © 1998 Elsevier Science B.V.

1. Introduction

Unlike the exceptional solutions of some integrable
models, discrete breathers are time-periodic and spa-
tially localized solutions which are robust to pertur-
bations and may exist in many anharmonic models.
A series of works initiated by the pioneering work of
Sievers and Takeno [2] have demonstrated that they
are ubiquitous in highly anharmonic systems (for a re-
view see [3]). These results were completed later by a

∗ Corresponding author. E-mail: marin@wanda.unizar.es.
1 E-mail: aubry@bali.saclay.cea.fr.

mathematical proof of existence valid for large classes
of coupled anharmonic oscillators [4], and a corollary
to this theorem was to provide a highly accurate nu-
merical method for calculating any of these solutions
by continuation from their anticontinuous limit [5].
Then, it becomes possible to perform an accurate sta-
bility analysis of the obtained solutions through a stan-
dard Floquet analysis.

Our purpose here is to focus on one aspect of the
stability of breathers which involves the size of the
system. Indeed, one of the conclusions of [4] is that
discrete breathers exist for the infinite system as well
as for finite systems. For numerical calculations, we
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consider here finite systems with the standard periodic
boundary conditions, although we could study as well
different boundary conditions.

Let us now illustrate our results by considering as
an example the well-known 1D Klein–Gordon (KG)
model which consists of anharmonic oscillators with
mass unity and harmonic nearest neighbor coupling
with constantC. Its Hamiltonian is

H =
∑
n

(
p2

n

2
+ V (un) + C

2
(un+1 − un)

2
)

(1)

We consider here the cubic potentialV (x) = x2/2−
x3/3, which has its linear limit frequency normalized
to ω0 = 1. The single-site breather solution of this
equation with periodtb and frequencyωb = 2π/tb

is a time-periodic solution{un(t)} of the dynamical
equations

ün + V ′(un) − C(un+1 + un−1 − 2un) = 0, (2)

which is obtained by continuation fromC = 0 (an-
ticontinuous limit) of a solution{vn(t)} in which
vn(t) ≡ 0 for n 6= 0 andv0(t) is a periodic solution
(with period tb) of the single uncoupled oscillator
with potentialV (x).

The linear stability of the breather is determined by
definition by the linear equation:

ε̈n + V ′′(un(t)) εn

−C(εn+1 + εn−1 − 2εn) = 0. (3)

These form a set of coupled linear differential equa-
tions with periodic coefficients, analogous to a prob-
lem of coupled Schr̈odinger equations for electrons in
a periodic potentialV ′′(un(t)), if we make the change
Ψn(x) ↔ εn(t). Note that this equation always has
the trivial solutionεn(t) = u̇n(t), the “phase mode”
corresponding to time translation.

For a system of sizeN , the integration of
Eqs. (3) over a periodtb of each of the 2N vec-
tors {εn(0), ε̇n(0)} forming some basis of the tangent
space yields the Floquet matrixF. This 2N × 2N

matrix represents a general solution of Eqs. (3),
since it is the mapping at a period relating linearly
{εn(tb), ε̇n(tb)} = F{εn(0), ε̇n(0)}.

Since the system (3) is Hamiltonian,F is symplec-
tic, which (together with the fact that the system is
real) implies that ifλ is an eigenvalueλ∗, 1/λ, and
1/λ∗ are also eigenvalues. The linear stability of the
breather requires that theN pairs of eigenvalues e±iθν

of the Floquet matrix are on the unit circle. The phase
mode is spatially localized and corresponds to a de-
generate pair of eigenvalues at+1 (θ = 0). Near the
anticontinuous limit, the rest of the eigenmodes are
close to±θ0 = ±2πω0/ωb modulo 2π . In [4] single-
site breathers are proven to be linearly stable near this
limit, i.e., all the eigenvalues of the Floquet matrix lie
on the unit circle.

