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lves (Nowak, 2006).
a b s t r a c t

One of the current theoretical challenges to the explanatory powers of Evolutionary Theory is the

understanding of the observed evolutionary survival of cooperative behavior when selfish actions

provide higher fitness (reproductive success). In unstructured populations natural selection drives

cooperation to extinction. However, when individuals are allowed to interact only with their neighbors,

specified by a graph of social contacts, cooperation-promoting mechanisms (known as lattice

reciprocity) offer to cooperation the opportunity of evolutionary survival. Recent numerical works on

the evolution of Prisoner’s Dilemma in complex network settings have revealed that graph

heterogeneity dramatically enhances the lattice reciprocity. Here we show that in highly heterogeneous

populations, under the graph analog of replicator dynamics, the fixation of a strategy in the whole

population is in general an impossible event, for there is an asymptotic partition of the population in

three subsets, two in which fixation of cooperation or defection has been reached and a third one which

experiences cycles of invasion by the competing strategies. We show how the dynamical partition

correlates with connectivity classes and characterize the temporal fluctuations of the fluctuating set,

unveiling the mechanisms stabilizing cooperation in macroscopic scale-free structures.

& 2008 Elsevier Ltd. All rights reserved.
1. Introduction

The Prisoner’s Dilemma (PD) models situations where
cooperation is expensive (Hamilton, 1964; Axelrod and Hamilton,
1981; Nowak and Sigmund, 2005; Nowak, 2006; Hofbauer and
Sigmund, 1998, 2003). In this two-players game, each individual
adopts (independently and simultaneously) one of the two
available strategies, cooperation (C) or defection (D); both receive
R under mutual cooperation and P under mutual defection, while
a cooperator receives S when confronted to a defector, which in
turn receives T, where T4R4P4S. Under these conditions,
defection is unbeatable1 and reaches fixation in a well-mixed
population of replicators. However, if individuals only interact
with their neighbors as dictated by the underlying network of
(social) contacts, several studies (Nowak and May, 1992; Killing-
back and Doebeli, 1996; Santos and Pacheco, 2005; Lieberman
et al., 2005; Abramson and Kuperman, 2001; Gómez-Gardeñes
et al., 2007; Poncela et al., 2007; Ohtsuki et al., 2006; Eguı́luz
et al., 2005; Santos et al., 2006; Szabó and Fáth, 2007; Szolnoki
ll rights reserved.
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er response to others than
et al., 2008; Vukov et al., 2008) have reported the asymptotic
survival of cooperation for TXR, on different types of networks.
Notably, cooperation even dominates over defection in scale-free
(SF) networks where the distribution density of local degree (or
connectivity) follows a power law (Santos and Pacheco, 2005;
Gómez-Gardeñes et al., 2007; Poncela et al., 2007). In these latter
structures, micro-motives and asymptotic macro-behavior are
much more complexly related and its degree heterogeneity offers
the opportunity of positive feedback evolutionary mechanisms
allowing cooperation to defeat defection, even not being a best
reply to itself (Nash).

In well-mixed populations, there is a transition at P ¼ S

between fixation of defection in the PD ðP4SÞ and strategies’
coexistence in the Hawks and Doves (HD) game ðPoSÞ. However,
in SF networks, it has been recently shown (Gómez-Gardeñes
et al., 2007) that there is a wide region of P4S where fixation of the
unbeatable strategy is generically an impossible event, under the
updating rule considered here (see below). In this region, there is
an asymptotic partition of the network into three sub-populations
(C, D, F). In C (and D), cooperative (and resp. defective) strategy
reaches fixation, while in F no fixation is possible and cycles of
node invasions follow indefinitely. In this way, the macroscopic
average index of cooperation hci has the form

hci ¼ rc þ rf hTci, (1)
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Fig. 1. Bipolar model network. Nodes 1 and 2 are connected to all nodes in F. Node

2 is also linked to all nodes in C. Connections inside F and C are arbitrary. The

colors represent a set of 2nF different initial configurations. Blue means defector,

red stands for cooperator and green means arbitrary strategy.
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where ðrc; rd; rf Þ is the measure of the partition’s sets, and hTci is
the average proportion of time spent by the fluctuating subpopula-
tion F as cooperators.

