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Abstract

The linear and cubic dynamic susceptibilities of solid dispersions of nanosized maghemite c-Fe
2
O

3
particles have been

measured for three samples with a volume concentration of magnetic particles ranging from 0.3% to 17%, in order to
study the e!ect of dipole}dipole interactions. Signi"cant di!erences between the dynamic response of the samples are
observed. While the linear and cubic dynamic susceptibilities of the most dilute sample compare reasonably well with the
corresponding expressions proposed by Raikher and Stepanov for noninteracting particles, the nonlinear dynamic
response of the most concentrated sample exhibits at low temperatures similar features as observed in a Ag(11 at% Mn)
spin glass. ( 2000 Elsevier Science B.V. All rights reserved.
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1. Introduction

The magnetic response of single-domain mag-
netic particles has been in focus since the pioneer-
ing work of NeH el [1] and Brown [2]. In the case of
noninteracting particles, experiments on both indi-
vidual particles [3] and assemblies of particles (see,
for instance, Ref. [4,5]), reasonably well support the

existing models [2,6}11]. These have mainly con-
centrated on the study of relaxation times and the
linear dynamic susceptibility.

For interacting magnetic particles it has recently
been shown that dipole}dipole interactions intro-
duce collective behavior, as evidenced by the
appearance of magnetic aging and a signi"cantly
broadened magnetic relaxation at low temper-
atures [12,13]. Moreover, the dynamics of a
magnetic particle system of monodispersive nature
is indicative of critical slowing down at a "nite
temperature [14], implying the existence of a
low-temperature spin glass like phase.

Much less work has focused on the nonlinear
response of magnetic particles. Bitoh and co-
workers studied experimentally the cubic dynamic
susceptibility of (nominally) noninteracting cobalt
nanoparticles [15}17].
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On the theoretical side, expressions for the dy-
namic nonlinear susceptibility in the simplest case
* noninteracting particles without magnetic an-
isotropy* can be found by simply translating the
expressions obtained for the analogous dielectric
relaxation problem [18] (a rederivation of s

3
(u) for

isotropic dipoles is presented in [19]). However, the
inclusion of magnetic anisotropy, even at the level
of the equilibrium response, is more involved and it
is only recently that this has been done for systems
with the simplest uniaxial anisotropy [20}22]. Of
special interest is the work of Raikher and
Stepanov [21], who solved the Fokker}Planck
equation, in the overdamped case, to obtain numer-
ically exact results for the linear and cubic dynamic
susceptibilities. They also suggested approximate
analytical expressions for these quantities.

In the case of interacting magnetic particles, ex-
perimental work related to the nonlinear magnetic
response are even more scarce [23,24]. However, in
a recent study it was shown that the equilibrium
nonlinear response of an interacting magnetic par-
ticle system of monodispersive nature indicates that
the cubic equilibrium susceptibility diverges at
a "nite temperature [24], thus providing further
evidence for a low-temperature spin glass like
phase. To the best of our knowledge, no experi-
mental work has been reported for the dynamic
nonlinear response of interacting particles.

In this paper, we study the linear and cubic
dynamic susceptibilities of a magnetic particle sys-
tem consisting of nanosized maghemite particles.
The e!ects of inter-particle interactions are investi-
gated by studying three samples with di!erent vol-
ume concentrations of particles.

2. Experimental

The experiments were performed on samples
consisting of nanosized maghemite (c-Fe

2
O

3
) par-

ticles, with a mean diameter of 7 nm and almost
spherical shape (observed in TEM analysis) [25]3.
The particles were suspended in a hydrocarbon oil
and coated with a surfactant layer preventing the

particles from agglomerating. Since the measure-
ments were performed at low temperatures, the oil
was frozen and the particles "xed randomly in
the sample. Three samples with di!erent volume
concentration of particles, 0.3%, 3%, and 17%,
were used. Experiments were also performed
on a Ag(11 at%)Mn spin glass sample exhibiting
long-range spin}spin interactions of RKKY type.

Two di!erent experimental equipments have
been used: (i) a commercial AC-susceptometer4 was
used to measure the "rst and third harmonics of the
magnetization for di!erent AC-"eld amplitudes in
the range 100}2000A/m; (ii) a noncommercial low-
"eld superconducting quantum interference device
(SQUID) magnetometer [26] was used to perform
studies of the frequency dependence of the linear
and cubic dynamic susceptibilities. Frequencies in
range of 2}200Hz were used.