When following the breather family in the model
parameters fromC = 0, the eigenvalues of the Floquet
matrix vary continuously. When an isolated eigenvalue
eiθ and its complex conjugate e−iθ collide either at
θ = 0 or atθ = π , the generic behavior is for them
to perform an excursion out of the unit circle (i.e.,
the breather becomes unstable). Also, when two iso-
lated eigenvalues with different Krein signatures [6]
collide at any angle, an instability is expected to occur
(“Krein crunch”), whereby a quadruplet of eigenval-
ues gets out of the unit circle. Indeed, many kinds of
instabilities were found by the numerical investigation
of the Floquet eigenvalues [7,8], but it was also found
that many instabilities were due to size effects and
thus are not relevant for very large (or infinite) sys-
tems. These size effects originate from the discretiza-
tion of the phonon spectrum of the Floquet matrix of
the infinite system.

It is the purpose of this paper to discuss this size
effect. For the understanding of the following discus-
sion the reader will need to refer to the section in [9]
dealing with a new approach based on a band analysis
of the spectrum of the matrix of the second variation
of the action, which recovers and extends the predic-
tion of the Krein theory for analyzing the stability of
breathers.

However, we can provide some physical insight
into the problem, before we move on to more rig-
orous details. In principle it is natural to expect
phenomena of parametric resonance, i.e., Floquet
eigenmodes out of the unit circle. For our discussion
we consider only breathers originated from a finite
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number of sites, and we may take the single-site
breather as a working example, without loss of gen-
erality. Then the stability problem (3) can be viewed
as a system of linear, coupledparametricoscillators.
The time-dependent termV ′′(un(t)) is to be viewed
here as an external periodic excitation which goes
exponentially fast to 1, due to exponential localiza-
tion of discrete breathers. Then, modes associated
with strong instabilities should be located for their
essential part in the region of the breather (i.e., be
also localized). There may also exist more extended
and weaker instabilities, but we will show that they
strictly disappear when the system size diverges.
We may anticipate the line of reasoning: in infinite
systems, resonances which involveextendedmodes
cannot exist because, in simple terms, developing an
instability far away from the breather would also im-
ply (because the breather just introduces a negligible
perturbation on the spectrum of the extended system)
that the ground state is also unstable, in contradiction
with the assumptions.

At this point it is necessary to clarify that we are
adopting the customary definition of linear stability
in physical problems: instability implies exponential
growth with time. However, there are situations where
the linear stability analysis yields modes which are
neither exponentially growing nor of Bloch type, but
algebraicallygrowing. In this paper we set out to prove
the non-existence of extended, exponentially unstable
modes in the limit of the infinite lattice, under rather
generic assumptions. The question of possible alge-
braic growth of these extended modes (leading thus to
breather radiation) is explored in [9], but needs further
investigation.

Finally, it is worth mentioning the possible rel-
evance of these finite size effects in the kind of
phenomena that was observed in one of the pioneer-
ing works on discrete breathers, by Campbell and
Peyrard [10]. These authors calculated numerically
discrete breathers in aφ4 potential, and the Floquet
analysis showed an intricate structure of stable and
unstable zones. Although it is not clear yet whether or
not those solutions are the same as the ones obtained
“cleanly” from the uncoupled limit, it is very likely
that similar finite size effects are at work there [11].

2. The nature of the continuous spectrum

In the limit of an infinite systemN = ∞, the spec-
trum ofF consists of a continuous part associated with
spatially extended eigenvectors and a discrete part con-
sisting of eigenvalues associated with spatially expo-
nentially localized eigenvectors. The continuous part
of the spectrum ofF is simply the continuous spec-
trum which would be obtained for the system without
breather, i.e., whenV ′′(un(t)) = V ′′(0) ≡ 1 for all
n. In what follows we give a few arguments for this
assertion.