In this paper, we go one step forward in the characterization of
the dynamical organization of cooperation. Capitalizing on a
model network, we analytically argue that the type of partition
previously reported (Gómez-Gardeñes et al., 2007) also arises
generically in a much wider class of heterogeneous networks.
Scale-free networks are then further scrutinized to show the
continuous variation of the average level of cooperation and
the three kinds of strategists in a two parameter space covering
the PD game. Next, we show how the densities of the subpopula-
tions C and F are correlated with the structural division of the
network into degree classes, so unveiling the role of degree
heterogeneity in the evolutionary cooperation enhancement.
Additionally, the random variables describing fluctuations of
strategies in F are also analyzed numerically.

In what follows the payoffs are scaled to the reward for mutual
cooperation, R ¼ 1, and punishment for mutual defection is set to
P ¼ 0, so there are two free parameters T ¼ b41, and S ¼ �. The
PD corresponds to values of �p0. The players occupy the vertices
of a fixed graph (i.e. connections between players do not coevolve
with strategies) where agents are represented by nodes, and a link
between nodes indicates that they interact (play). We implement
the finite population analogue of replicator dynamics (Santos and
Pacheco, 2005; Gómez-Gardeñes et al., 2007) with synchronous
update.2 In this setting, a player i adopts the strategy of a
randomly chosen neighbor j with probability Pi!j ¼ bðPj � PiÞ,
being Pi and Pj the payoffs accumulated after playing with all their
neighbors once. If ki (kj) is the number of neighbors (connectivity
or degree) of agent i (j), and D is the maximal possible payoff
difference (D ¼ maxfb; b� �g), b ¼ ðmaxfki; kjgDÞ

�1 is related to the
characteristic inverse time scale. This updating rule has the
theoretical advantage of leading rigorously, in the well-mixed
population limit, to the celebrated replicator equation (Gintis,
2000). Note that (irrational) imitation of a neighbor with a lower
payoff is forbidden, a feature which is at the root of the existence
of the ðC;D;FÞ partition.

In an equilibrium configuration the probability of change in
one time step is null. For generic irrational values of b and �, only
all-C (fixation of cooperation) and all-D (fixation of defection) are
equilibria. However, in networks, the asymptotic state of evolu-
tionary dynamics is often not an equilibrium configuration under
the above rules (Gómez-Gardeñes et al., 2007). To see that this
generically holds for a wide class of heterogeneous networks, we
first consider a model network where we prove the existence of
the asymptotic partition (C;D;F), for a macroscopically large set
of initial conditions. The bipolar model network mimics a local
environment of a heterogeneous graph, with simplifications that
allow analytical insights. It is perhaps the minimal (though
general enough) network model where the partition can be
rigorously proved, so illustrating the dynamical organization of
cooperation in heterogeneous graphs.
2. A bipolar model network

Let us consider the graph schematized in Fig. 1, composed of
the following:
(a)
2

asyn
A component F of nF nodes with arbitrary connections among
them.
We have checked that the results are qualitatively the same using

chronous update.
(b)
 A node, say node 1, which is connected to all the nodes in F

and has no other links.

(c)
 A component C of nC nodes with arbitrary connections among

them.

(d)
 A node, say node 2, which is connected to all the nodes in F

and C, but not to node 1.
Consider the set of initial conditions defined by: (i) node 1 is a
defector, (ii) node 2 is a cooperator, and (iii) all nodes in
component C are cooperators. Note that this choice allows 2nF

different initial configurations. We now prove that, provided some
sufficient conditions (see below), this is an invariant set for the
evolutionary dynamics.

The payoff of a cooperator node i in F is Pc
i ¼ kc

iþ

1þ �ðki � kc
i þ 1Þ, where ki is the number of its neighbors in F

and kc
i pki is the number of those that are cooperators. The payoff

of node 1 is then P1Xðk
c
i þ 1Þb. For the PD game, where �o0, the

inequality P14Pc
i always holds, so that node 1 will always be a

defector.
The payoff of a defector node i in F is Pd

i ¼ ðk
c
i þ 1Þb, where kc

i

is the number of its cooperator neighbors in F, while the payoff of
node 2 is P2 ¼ nC þ nF�þ nc

F ð1� �Þ, where nc
FpnF is the number of

cooperators in F. Thus, a sufficient condition for P24Pd
i is

nC4IntðbðkF þ 1Þ � nF�Þ, where kF (onF) is the maximal degree
in component F, i.e. the maximal number of links that a node in
F shares within F. With this proviso, node 2 will always be a
cooperator, which in turn implies that all the nodes in the
component C will remain always cooperators.