The magnetization, M, can be expanded with
respect to an applied "eld H as

M"sH#s
3
H3#2, (1)

where s is the linear susceptibility and s
3

the cubic
susceptibility. The dynamic response can be probed
by applying an AC-"eld, H"h

0
cos(ut). The linear

susceptibility is then obtained from the magneti-
zation measured at the fundamental frequency as
s(u)"Mu/h

0
and the cubic dynamic susceptibility

is obtained from the third harmonic of the magnet-
ization as 1/4s

3
(u)"M

3u/h3
0
. These expressions

are only valid if the applied AC-"eld is su$ciently
low, so that contributions from higher order terms
in the expansion of Mu and M

3u are negligible.
For the measurements of the linear and cubic
dynamic susceptibilities we used, in contrast to
Refs. [15}17], di!erent AC-"elds to ascertain that no
mixing with higher order susceptibilities occurred.

3. Theoretical background

3.1. Equilibrium susceptibilities

The linear and cubic equilibrium susceptibilities
of a monodispersive system with uniaxial anisotropy
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Fig. 1. The real (a) and the imaginary (b) parts of the linear
susceptibility vs. temperature for three samples with di!erent
volume concentration of magnetic particles. u/2p"125Hz and
h
0
"100A/m. Inset: the imaginary part of the linear susceptibil-

ity vs. temperature for the 0.3 and 17 vol% samples. The di!er-
ent curves correspond to di!erent frequencies; for the 17 vol%
sample u/2p"15, 125 and 320Hz and for the 0.3 vol% sample
u/2p"2, 20 and 200Hz.

and randomly distributed anisotropy axes, are
given by [20,21]

s%2(¹)"
k
0
M2

4
<

3k
B
¹

, s%2
3
"!

k3
0
M4

4
<3

(k
B
¹)3

(1#2S2
2
)

45
,

(2)

where< is the particle volume, M
4
the spontaneous

magnetization, and

S
2
(p)"Z~1P

1

~1

P
2
(z) exp(pz2) dz. (3)

Here P
2
(z)"(3z2!1)/2 is the second Legendre

polynomial, p"K</k
B
¹, where K is the uniaxial

anisotropy constant, and Z":1
~1

exp(pz2) dz is the
partition function in the absence of applied mag-
netic "eld. (In Ref. [27], Eq. (2) has been generalized
for arbitrary anisotropy.)

3.2. Dynamic susceptibilities

Raikher and Stepanov [21] have studied theoret-
ically the linear and cubic dynamic susceptibilities
of noninteracting single-domain particles with
uniaxial anisotropy, by solving numerically the
Fokker}Planck equation in the overdamped case.
It is di$cult to derive analytical expressions for
these quantities, but for a particle system with ran-
domly distributed anisotropy axes, they suggested
the following simple formula for the linear dynamic
susceptibility:

s(¹,u)"s%2C
1

3

1#2S
2

1#iuq
#

2

3
(1!S

2
)D. (4)

This expression has been shown to be a good ap-
proximation to the exact linear dynamic suscepti-
bility for frequencies below ferromagnetic
resonance (see, for instance, Refs. [28,29]. In the
above expression q is the relaxation time, for which
various analytical expressions are available (see, for
instance, Ref. [30]). In the moderate-to-high en-
ergy-barrier case, the relaxation time is given by an
Arrhenius law as q"q

0
exp(p), where q

0
is approx-

imately a constant. Raikher and Stepanov also pro-
posed an expression for the cubic dynamic
susceptibility in the overdamped case, namely

s
3
(¹,u)"s%2

3

(1!iuq)
(1#iuq)(1#3iuq)

(5)

which they showed [21] to be a good approxima-
tion of the exact s

3
in the low frequency regime.

4. Experimental results

The linear susceptibilities for the three
maghemite samples measured at the frequency
u/2p"125Hz and with an AC-"eld amplitude of
100A/m are shown in Fig. 1. Because of the low
particle concentration, the magnetic response of the
most dilute sample is close to that of noninteracting
particles. Dipole}dipole interactions shift the sus-
ceptibility peaks to higher temperatures, lower the
magnitude of the peaks, but produce a slightly
higher equilibrium susceptibility.