Using the fact that the limit (in the weak topology)
of the sequence of spatial translations of the Floquet
matrixF of the system with breather is the Floquet ma-
trix F0 of the system without breather, one proves eas-
ily that the whole spectrum of the Floquet matrixF0 is
included in the spectrum of the initial Floquet matrix
F. The eigenvectors{εn(q), ε̇n(q)} = {eiqn, iω(q)eiqn}
of F0, which are invariant under any spatial translation,
just correspond to plane waves and depend on the con-
tinuous wave vectorq. Their corresponding eigenval-

ues are eiω(q)tb, whereω(q) = ±
√

1 + 4C sin2(q/2)

and tb = 2π/ωb. These are just the normal modes of
the linear lattice, and thus we loosely refer to them as
the phonon spectrum or phonon band.2

Reciprocally, we can consider a bounded and ex-
tended (pseudo) eigenvectorX0 = {εn(0), ε̇n(0)} =
{Xn} of F. Its corresponding eigenvalueλ is in
the continuous spectrum of the Floquet matrixF.
Since by hypothesis,Xn does not go to zero for
|n| → ±∞, the sequence of translated vectors
Xp = {εn+p(0), ε̇n+p(0)} has accumulation points
for the weak topologyX∞ = {ηn(0), η̇n(0)} 6= 0.
This can be achieved by constructing recursively
an infinite monotone subsequencepi such that for
any n, we have limi→∞ εn+pi

(0) = ηn(0) and
lim i→∞ ε̇n+pi

(0) = η̇n(0) (the limits do not have to
be uniform). These vectorsX∞ are eigenvectors of
the limit of the Floquet matrices translated bypi , for

2 Unfortunately, there is a clash in terminology when we
deal below with the “bands” structure of the Hill’s equation,
Eq. (5). Therefore we prefer the term “spectrum” when applied
to phonon modes.
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the same eigenvalueλ. The limit vector at the accu-
mulation point is an eigenvector of the limit Floquet
matrix F0, i.e., a plane wave.

Therefore, the continuous part of the spectrum of the
Floquet matrixF is on the unit circle and essentially
consists of the two arcs defined by

θ0 ≡ 2π

ωb
− 2πp ≤ θ ≤ 2π

√
1 + 4C

ωb
− 2πp

≡ θtop (4)

and the symmetric arc corresponding to−θ . The off-
sets 2πp are written here explicitly, in order to bring
[θ0, θtop] into the range [0, 2π ]. The existence of spa-
tially localized breathers generally requires that its har-
monic frequenciespωb are not in the phonon band for
any integerp. This property avoids the decay of the
breather energy by radiation in the phonon band.3 As
a result, the two symmetric arcs do not contain the
point θ = 0.

WhenC increases from zero, the width of these two
arcsθtop − θ0 = 2π(

√
1 + 4C − 1)/ωb increases, and

there may exist situations where the leading edges of
the arc±θtop reachθ = π . To be precise, this happens
when ωb ∈ (2, ∞) for hard potentialsV , and when
ωb ∈ (2/3, 1), ωb ∈ (2/5, 1/2), ωb ∈ (2/7, 1/3), etc.
for soft potentials. In all these cases the two arcs start
to overlap while the breather still exists. When this sit-
uation occurs, there are, in some sense, infinitely many
eigenvalues of the continuous spectrum (with different
Krein signature) which collide. A naive extension of
the Krein theory for infinite systems applied to such
eigenvalues collisions would suggest that breather in-
stabilities could be generated.

Actually, no breather instability can result from an
extended mode (if the ground-state of the model is
stable, of course) because as shown above, the cor-
responding eigenvalue of the Floquet matrixF must
belong to one of the two arcs (4) on the unit circle
and has modulus one. In our case, the eigenvectors
corresponding to the colliding eigenvalues of the two

3 Actually, there are models with exact breather solutions and
harmonics in the phonon spectrum (e.g., sine-Gordon), but it
has been shown that the absence of radiation is exceptional
due to the integrability properties, and that this exact solution
disappears under most Hamiltonian perturbations.

overlapping arcs are extended and therefore asymp-
totic at infinity to different plane waves, which cannot
generate by a combination on a non-extended mode.
We see how, in this case, the validity of the extension
of the Krein theory to the collisions between eigen-
values of the continuous spectrum is questionable.

The situation is different for finite systems, where
the continuous spectrum of the Floquet matrix is
replaced by a finite, discrete set of eigenvalues. In
that situation, the standard Krein theory fully applies.
Indeed, finite systems show the appearance of many
small instabilities due to collisions between the dis-
crete eigenvalues (with different Krein signatures)
which take place on what otherwise would be the con-
tinuous spectrum. A more careful analysis will show
here that when the size of the system is increased, the
magnitude of these instabilities weakens uniformly,
while at the same time, due to an increasing density
of colliding eigenvalues, their number increases. Thus
when the size of the system is infinite, we should
expect no more instabilities caused by the two arcs of
the continuous spectrum overlapping.