This argument proves that provided the sufficient condition

nC4IntðbðkF þ 1Þ � �nF Þ, (2)

holds, the set of initial conditions defined by (i)–(iii) is an
invariant set: any stochastic trajectory starting in the set remains
there. Moreover, as no equilibrium configuration is included in
this set, one concludes that no trajectory from this set evolves to
an equilibrium configuration. While nodes in C and node 2 are
permanent cooperators, and node 1 is a permanent defector,
nodes in F are forced to fluctuate: at every time, a defector in F

has a positive probability to be invaded by the cooperation
strategy, and a cooperator in F has a positive probability of being
invaded by the defection strategy. In other words, every config-
uration in the set of initial conditions is reachable (in one time
step) from any other, thus it is almost sure that it will be reached
(ergodicity).

Along any stochastic trajectory starting from the set of initial
conditions the network is partitioned into three subsets, a set of
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pure cooperator nodes, a set of pure defector nodes and a set of
fluctuating individuals. The fluctuations inside the subpopulation
F reflect the competition for invasion among two non-neighbor-
ing hubs with fixed opposite strategies in their common
neighborhood, a local situation that occurs in heterogeneous
networks. It is also a schematic model for the competition for
influence of two powerful superstructural institutions like ‘‘mass
media’’, political parties, or lobbies on a target population.

Let us now obtain some exact results for the simplest choice of
topology of connections inside the fluctuating set, namely kF ¼ 0.
In this case each node in F is only connected to nodes 1 and 2.
Note that the sufficient condition for fixation of cooperation at
node 2 is, nC4b� �nF . Denoting by cðtÞ the instantaneous fraction
of cooperators in F, the payoffs of nodes 1 and 2 are

P1 ¼ bcnF ; P2 ¼ nC þ cnF þ �ð1� cÞnF ,

and the payoffs of a cooperator node and a defector node in F are,
respectively,

Pc ¼ 1þ �; Pd ¼ b.

Then one finds for the (one time-step) probability PCD of invasion
of a cooperator node in F

PCD ¼
cb� ð1þ �Þ=nF

2D
, (3)

and using the notation A ¼ �þ ðnC � bÞ=nF and B ¼ 1þ nC=nF

PDC ¼
Aþ cð1� �Þ

2DB
, (4)

for the probability of invasion of a defector node in F. Note that
A40 due to the non-invadability of node 2. At time t þ 1, the
expected fraction of cooperators is

cðt þ 1Þ ¼ cðtÞð1�PCDÞ þ ð1� cðtÞÞPDC ,

provided nFb1, the fraction of cooperators c in F, evolves
according to the differential equation

_c ¼ ð1� cÞPDC � cPCD,

which after insertion of Eqs. (3) and (4) becomes

_c ¼ f ðcÞ � A0 þ A1c þ A2c2, (5)

where the coefficients are

A0 ¼
A

2DB
,

A1 ¼
1� �� Aþ Bð1þ �Þ=nF

2DB
,

A2 ¼ �
1� �þ bB

2DB
. (6)

One can easily check (A040 and A2o0) that there is always one
positive root c� of f ðcÞ, which is the asymptotic value for any initial
condition 0pcð0Þp1 of Eq. (5). Thus, cooperation is never driven
to extinction even for large values of the temptation to defect b.

