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Flux-lattice noise and symmetry breaking in frustrated Josephson-junction arrays

N. Grgnbech-Jensen,* A. R. Bishop, F. Falo,T and P. S. Lomdahl
Theoretical Division and Advanced Computing Laboratory, Los Alamos National Laboratory, Los Alamos, New Mexico 87545
' (Received 28 May 1992)

Long-time dynamics simulations of large (128 X 128) two-dimensional arrays of Josephson junctions in
a uniformly frustrating external magnetic field are reported. The results demonstrate (i) a noisy trans-
verse voltage response to an applied current, and (ii) the dependence of the noise on both positional dis-
order and intrinsic dynamical symmetry breaking induced by boundaries as nucleation sites for flux-
lattice defects, which propagate into the interior and control the noise characteristics.

Arrays of Josephson junctions (JJA) provide an excel-
lent controlled laboratory! in which to study effects of ex-
tended nonlinear dynamical systems: space-time chaos,
coherence, pattern formation, etc.! ™3 In this work we
take advantage of recent advances in large-scale, long-
time Langevin dynamics simulation capabilities® to study
noisy (i.e., multitime-scale) voltage responses, and their
relation to multilength scales, in current driven JJA’s in
the presence of a uniform extended magnetic field which
frustrates the flux order. We find noisy voltage responses
around a *stick-slip”-type threshold for flux flow, provid-
ing an explicit example of self-organized criticality®
space-time.

1/f noise has become interesting in high-temperature
and conventlonal superconductors recently because of ob-
servations®in SQUID’s. It has been interpreted variously
in terms of “flux-bundle” dynamics or more microscopi-
cally in terms of the influence of quasiparticle or conduc-
tance fluctuations.’ Our emphasis here, for JJA’s, is in
terms of the dynamics of flux defects (defined with respect
to a ground-state flux order), and, in particular, the
influence of symmetry breaking from boundary condi-
tions. In this way our geometry (see below) provides an
example of symmetry breaking in a dynamical system, as
studied by symmetry group analysis in other extended
dynamical systems such as convection cells.” We find
that our boundary conditions may induce symmetry
breaking through intrinsic dynamics in a noisy regime.
Furthermore, we find that the symmetry breaking occurs
through flux defects which nucleate at the boundaries
and then propagate into the sample interior, providing
macroscopic noise. This is again similar to phenomena
observed in other extended dynamical systems, e.g., tur-
bulent fluid regimes,® but here we report that the symme-
try breaking causes a transverse voltage response to the
applied current.

The Hamiltonian for the JTA takes the form! ™3

éij=5in(9ij+l_6ij_Au ij+10)tsin(8; _—0,;— 4,
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where §;;=1 for i=jand 8,,=0 for i7j. Time is nor-
malized to 7=(Cyfi/2eI,)"?, 2, the normalized dissipation
is given by n=(1/R )(ﬁ/ZeCoIO)”2 with R the normal
resistance of the junctions, and C, is the capacitance be-
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where 6;; is the phase of the superconducting island with
the dlscrete coordinates (i,7) [(, {)E [1,N]X[1,N]] of
the lattice, and A4;;;; =(2e /#ic) f A.dlis the mtegral of
the vector potential from island ij to a neighboring island
kI [see also Eq. (4)]. The critical current of the supercon-
ducting islands is given by I,=(2e /A}E, and the applied
current forced through the boundary conditions is given
by I,=(2e/#)E,. The A;; ;; summed around a plaquette
obeys the following relation:

At Ayp—1t Ag—y—r,5-11 Ayj—1 ;=27f ,
where the frustration f =Ha?/®, is a constant giving the
average number of flux quanta ®,=hc /2e of the external
magnetic field H through the area a? of each plaquette of
the array. We also introduce®? the fractional charge g;;,
obtained as the gauge-invariant phase sum around the

ijth plaquette:
_ 1
qij_ﬁ[(eij_eij_l_x‘ilj_l i )modﬂ r
+(611—1_6i—1j—1_'Ai—lj—l,ij—l)mOdW
+(6; 1j—1—6;—1;— 4;-1j;—1j—1)mod7
+(6;—1;—0;— 4, _,;)modw] . 2)

Two situations are discussed in detail below: (a) f=1
uniformly [in this case g;; =+, forming a checkerboard
ground state, and thus it is sometimes convenient to in-
troduce the staggered order parameter g, 7y =(—1)"*g.1;
(b) f=1 with static Gaussian disorder!® of the positions
of the supcrconducting islands.