3. Numerical results

We illustrate our interpretation for the single
breather of the cubic KG equation (2) with frequency
ωb = 0.75. In that case, the two arcs of the contin-
uous spectrum of the Floquet matrix are determined
by θ0 = 2π/3 and θtop = 2π(4/3

√
1 + 4C − 1).

These two arcs overlap whenθtop ≥ π , i.e., when
C > 17/256 ≈ 0.066406. Fig. 1 shows the variation
of the argumentsθν of the eigenvalues of the Floquet
matrix on the unit circle in terms of the continuation
parameterC, for different system sizes. There are two
discrete but dense clusters of eigenvalues covering
uniformly the two arcs of the continuous spectrum,
which become denser as the size of the systemN

increases. Beyond some values ofC, some eigenval-
ues may leave the arcs and become isolated from the
continuous spectrum, a phenomenon better spotted
when the system size is sufficiently large. They are
associated with spatially localized eigenmodes [12].
In the figure we clearly appreciate the formation of at
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Fig. 1. Argumentθν vs. C of the eigenvaluesλ = ρ±1
ν e±iθν of the Floquet matrixF for a single breather in the cubic KG model (1)

at frequencyωb = 0.75 and for system sizesN = 18 andN = 58.

Fig. 2. Global trace of the eigenvalues of the Floquet matrix whenC varies from 0 to≈ 0.32, for the same breather and system
sizes as in Fig. 1.

least two of such localized modes detaching from the
phonon spectrum.

The single breather we consider has a spatial center
of symmetry ui(t) = u−i (t), therefore the eigen-
modes of the Floquet matrixF are either spatially
symmetric or antisymmetric. When a pair of eigen-
values eiθ1 and eiθ2 corresponding to eigenmodes with
different spatial symmetry collide, they cross each
other and no instability appears. On the other hand,

when some pair of eigenvalues eiθ1 and eiθ2 corre-
sponding to eigenmodes with the same spatial sym-
metry collide, the two eigenvalues get out of the unit
circle. They take the formρeiθ andρ−1eiθ with the
same argumentθ . This phenomena is clearly visible
in the crossings of Fig. 1. We also observe that in most
cases, shortly after such an instability threshold, each
pair of eigenvalues returns on the unit circle after an
inverse Krein crunch. The net result is the same as if
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Fig. 3. Modulus of the eigenvalues of the Floquet matrix vs.
C for the same breather as Fig. 1, for a system sizeN = 58
(insets: same forN = 18 andN = 38).

the two eigenvalues eiθ1 and eiθ2 would have crossed
each other without interacting. There are also many
eigenvalue collisions where the Krein crunches and
their subsequent inverse Krein crunches are indistin-
guishable, depending on the precision of the numerics.

Fig. 2 shows the global trace of the eigenvalues of
the Floquet matrixF on the complex plane, for the
same breather as in Fig. 1, whenC varies from 0 to
approximately 0.32. Note that whenC = ω2

b − 1/4,
i.e., C = 5/16 = 0.3125, the second harmonic of the
breather enters the phonon spectrum and it is then con-
tinuable as a new type of extended nonlinear solution,
the “phono-breather” [9], which is not studied here.
The figures confirm how the intra-band instabilities
reduce when the size of the system increases. How-
ever, there are cases in which we can also observe at
least one instability which persists at larger sizes (al-
though it necessarily involves localized modes, as we
proved). We chose the cubic model because it offers
such an example clearly. Fig. 3 plots the modulus of
the eigenvalues in lattices of different sizes, making
it more apparent. A calculation in successively bigger
systems not only confirms the shrinking of instabilities
due to extended modes, but uncovers the persistence
of such instability. This takes place when a localized
mode of the spectrum is reached by the phonon modes,
which after having crossed with each other through
θ = π , have changed their Krein signature. We treat

this specific case under the general band analysis tech-
nique in the next section.