Back to the general case, i.e. arbitrary structure of connections
in F, it should be emphasized that the sufficient condition (Eq. (2)
above) does not impose bounds on the network’s average
connectivity hki, that can take on arbitrarily large values
independent of the game parameters. This result differs from
the bound on hki reported in Ohtsuki et al. (2006) and Nowak
(2006) for different stochastic updating rules in the weak
selection limit.
3. The partition ðC;D;FÞ in SF networks

Scale-free networks (Newman, 2003; Boccaletti et al., 2006)
are constructed here following the Barabási and Albert (1999)
(BA) model. For this purpose, one starts from a fully connected set
of m0 nodes and at each time step a new node is added and linked
to m nodes. These m nodes are chosen following the preferential
attachment rule, namely, the probability that node i receives a
new link is proportional to its degree, ki=

P
j kj. Avoiding multiple

connections and iterating the preferential attachment rule N �m0

times a network of N nodes and mean degree hki ¼ 2m is
constructed. The degree distribution of the resulting network is
a power law, PðkÞ / k�g, with exponent g ¼ 3. It is worth recalling
that scale-free networks constructed with the BA method do not
show degree–degree correlations between neighboring nodes.
In this way, the probability that a node of degree k is connected
to another one with degree k0 is independent of k,
Pðk0jkÞ ¼ k0Pðk0Þ=hki. The networks used in our simulations have
typically N ¼ 4� 103 nodes and hki ¼ 4.

We start the simulations from a network where agents have
the same probability of adopting either of the two available
strategies: cooperation or defection. Evolutionary dynamics is
then iterated over a fixed transient of 5� 103 generations. After
this transient we check whether or not the system has reached a
stationary state as given by the fraction, cðtÞ, of individuals that
are cooperators. We consider that the population is in equilibrium
when, taken over a time window of 103 additional generations,
the slope of cðtÞ is smaller than 10�2. Once the dynamical
equilibrium is reached the system is further evolved over 104

additional generations, and we identify the agents that act as pure
cooperators (defectors), i.e. those individuals that always co-
operate (defect). The dynamical patterns of the rest of the agents
(fluctuating nodes) are also stored during these 104 generations to
characterize the fluctuations (cycles of invasion). All the results
are averaged over at least 103 different realizations of scale-free
networks and initial conditions.

Fig. 2 shows the numerical estimates of the partition measure
ðrc ;rd; rf Þ as well as the average index of cooperation hci (i.e. the
overall fraction of time spent by all the nodes as cooperators
averaged over stochastic trajectories on all realizations) for BA
networks in the range of parameter values 1obo2:3 and
�0:25o�. These results convincingly show the generic existence
(as well as its sizeable importance) of the asymptotic partition
ðC;D;FÞ for the replicator dynamics (imitation of a neighbor of a
higher payoff proportional to payoff differences) of the PD game
on SF graphs. In fact, though limited to a smaller range of
parameter values, the partition is generic for general graphs, as
our own results in random Erdös-Renyi graphs corroborate
(Gómez-Gardeñes et al., 2007; Poncela et al., 2007). Thus the
question is how degree heterogeneity influences the partition
so enhancing the positive feedback mechanisms of network
reciprocity.
3.1. Strategy-degree correlations

To investigate in detail the role that degree heterogeneity plays
in the replicator dynamics in SF networks, we have measured the
proportions rðkÞa ða ¼ c; d; f Þ of each type of individuals inside the
class of nodes with degree k, for all values of k. Note that rðkÞc þ

rðkÞf þ rðkÞd ¼ 1 for each k, and denoting the degree distribution
density by PðkÞ (/ k�g for a SF network), one has that ra ¼P

kPðkÞrðkÞa for each a. For definiteness we consider hereafter in this
section a value of � ¼ 0, i.e., the so-called (Szabó and Fáth, 2007)
weak PD, at the borderline separating PD and HD. One should not
expect, however, qualitative differences when moving from it, as
suggested by results in Fig. 2.