The frequency dependence of the out-of-phase
component can be used as an indicator for the
importance of including dipole}dipole interactions
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Fig. 2. The real (a) and the imaginary (b) parts of the cubic
susceptibility vs. temperature for three samples with di!erent
volume concentration of magnetic particles. u/2p"125Hz and
h
0
"200A/m.

Fig. 3. The real (a) and the imaginary (b) parts of the cubic
dynamic susceptibility vs. temperature for the Ag (11 at%Mn)
spin glass sample. The linear susceptibility is shown in the insets.
u/2p"125Hz and h

0
"1600A/m.

to explain the behavior of a nanoparticle system. In
Fig. 1 it is seen that the height of the peak in s@@ for
the 0.3 vol% sample is almost constant with fre-
quency, as expected for a noninteracting system
[4,5], while the height of the peak increases with
increasing frequency for the 17 vol% sample.

Fig. 2 shows the corresponding cubic susceptibil-
ities measured with an AC-"eld amplitude of
200A/m. Similar to the linear susceptibility case,
dipole}dipole interactions shift the susceptibility
peaks to higher temperatures and reduce their mag-
nitudes. The sample with the highest concentration
of particles exhibits a second positive peak at low
temperatures in both the real and imaginary com-
ponents of the cubic susceptibility.

Finally, Fig. 3 shows the susceptibility of
a Ag(11 at% Mn) spin glass measured at the fre-
quency u/2p"125Hz and with an AC-"eld
amplitude of 1600A/m. The real part of the linear
susceptibility has a sharp cusp at about the same
temperature as where there is a sudden rise from
zero of the imaginary part. The two components of
the cubic susceptibility have sharp negative peaks
at high temperatures followed by broad positive
peaks at low temperatures.

5. Discussion

5.1. Noninteracting particles

It is important that e!ects of interaction are
negligible in the experimental system, in order to be
able to compare the measured susceptibilities with
theoretical expressions for noninteracting particles.
In an earlier study [12], the linear susceptibility of
the most dilute sample used in the present work
(0.3 vol%) was compared to that of an even more
dilute sample (0.03 vol%). The linear susceptibility
is identical for the two samples above 30K, and
below it di!ers only by a few percent. A second
evidence for the 0.3 vol% sample being close to
noninteracting is that the height of the peak in the
linear out-of-phase component is approximately
frequency independent (Fig. 1). In the only previous
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published work on nonlinear susceptibility for
&noninteracting' particles the peak height of the
linear out-of-phase component (see Fig. 2 in Ref.
[15,16]) had a similar strong frequency dependence
as that of the 17 vol% sample used here, which
gives clear evidence that the particle system was
interacting and therefore not suitable for compari-
son with theoretical expressions for noninteracting
particles. This assertion is also con"rmed by the
poor agreement found between calculated and
measured sA(¹,u) curves in Ref. [17, Fig. 7] in this
reference).

To compare the measured susceptibilities with
the theoretical expressions in Section 3, the polydis-
persivity of the particle system needs to be taken
into account. The conventional approach is to
choose a trial volume distribution and to deter-
mine its parameters by "tting theoretical curves to
experimental data. We used the Nelder}Mead
simplex method to perform nonlinear "tting to the
measured linear and cubic susceptibilities. The
"tting parameters apart from the volume distribu-
tion were the anisotropy constant and the
pre-exponential factor (q

0
) in the expression

for the relaxation time. To get the temperature
dependence of the spontaneous magnetisation, we
used the result from Ref. [4,5], namely,
M

4
(¹)"M

4
(0)(1!1.8]10~5¹3@2), with M

4
(0)"

4.2]105A/m.
The best "t was obtained using a volume distri-

bution of gamma type, given by

g(<)"
1

C(1#b)<
0
A
<

<
0
B

b
exp(!</<

0
), (6)

where <
0
"210 nm3 and b"0.34. This corres-

ponds to a mean particle diameter of 8 nm, which is
slightly larger than the mean particle diameter of
7 nm observed in TEM studies [25] (see foot note
3). The uniaxial volume anisotropy constant was
K"1.2]104 J/m3 and q

0
"2.1]10~10 s. The "ts

are shown in Fig. 4 for two frequencies of the AC-
"eld. We also used a log-normal volume distribu-
tion, surface anisotropy, and expressions for the
relaxation time di!erent from the simple Arrhenius
law, but none of these changes improved the
quality of the "ts signi"cantly. Better "ts are only
obtained when "tting the linear and cubic suscep-

tibilities separately, but the extracted parameters in
the two cases are then di!erent.