4. Interpretation in terms of the band analysis

We confirm and interpret our study by a band anal-
ysis of the spectrum of the second variation of the ac-
tion (see [9]). The basic idea of the method is to study
an augmented problem in which the arguments of the
Floquet eigenvalues appear as the intersection points
of bandswith an axisE = 0. The existence of a bands
structure implies topological constraints on the varia-
tion of the Floquet eigenvalues. For example the proof
of the Krein theory is straightforward in this represen-
tation. It can also help in the interpretation of puzzling
numerical results [13]. In addition, those who are fa-
miliar with band theory, can recognize features which
are usual for band interactions. The band structure we
consider is generated by the eigenequation

ε̈n + V ′′(un(t)) εn

−C (εn+1 + εn−1 − 2εn) = E εn. (5)

SinceV ′′(un(t)) is time-periodic with periodtb, the
eigensolutions of Eq. (5) fulfill the Bloch condition

εn(t + tb) = εn(t)e
iθ . (6)

This theorem implies that each eigenvalue depends
on θ as a symmetric 2π -periodic smooth functions
E(θ) called bands. The terminology comes obviously
from condensed matter physics [14], in the context of
electrons in periodic potentials, and from the equiv-
alent problem of the stability zones of the Hill’s
equation [15].

For a finite system, the whole spectrum of Eq. (5)
can be represented by a discrete (but infinite) set of
bandsEν(θ). For an infinite system, this band structure
consists of some discrete isolated bands (correspond-
ing to spatially localized eigenmodes) and a “con-
tinuous part” (spatially extended eigenmodes) where
the bands depend continuously on an extra parameter
(e.g., a spatial wave vectorq). According to [9], the
argumentsθν of the eigenvalues eiθν of the Floquet
matrix F which are on the unit circle are given by the



J.L. Marı́n, S. Aubry / Physica D 119 (1998) 163–174 169

Fig. 4. Band structure of Eq. (5) for the single breather in the cubic KG model equation (1) atC = 0.25 andωb = 0.75, for two
system sizes:N = 18 andN = 58. The spatially symmetric and antisymmetric bands alternate and do not interact.

intersection of the bandsν with the lineE = 0. The
associated Krein signature is the opposite of the slope
dEν/ dθ at such intersection in the interval 0< θ < π .

The part of the band structure in a neighborhood of
E = 0 has been numerically calculated for the sin-
gle breather of the cubic KG chain for several sizes
(see Fig. 4). For a finite system with sizeN , the band
structure is discrete and there are at mostN bands
intersectingE = 0, since the Floquet matrix has at
mostN pairs of eigenvalues on the unit circle. If the
breather is linearly stable there are preciselyN bands
intersectingE = 0 (including the band which is tan-
gent atθ = 0 and yields the phase mode).

The global knowledge of the band structure in the
vicinity of E = 0 allows one to have a better un-
derstanding of the collisions between eigenvalues and
the instabilities which may or may not result. Particu-
larly, the cascade of re-entrant instabilities observed in
Figs. 1–3 can be interpreted through a rather standard
band analysis familiar to solid state physicists.

The band structure can easily be calculated
both for the infinite and the finite systemwithout
breather. For the infinite system, the eigensolutions
of Eq. (5) areεn(t) = ei(qn−ω(q,E)t) with ω2(q, E) =
1+ 4C sin2(q/2) − E. These solutions fulfill Eqs. (6)
with θ = ω(q, E)tb + 2πp in the interval [−π, π ]
for some integerp. Then, we get a particular band in
the continuum of bands by choosing the spatial wave
vectorq (and the folding indexp):

E(θ, q) = 1 + 4C sin2 q

2
− ω2

b

4π2
(θ + 2πp)2. (7)

For a finite system with sizeN , the spatial wave vec-
tor q is discretized asqν = 2πν/N with ν an inte-
ger. When there are no breathers in the system, the
bands (7) are doubly degenerated forq and −q. In
addition, since they are obtained by the folding in the
interval [−π, π ] of a bunch of parallel and infinite
curves, they intersect many other bands (with a slope
of opposite sign) in a vicinity of their crossings with
the vertical axesθ = 0 andθ = ±π . At these inter-
sections, there is also degeneracy in the eigenvalues
of F(E).