The dynamical equation for the quantum-mechanical

phases takes the form, in the resistively shunted junction
(RSY) model,?

Agji+rj)
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I
tween a superconducting island and the ground plane.

Finally, the normalized bias current is given by
J,=1,/1I, and voltage is normalized to #/2er. As ex-
plained in Ref. 2, this choice is appropriate for model lo-
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cal capacitance coupling of each superconducting island. .
Temperature can also be introduced, in a classical
Langevin sense, as explained in Ref. 2.

The results reported here are restricted to n=5 (over-
damped dynamics), and uniform dc current driving along
two edges of the array. Open boundary conditions are
used on all edges—this is in contrast to our earlier study?
where periodic boundary conditions were introduced on
the two undriven edges. We also study only the maximal
frustration case: f=1 uniformly throughout the array.
The array size is given by N =128, making the frustration
commensurate. In addition, there are no edge effects oth-
er than via the boundary conditions. For details about
the numerical method of integration, see Ref. 2. In all
our simulations, we have followed the system in 40000
normalized time units and the integration step size has
been varied in order to secure numerical convergence.

Throughout the regimes outlined in Ref. 2, the period-
ic boundary conditions on the undriven edges of the ar-
ray, with uniform driving at the other edges, lead to per-
fect one-dimensional (1d) responses, i.e., uniform flux dis-
tributions in the y direction. This symmetry is, of course,
broken if thermal noise is applied,” but we report here
that it can also be broken by thé dynamics if the bound-
ary conditions are changed from periodic to open. This
represents a striking example of the role of symmetry and
boundary conditions on space-time dynamical
responses—as observed in other finite extended dynami-
cal systems, e.g., fluid turbulence,® where the role of
boundaries and boundary layers as nucleation sites for
space-time defects, which eventually dominate macro-
scopic responses.

Figure 1 shows the V-J, characteristic with uniform
edge driving (at the vertical edges) for all-open boundary

conditions. The voltages are here defined by
N,

s, .
Vx=Ny l_zl(eij_elj)
i=
and
NX,
Vy =Nx_12 (eiNy —6) .
=1 :
We see little difference from periodic boundary condi-
tions? at this macroscopic level, with the normalized crit-
ical current of J,=0.35. Examination of the noise spec-

trum SVx(co), shown in Figs. 2(a) and 2(b), reveals the
presence of a window of noisy response for
JAf=1)<J;$0.55. This multitime-scale response is
understood® in terms of irregular domain-wall separa-
tions, shown in the staggered charge §;; plot representa-
tion of the insets in Fig. 1. Figure 1(b) shows that a large
transverse voltage ¥V, is exclusively associated with the
chaotic regime of the driving current. Indeed, we see
that the amplitude of V), is largest in the noisiest driving
regime and vanishes (within our numerical resolution) in
the regular regimes. Furthermore, the transverse power
spectrum SVy(w) supports this scenaric: As we see in

Fig. 2, the power levels are very similar for ¥, and ¥, in
the noisy regime [Figs. 2(a) and 2(c)], but the noise level is
infinitesimal for ¥, in the regular regime (not shown),
where ¥V, shows a periodic response [Fig. 2(b)] associated
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with a regular array of domain walls and uniform injec-
tion at the driven edges.
Examination of the g;; plots in Fig. 1(a) (insets) clearly

‘demonstrates the nature of the longitudinal symmetry

breaking. As shown in the insets of Fig. 1(b), in the regu-
lar regime exact symmetry is maintained about the mid-