The discrepancies between the calculated and the
measured susceptibilities may have several possible
origins. One obvious origin is that the models used
for the polydispersivity of the system are too simple
and that the real situation is more involved (distri-
butions in particle shapes, spontaneous magneti-
zations, etc.). It may also be that the symmetry of
the magnetic anisotropy is signi"cantly di!erent
from uniaxial (because of the geometrical shape of
the particles, the magnetocrystalline anisotropy or
even con#icting shape/magnetocrystalline anisot-
ropy). However, the lack of theoretical expressions
for the dynamic susceptibilities of systems with
nonuniaxial anisotropy, does not allow us to inves-
tigate this possibility.

Another possible cause for the observed di!er-
ences relies on details of the Fokker}Planck equa-
tion used in the work of Raikher and Stepanov
[21], who studied the overdamped (j<1) case
(j is the damping constant in the stochastic Land-
au}Lifshitz equation from which the Fokker}
Planck equation is derived). However, the most
reliable values of the damping constant reported
for magnetic nanoparticles are in the range 0.05}0.5
[31]. Although for uniaxial particles, the form of
the dynamic linear susceptibility curves is not very
sensitive to the value of j (it essentially changes the
value of q

0
), the same does not hold for the nonlin-

ear response, and a signi"cant dependence of s
3
(u)

on the damping parameter has recently been
predicted [32].

5.2. Interacting particles

In a model often used to analyze the dynamics of
interacting particles [33,34], the e!ect of inter-par-
ticle interactions is accounted for by shifting the
energy barrier distribution to higher energies and
thereby increasing the relaxation times. For the
particle system investigated here, it has previously
been shown that the low-temperature magnetic re-
laxation of the most interacting sample is qualita-
tively di!erent from that of the noninteracting
sample [13]. For instance, the relaxation time spec-
trum broadens signi"cantly with the interactions
and cannot be reduced to that of noninteracting
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Fig. 4. The linear and cubic susceptibilities vs. temperature for the sample with a volume concentration of 0.3 vol%. Solid and dashed
lines give the calculated susceptibilities using a gamma volume distribution, while the symbols give the corresponding experimental
results.

particles shifted to longer time scales. This together
with the observed aging e!ect [12] clearly shows
that the low-temperature magnetic relaxation is
dominated by collective particle dynamics. This
makes it interesting to compare the low-temper-
ature behavior of the most interacting sample to
that of a typical spin glass with long-range interac-
tions.

The cubic susceptibility of the AgMn spin glass
(Fig. 3) shows a low-temperature positive peak
similar to that of the most concentrated particle
sample (Fig. 2). To explain this low-temperature
positive peak, we will make use of the phenom-
enological droplet scaling theory [35,36] developed
to describe both equilibrium and nonequilibrium
behavior of spin glasses. In this model, following
a quench to low temperature, the spin con"gura-
tion can be decomposed into fractal domains of
many length scales belonging to either of two spin

glass ordered equilibrium states. The system will
lower its energy by decreasing the amount of inter-
face between the equilibrium states. This process
begins by removing small domains and involves
creation and/or annihilation of droplet excitations
with a typical size similar to the domain sizes
removed. Energy barriers for creation and anni-
hilation of droplet excitations of length scale ¸,
thus opposing the equilibration process, scale as
B(¸)&¸t, where the barrier exponent t depends
on the dimensionality of the spin system. With time,
larger and larger domains are removed and the
characteristic length scale of domains after a time
t is RJ[¹ln(t/q

0
)]1@t.

In an AC susceptibility experiment, the polariza-
tion of droplets of size ¸uJ[!¹ ln(uq

0
)]1@t is

probed. The time dependence of the AC susceptibil-
ity observed at low temperatures is closely connec-
ted to the aging process; at constant temperature,
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both s@ and sA decrease with time. For droplets
close to interface regions, the excitation energy is
lower, yielding a correction to the density of active
droplets. With equilibration time at constant tem-
perature, the amount of interface region decreases
and at the same time the density of active droplets
decreases.