When the breather is introduced, these degeneracies
will be raised. Let us consider first regions inE and
θ where the bands are parallel and where there are no
band intersections, i.e., only a degeneracy between the
solutions with wave vector+q and−q, but no degen-
eracy with other solutions with different wave vector.
In our case, the single breather is spatially symmetric,
so that raising this degeneracy yields a spatially sym-
metric and a spatially antisymmetric eigensolution.
The effect appears as a slight separation of the associ-
ated bands, as can be appreciated in Fig. 4(b) in the re-
gions where they do not intersect with other bands. It is
worth mentioning here that this “splitting” of the bands
(the ones associated with extended phonon modes) is
directly related to the scattering properties of breathers
with respect to plane waves, as explained in [1].
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Let us now consider the more complex regions in
E andθ where there are transversal intersections be-
tween the bands. When two bands with the same spa-
tial symmetry intersect transversally (or, equivalently,
have different Krein signature in the vicinity of the in-
tersection [9]), the degeneracy between the two bands
is raised locally, and a gap opens up. On the con-
trary, if the two intersecting bands have the same slope
sign (i.e., Krein signature), no gap appears, even if
they have the same spatial symmetry. These interac-
tions can be understood within a standard perturba-
tion approach of band theory (e.g., Peierls instability
in 1D conductors [14]), where the breather creates the
perturbative potential. Krein theory is thus recovered
through standard techniques of solid state physics.

The amplitude of the gap inE is at the lowest order
equal to the modulus of the overlap of the symmetric
(or antisymmetric) normalized eigenmodes of the sys-
tem, Eq. (5). The non-vanishing contribution of this
overlap is essentially restricted to the finite region of
the space where there is a perturbation, i.e., where the
breather is located. If both eigenmodes are spatially
extended, and the breather size is finite and well de-
fined, this overlap is of the order of the inverse size
1/N of the system. As a result, the gap width at the
intersections is expected to be of the same order of
magnitude 1/N , and thus goes to zero when the sys-
tem size diverges. We recover again the same result
we obtained in Section 2.

These features are compatible with the observed be-
havior at different sizes shown in Fig. 4. For a reason-
ably smooth model, the extended Floquet matrixF(E)

obtained from a one-period integration of Eq. (5) for
E 6= 0 has a bounded derivative with respect toE.
Thus, the maximum variation of each eigenvalue of
F(E) in its instability gaps is also of order 1/N , and
consequently its maximum distance from the unit cir-
cle remains of order 1/N .

However all these arguments may not apply when
one of the colliding bands has spatially localized asso-
ciated eigenvectors. Intersections between two of such
localized bands having different signatures (and same
spatial symmetry) are expected to develop gaps in such
a way that both the width of the gap and the magnitude
of the instability approach rapidly a constant (non-

zero) value as the lattice size grows. But the question
of intersections between a band of localized character
and the continuum of bands of extended character is
more complicated, and is devoted an interpretation in
the next section.

5. Localized modes colliding with the continuous
spectrum

Beside the band overlap phenomena, it can be seen
on Figs. 2 and 3 that there is clearly an instability
by a spatially localized mode which persists for large
sizes. Actually, a more careful analysis reveals a sec-
ond instability. These two instabilities are due to the
fact that two Floquet eigenvalues on the unit circle as-
sociated with spatially symmetric and antisymmetric
localizedmodes collide with the part of the continu-
ous phonon spectrum of the Floquet matrix which has
different Krein signature. After the collision, the man-
ifestation of each mode crossing the continuous spec-
trum consists of “wiggles” on the discrete bands of
finite systems (only those with the same spatial sym-
metry), which we will interpret here.