In Fig. 3 we show rðkÞc (left panel) and rðkÞf (right panel) versus
log k and the temptation to defect b for BA networks. The figure
shows four clearly differentiated ranges of b values. The first one,
1obo1:7, corresponds to the regime where pure cooperation
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3 Note that the argument is consistent provided that the heterogeneous

network either has not degree–degree correlations (so that the neighbors of a node

of degree k have no preferential degrees) or the network is assortative (i.e.

neighbors of high degree nodes have preferentially also high degrees). We remind

that degree–degree correlations are absent in the (undirected) BA network.
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dominates the asymptotic behavior (i.e. 0:9prco1); in this range
only a small number of fluctuating individuals occupy some nodes
with low and intermediate degree k. In the second range,
1:7obo2, the fluctuating set fully invades the classes with low
values of k ðp11Þ, corresponding to the decrease of rc down to
10%. In the third range, the fluctuating set invades progressively
higher k-classes as b increases, with pure cooperators still
predominating in even higher k-classes. At around b ’ 2:9, only
nodes with the highest degree (hubs) remain as pure cooperators.
For larger values of b, the growth of rðkÞd at the expense of the
fluctuating individuals is, on the contrary, fairly insensitive to
the degree value, as inferred in the right part of the right panel of
Fig. 3.

The preferential fixation of cooperation at nodes with high
degree k when cooperation is very expensive can be understood
by the following plausible argument: A necessary (though non-
sufficient) condition for a node i to be a pure cooperator is that
(at a given time t) the number kc

i of instantaneous cooperators in
its neighborhood (i.e. the payoff of i in the current round) must be
greater than the current payoff of any instantaneous defector
neighbor j, that is, kc

i 4bkc
j . This condition is clearly favored when

the cooperator node i belongs to a high k class and its fluctuating
neighbors j belong to lower k classes.3 Furthermore, the imitation
of a successful (high payoff) cooperator by its neighbors reinforces
its future success (Santos and Pacheco, 2006), then favoring the
fixation of cooperation in highly connected nodes. On the
contrary, the imitation of a successful defector undermines its
future success, so that defection cannot take long-term advantage
from degree heterogeneity.
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In the left panel of Fig. 3, for b42, one observes that at fixed
value of b, rðkÞc varies rather quickly from 0 to 1 in a small interval
of values of k centered around some b-dependent value k�ðbÞ, so
that the nodes with degree k4k�ðbÞ are mostly pure cooperators
and those with degree kok�ðbÞ are mostly fluctuating (see right
panel, 2obo2:9). In the absence of degree–degree correlations
the degree distribution density in the neighborhood of a given
node is independent of the node degree, and thus the proportion
of cooperators in the neighborhood of a given node is that of the
whole network. This implies that the necessary condition for a
pure cooperator i, stated in the previous paragraph, becomes
ki4bkj, where j is the fluctuating neighbor of i with highest
degree, say kj ’ k�. Now, a small increase Db makes those pure
cooperators i fulfilling ðbþ DbÞk�4ki4bk� to become fluctuating,
so that Dk� ’ k�Db. With these provisos one concludes that k�ðbÞ

grows exponentially with b, k�ðbÞ / expðbÞ. The linear shape of the
bright-color line in the ðb; log kÞ plane at the left panel of Fig. 3, for
b42, nicely confirms this prediction, so supporting the validity of
the heuristic argument.
3.2. Fluctuations

We have noted that the fluctuating subpopulation in the
bipolar model is such that any fluctuating individual has a positive
probability of changing strategy in one time step, so that the
dynamics is ergodic in the set of all configurations compatible
with the partition. This is not necessarily the case in a general
heterogeneous network, being perfectly possible that a fluctuating
node at a given time has a null one-time-step probability of
invasion, but a positive n-time-steps probability for some n41;
thus, ergodicity in the set of configurations compatible with the
partition is neither ensured nor discarded.

In SF graphs each fluctuating individual is wired to (and then
invadable by) a different number of fluctuating individuals, and
(eventually) pure strategists, so that one should expect that the
fraction of time Tc it spends as cooperator differs widely from
node to node. The lower panel of Fig. 4 shows the average fraction
of time T ðkÞc a fluctuating node of degree k spends cooperating. The
average of these quantities

P
kPðkÞTðkÞc in the subpopulation F,

defines the parameter hTci that appears in Eq. (1), i.e. the average
individual contribution of fluctuating nodes to the macroscopic
index of cooperation hci. To avoid misunderstandings concerning
the relative importance of the contribution of connectivity classes
to hci, it is important to bear in mind both, the power-law shape of
PðkÞ and the left panel of Fig. 3, showing the fraction rðkÞf of
fluctuating nodes inside the class of degree k.