According to the droplet model, there is no spin
glass transition in a "eld; the magnetic correlation
length, m

H
, is the length scale above which the "eld

destroys the zero-"eld equilibrium spin glass states.
Zero-"eld droplets of size <m

H
will, when the "eld

is applied, be broken up into many smaller droplets
of size m

H
. These droplets are inactive on the time

scale of the AC susceptibility measurement, having
a size m

H
<¸u , but will increase the amount of

interface regions and thus, on average, decrease the
excitation energy of active droplets. Applying
a &large' "eld, we thus expect an increase of both s@
and sA and a positive nonlinear susceptibility. The
e!ect is expected to be largest in the temperature
range where the in#uence of magnetic aging is
largest, which for the most concentrated particle
sample corresponds to temperatures ¹(40K.

At higher temperature, the behavior of the inter-
acting nanoparticle sample is qualitatively di!erent
from that of the spin glass. For the nanoparticle
sample, with increasing temperature, the time scale
of the collective dynamics is gradually shifted to
shorter time scales and the slow magnetic relax-
ation remaining is due to single-particle relaxation
of large particles (still in#uenced by smaller super-
paramagnetic particles surrounding them). This
gradual change of the magnetic relaxation with
increasing temperature, from collective to single-
particle dynamics, obstructs the observation of
critical slowing down in this particle system. For
the same reason, it will not be possible to observe
a divergent cubic equilibrium susceptibility and all
features are broader in temperature as compared to
the corresponding features observed for the spin
glass sample.

The high-temperature equilibrium susceptibility
of the 17 vol% sample is larger than that of the
noninteracting sample (cf. Fig. 1). This takes place
because the local "eld acting on any particle mo-
ment contains a contribution from the dipole mo-
ments of all other particles in the system. For

a random system, like a frozen ferro#uid, this con-
tribution can be decomposed into two parts; the
demagnetising "eld and the Lorentz cavity "eld.
The implication is that the local "eld will be larger
than the applied "eld for elongated samples when
magnetised along the long axis. This is consistent
with the shape of the studied sample, which is
elongated along the probing "eld direction.

As for the increase of the equilibrium nonlinear
susceptibility with increasing interaction we do not
have such a simple argument as in the linear case.
However, we believe that it is again related to the
shape of the sample, and that either an increase or
a decrease of the equilibrium nonlinear susceptibil-
ity could be attained by just changing the geometry
of the system.

6. Summary and conclusions

In this work, detailed studies of the dynamic
nonlinear susceptibility on magnetic nanoparticle
systems exhibiting di!erent degrees of interparticle
interactions have been performed. The results for
the most dilute sample enable for the "rst time
a reliable comparison with theoretical expressions
for the nonlinear susceptibility of noninteracting
particle systems. Comparing separately the linear
and nonlinear dynamic susceptibilities to the corre-
sponding theoretical expressions, good "ttings are
obtained but with di!erent values of the "tting
parameters. This is also consistent with the di!er-
ences observed between calculated and measured
susceptibilities when the linear and nonlinear dy-
namic susceptibilities are taken into account simul-
taneously in the "tting procedure. The discre-
pancies thus found call for further theoretical devel-
opments, for instance by generalizing the theoret-
ical expression for the dynamic nonlinear
susceptibility to arbitrary symmetry of the mag-
netic anisotropy or to arbitrary values of the damp-
ing constant j [32].

The dynamic nonlinear response of the most
interacting sample is compared to that of a AgMn
spin glass. In the low-temperature regime, both
samples display the same characteristic behavior
with a broad positive peak in both components of
the nonlinear susceptibility. This behavior of the
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nonlinear susceptibility, which has not been ob-
served previously, is closely connected to the ap-
pearance of magnetic aging and is therefore
attributed to the nonequilibrium behavior asso-
ciated with disordered and frustrated spin systems.
At higher temperature, the behavior of the interac-
ting nanoparticle sample is qualitatively di!erent
from that of the spin glass. While the results of the
spin glass sample indicate a divergent nonlinear
susceptibility, the features observed in the nonlin-
ear susceptibility of the nanoparticle sample are
much broader in temperature. This is an e!ect
caused by the polydispersivity of the particle sys-
tem investigated here; with increasing temperature,
there is a gradual change from collective to single-
particle response.
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