Those wiggles associated with the antisymmetric
mode are clearly visible in Fig. 4, while those associ-
ated with the symmetric mode are more elusive, but
clearly revealed by the magnification of Fig. 5. These

Fig. 5. Magnification of the band structure of Fig. 4 close to the
axis E = 0, but for a larger sizeN = 98. The band associated
with the phase mode (which has a poor resolution and is hardly
visible on Fig. 4) collides with the phonon spectrum.
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wiggles vaguely draw the continuation of the band
curves of the localized mode through the phonon spec-
trum. But the relevant feature for the breather stabil-
ity is that (at sufficiently large sizesN ) these wiggles
conceal a real instability gap. In other words, there is
no localized band present there.

Although there are exceptions with some special
models, in general, a localized mode at frequency
ωl cannotstrictly penetrate the phonon spectrum and
remain localized, for the following trivial reason: it
has generally non-vanishing and exponentially local-
ized components at all the frequenciesωl + pωb for
p an integer. If one of these frequencies penetrates
the phonon spectrum, the corresponding component
should be spatially extended, which contradicts the as-
sumption that the eigenmode is localized.4 Therefore
two situations have to be considered when an isolated
eigenvalue collides with the continuous phonon spec-
trum, depending on the Krein signature of the collid-
ing eigenvalues.

When the Krein signature of the localized mode is
the same as those of the bands in the phonon spec-
trum, this localized mode extends and joins the eigen-
states of the phonon spectrum. No breather instability
occurs. Examples can be found in [1], where local-
ized modes were found to detach from the continuous
phonon spectrum and then go back towards it. How-
ever, the trace of the penetration of this mode inside
the extended bands can persist as a sharp positive vari-
ation of their phase shift (the wiggles) with amplitude
2π around some wave vectorql (resonance), the posi-
tion of which varies with the model parameters.5 See
[1] for the details.

On the other hand, when the Krein signatures are
different, a collision between the continuous phonon
spectrum and a localized eigenmode generally pro-
duces a real instability for the infinite system, in sharp

4 Of course, this argument should be amended when there
are symmetries in the model which vanish systematically some
of these harmonics. For example, the even harmonics would
vanish in a KG chain with a symmetric quartic potentialV (x) =
V (−x), instead of the cubic one considered here.

5 In [1] it is shown that the variation of the phase shift through
the band is related to the number of localized modes outside
the band.

contrast with the previously studied case of collision
of two continuous arcs of extended phonon modes.
This instability is also quite sensitive to size effects.
In some cases this instability is very weak and the cor-
responding eigenmode is so weakly localized that it
cannot be directly measured because the system size
which would be required for that goes beyond our nu-
merical capabilities (see an example in [1] for the “fil-
tering breather”).

The existence of this type of instability at large size
can be confirmed on the base of the following argu-
ments. In a finite system one can observe how the lo-
calized band develops a structure of gaps as it tries
to cross the extended bands. The situation is depicted
schematically in Fig. 6(a). For every particular band
of the extended phonon spectrum, this results in a lo-
cal sharp variation (phase-shift) ofθ , with the pecu-
liarity that the band may becomenon-monotonousat
that point. This is where the size effects appear. There
are many pairs of re-entrant instability and stability
thresholds associated with the gaps. For simplicity, the
schemes of Fig. 6 do not take into account any spatial
symmetry of the breather and assume that there is a
gap opening at each intersection.

For the same but large enough system, the discrete
phonon band determinations become univaluated, and
the breather becomes unstable as soon as the localized
mode collides with the first phonon band on one side.
There is no stability re-entrance until the localized
mode exits by one or the other side of the set of discrete
bands corresponding to the continuous spectrum of the
infinite system. This is depicted in Fig. 6(b).

Incidentally, we should mention that the mini-
mum system size beyond which the discrete bands
recover their monotonicity can be quite large, up to
N ' 1000 (as it can be predicted by accurate cal-
culations of the phase shift, using an alternative and
more efficient technique which requires only rela-
tively small systems; see [1]). Here we chose the
cubic KG model because it shows the phenomenon at
relatively small lattice sizes. On the other hand, we
remind the reader that the whole problem of localized
vs. extended modes in the spectrum of breathers is
intimately related to the transmission properties of
breathers with respect to phonons (by means of the
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Fig. 6. Scheme of the variation of the arguments of the Floquet matrix vs. a model parameter, when a localized mode collides
with the discrete phonon bands with different Krein signatures. Sequence of re-entrant instability and stability thresholds for a small
system (a) or for a large system (b). The shaded areas correspond to the instability regions resulting from the Krein crunches and
inverse crunches.

phase-shift). In particular the collision of localized
modes with the phonon spectrum has dramatic con-
sequences in the transmission coefficient, as explored
in [1].