In the extent that Tc is a proportion of time, it does not provide
information on the time scales of the invasion cycles that
fluctuating nodes experience. The random variable tc (cooperation
permanence time) is defined as the time spent as cooperator by a
fluctuating node in each cycle. For the bipolar network, when
kF ¼ 0, the one time step invasion probabilities, PCD and PDC

(Eqs. (3) and (4)) become time independent in the asymptotic
regime. Then one can compute the probability that the coopera-
tion strategy remains for a time tcX1 at a fluctuating node, simply
as PðtcÞ ¼ PCDð1�PCDÞ

tc�1. In a similar way, the distribution
density PðtdÞ of defection permanence times is obtained as
PðtdÞ ¼ PDCð1�PDCÞ

td�1. Thus the distribution densities of both
strategies permanence times are exponentially decreasing. For
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J. Gómez-Gardeñes et al. / Journal of Theoretical Biology 253 (2008) 296–301 301
example, at � ¼ 0, i.e. at the border between the PD and the HD
game, if one further assumes that the relative size mðFÞ of the
component F is large enough, i.e. mðFÞ ! 1, and mðCÞ ! 0, one
obtains that the stationary solution of Eq. (5) behaves as c� ’

ðbþ 1Þ�1 near the limit mðFÞ ! 1. The distribution density PðtcÞ of
the cooperation permanence times of a fluctuating node, as a
function of the parameter b is thus

PðtcÞ ¼ ð2bþ 1Þ�1 2bþ 1

2bþ 2

� �tc

, (7)

and the distribution density PðtdÞ of defection permanence times

PðtdÞ ¼ ð2bðbþ 1Þ � 1Þ�1 2bðbþ 1Þ � 1

2bðbþ 1Þ

� �td

. (8)

For SF networks, one expects that the permanence times at the
fluctuating nodes show some correlation with the node’s degree.
The upper panel of Fig. 4 represents the average permanence time,
tðkÞc , that fluctuating nodes of degree k remain as cooperators as a
function of b and k, for observation times of 104 generations. We
see that cooperation permanence times are strongly correlated
with degree: highest tc ’s occur along the line k�ðbÞ of maximal
degree in the fluctuating set.

As noted before, the heterogeneity of social contacts in SF
networks provides local environments where cooperation has a
distinctive selective advantage at high degree nodes. This not only
enhances the size of the subpopulation where fixation of
cooperation occurs, but also enlarges the average total fraction
of time of cooperation in the fluctuating subpopulation.

Moreover, the picture emerging from the strategists’ partition
in heterogeneous graphs indicates that individuals are effectively
organized in such a way that a fraction of pure cooperators is
isolated from contacts with the fluctuating population, and thus
safe from invasion. This ‘‘Eden of cooperation’’, provides a safe
source of benefits to those highly connected pure cooperators in
the frontier (Gómez-Gardeñes et al., 2007), reinforcing the
resilience to invasion and providing a stabilizing feedback
mechanism for the survival of cooperation. Hence, heterogeneity
of social contacts enhances the lattice reciprocity, thus preventing
the fixation of the defection strategy even when cooperation is
expensive.
4. Conclusions

In this paper, we have further analyzed the dynamical
organization of strategies when the strategists are coupled
through heterogeneous topologies. We have presented analytical
insights derived from a model network that mimics the competi-
tion for invasion of two highly connected nodes where strategies
have reached fixation. Under the hypothesis that the players
imitate a neighbor with a higher payoff proportionally to the
payoff differences, we have shown that fixation of any strategy in
the whole population is an impossible event when there is some
degree of heterogeneity in the network of contacts. Furthermore,
the strategists’ partition into three sets for SF networks has been
shown to be correlated with structural properties such as the
degree of the nodes. Nodes with higher degree are mainly
occupied by pure cooperators or fluctuating strategists who spend
most of the time cooperating. In this way, the overall dynamical
picture that emerges is that of a set of pure cooperators placed on
highly degree classes interacting with members of the fluctuating
set that on its turns occupy lower levels in the degree hierarchy of
the network. In all, this provides cooperation with a stabilizing
mechanism that does not allow defection to be fixated in the
whole population.
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