- dle of the array (i=N/2): thus, V, for the left and right

half arrays exactly cancel, even though there is consider-
able voltage in each half. However, in the noisy regime
this left-right symmetry is broken, distinct g;; distribu-
tions develop [Fig. 1(a)], and the left- and right-half con-
tributions to ¥, no longer cancel [Fig. 1(b)], leading to
the finite, noisy transverse voltage response shown in Fig.
2(c). Furthermore, as suggested in the g; plots of Fig.
1(a), and as we have observed through careful examina-
tion of the time evolution, the asymmetry between left-
and right-half planes develops by local flux defects,
defined with respect to the domain-wall pattern, nucleat-
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FIG. 1. The dc voltages across the JJA’s as a function of the
applied bias current J;: (a) The longitudinal dc voltage ¥V, vs
J,. Insets show the configuration of 7y (g >0, solid; g; <0,
open) in the cases of two bias currents, J;==0.4 and 1.0. The
bias current is forced through the JJA uniformly in the horizon-
tal direction; (b) The amplitude of the transverse ac voltage V,
vs J,. Insets: time evolution of the transverse voltage ¥,
(dashed lines) for the cases J;=0.4 and 0.7. Solid curves
represént the transverse voltage of the left half of the JTA and
the dotted curves represent the transverse voltage across the
right half. The solid and the dotted curves add up to the dashed
one, which is then the total transverse voltage.
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ing (differently) at the upper and lower (undriven) edges
and propagating into the interior to form the mesoscopic
structures shown in Fig. 1(a).

We have also considered the symmetry-breaking effects
of disorder, which we introduce as Gaussian positional
disorder of the form!° :

X;; +xk1
Aij, k=2wf _u2_ Vw Vi ),

(4)
X=X +8x,j, Vi y,J-i-Sy,j ,

where 8x;; and dy;; j represent the spatial disorder around
the ordered positions (x3,;), (8x;)=(dx;)=0,
(Sx,JSXk, ) (quﬁxkl > ASIJ kil+

The power levels in the intrinsically noisy regime
(J, <J, 50.55) are high and mask effects of the moderate
disorder values we consider here (compare Fig. 2 with
Figs. 3 and 4). However, in the periodic V. (zero V,) re-
gime, J;20.55, we can systematically observe the
symmetry-breaking effects of disorder. Figures 3(a) and
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FIG. 2. Spectral densities S, (w) of the voltages: (a) Longitu-
dinal voltage V, for J,=0.4. (b) Longitudinal voltage V, for

=0.7. (c) Transverse voltage V, for J,=0.4

i

FIG. 4. The spectral densities Sy (@) of the longitudinal
voltages for J; =0.7 when disorder A is present: (a) A=0.001,

(b) A=

0.003.
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remains quite smooth. This is because the collective flux
structures (which are a result of the intrinsic nonlinearity
in the JJA) are able to smooth out the disorder to a weak-
er effective disorder potential dominated by only a few
length scales {and frequencies)—an effect observed in
other studies of combined disorder and nonlinearity,'!
and implied in previous simulations of randomly pinned
charge-density-wave dynamics.'? However, as the disor-
der strength is increased [Figs. 3(b) and 4(b)] many local
pinning environments are created for flux structures and
collections of structures with the observed consequence
of many frequency scales, dressing the dominant lengths
and frequencies. The same distribution of flux traps will
give rise to Anderson localization, variable range hop-
ping, etc.,'? at finite temperature.

A second effect of the disorder-induced symmetry
breaking is the appearance of half-harmonics. This is
evident in Fig. 3 for ¥, and even more clearly by compar-
ing Fig. 4 with Fig. 2(b) for V.. The dominant frequency
(and harmonics) at w==0.2 [see Fig. 2(b}] is due to period-
ic injection of wall defects from the vertical boundaries.
However, the breaking of the left-right symmetry means
that each half of the system now contributes separately,
which gives the exact subharmonic observed. As we in-
crease the disorder strength [Figs. 3(b) and 4(b)], we again
see the multiple frequency scales becoming evident. Here
it is interesting to note that a similar type of half-
harmonic generation has been found recently for an ac
driven system.!® In that case it was found that the time-
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varying current drive caused asymmeiric vortex-
antivortex nucleations in the system and hereby gave rise
to half-integer steps in the 7-V characteristics.

In summary, we have utilized qualitative advances in
our ability to simulate JJA’s to (i) illustrate the value of
JJA’s as an explicit extended dynamical system in which
dynamical- and disorder-induced symmetry breaking can
result from boundary conditions; (ii) show how defects
nucleate at boundaries and result in global space-time
noise; and (iii) demonstrate a mechanism for a glassy
(1/f-like) space-time voltage response due to a frustrated
ground state—this can serve as a model for one noise
mechanism in real layered superconductors.’

We note that JJA’s are well within current fabrication
capabilities. Although the model studied in this paper
has neglected the capacitance of each Josephson link,
very preliminary studies show that no qualitative changes
arise when this is taken into account. Therefore, we be-
lieve that findings of this paper should be possible to veri-
fy experimentally.
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