5.1. Application of the band analysis

Now we are ready to explain in detail the stabil-
ity analysis of our cubic KG model, as obtained in
Figs. 3–5. Since in this case the single-oscillator band
is very flat and makes it hard to visualize the evolu-
tion of the crossings, we have sketched the main fea-
tures of the band analysis in the schemes of Fig. 7.
By “single-oscillator band” we refer to the one asso-
ciated to the central oscillator of the one-site breather,
which is necessarily anchored at 0,0 because it corre-
sponds to the phase-mode present in all autonomous
Hamiltonian systems.

The scheme of Fig. 7(a) shows the band analysis
diagram for a much lower couplingC than the one
used in Figs. 4 and 5. Here we observe how the lo-
calized band associated with the central oscillator col-
lides with the extended bands (point 1), producing an
instability gap which has been shaded in gray. The
scheme 7(a) is using onlyN = 7 lattice sites but

obviously tries to describe the features of a large sys-
tem, rid of size effects.

However, in our example, this instability region is
not relevant for the stability of the original breather:
the only possibility for this region to extend below
the line E = 0 would be by causing a tangent (or
“steady-state”) bifurcation, by means of point 1 of the
scheme approaching 0,0. This is so because this lo-
calized band is anchored at 0,0. While such tangent
bifurcation is possible and has been found in several
models [8], this is not the case in the cubic KG lat-
tice. Here follows an interpretation of the numerical
results.

First, one observes the birth of localized modes de-
taching from the bottom of the spectrum of phonons,
a process that has been analyzed in detail in [12].
In the scheme, this corresponds to a band being re-
pelled from the continuum of extended bands: it is the
band which is “hybridized” with the phase-mode band
aboveE = 0, at point 1. Because this band is asso-
ciated now to localized eigenmodes, it is capable of
producing instabilities when crossing the overlapped
bands, at point 2 in the scheme, much in the same
way as the previous instability zone discussed above.
It is this zone that becomes relevant in our example,
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Fig. 7. Schematic interpretation of the band analysis of Figs. 4 and 5: (a) the structure at low coupling C; (b) the structure at the
same coupling used in those figures,C = 0.25 (see text).

because at some larger coupling the bands move (as
depicted by the 3 little arrows), and point 2 eventu-
ally reaches the lineE = 0. In the Floquet unit circle,
this means that the leading edge of the phonon bands
have overlapped through−1 and caught the detached
localized mode, which has not had the time to reach
+1. At that point we have a true breather instability,
the one that shows up clearly in Fig. 3. At some larger
coupling, points 2 and 1 of the diagram have met and
the band analysis looks as depicted in Fig. 7(b), which
corresponds to the zoomed view in Fig. 5. In this sec-
ond scheme we have added six more lattice sites (now
N = 13) to make the ghost path of the localized band
through the extended bands more apparent, as in the
original numerical data.

Similar considerations could be made for thesecond
localized band detached from the continuum, which
was shown clearly in Fig. 4 in a stage at which finite
size effects were still present. However, for simplicity

in the exposition, we restricted our schematic drawings
to just the first localized mode.

6. Summary and conclusions

In summary, we briefly reported here on several as-
pects of finite size effects which may appear in studies
of linear stability of discrete breathers. We presented
some numerical calculations and sketched their in-
terpretation, which yielded the following conclusions
valid for an infinite system:
– The collision on the unit circle of two arcs of the

continuous phonon spectrum of eigenvalues of the
Floquet matrix does not generate a breather instabil-
ity, even when they have different Krein signature.

– The collision on the unit circle of a localized
eigenvalue with the continuous phonon spectrum
of eigenvalues, with different Krein signature, does
(generically) create a breather instability.
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