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Langevin-dynamics simulation of relaxation in large frustrated Josephson-junction arrays
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Simulations of large two-dimensional arrays of Josephson junctions by a classical Langevin
molecular-dynamics technique on the massively parallel Connection Machine 2 are reported. Long-
time relaxation studies of initially random flux configurations are performed. Hierarchical scales in
both time and space are revealed when the system is under the influence of thermal noise and/or spa-
tial disorder, as well as a perpendicular magnetic field.

Modern microlithography has made Josephson-junction
arrays (JJA) in the presence of a frustrating external
magnetic field and/or disorder an excellent laboratory-
scale' vehicle with which to study (a) flux-lattice struc-
ture and dynamics in weak-link arrays, thickness-
modulated superconducting thin films, or even high-T,
materials (if self-consistent magnetic fields are included),
and (b) the poorly understood connections between space
and time in complex dynamical systems—especially
“glassy” or “1/f” regimes in time and space. >3

Recent exciting computational advances, using massive-
ly parallel architectures, have opened the possibility of
simulating new dimensions of JJA, thus allowing us to
visualize qualitatively the scales of hierarchical, mesoscale
structures and to follow long-time molecular dynamics
(MD). This permits the direct test of proposed connec-
tions between scales in time and space. Here we report re-
sults of simulations, using a Connection Machine 2 (CM-
2), on square N X NV arrays, with NV =128,

Furthermore, we report an adaptation of Langevin MD
to the CM-2 architecture. This allows us to study non-
linear and nonequilibrium phenomena on a large scale, in-
cluding thermal fluctuations, and without the Monte Car-
lo limitations of earlier studies. We have used this tech-
nique to study JJA with resistively shunted junction’>
(RSJ) dynamics, including perpendicular magnetic fields,
and various kinds of static disorder.

The purpose of the present report is to study relaxation
from an initially random flux state. We wish to exhibit
the multiple length and time scales involved in this relaxa-
tion, and the influence of thermal fluctuations. This noisy
relaxation is controlled by the dynamics of various meso-

scopic “defect” structures defined with respect to the un-
|

derlying ground-state flux structure. The defects, their
mesoscopic collective patterns, and their dynamics control
a complex macroscopic response, but are themselves mi-
croscopically controlled by the competitions producing the
ground-state flux complexity. Such multiscale responses
have been observed in other competing interaction sys-
tems,* e.g., spin glasses, random field magnets, and weak-
ly pinned charge-density waves, as well as noisy responses
in high-temperature superconductors.” Various ‘“creep”
and “stretched-expontential” regimes have been pro-
posed,® as well as phenomenological scaling theories at-
tempting to relate spatial domain sizes with temporal
scales.”
The Hamiltonian for the JJA takes the form?3

HH = '"E()Z [COS(GU —'9,~—|j—A,'—-|j,ij)
iJ

+COS(9U—‘9,'!'—| “‘A,‘j—|,,'j)] s (1)

where 8;; is the phase of the superconducting island with
the discrete coordinates (i,j) of the lattice, and
Aij=Qe/hc) A dl is the integral of the vector po-
tential from island (7,/) to a neighboring island (k,/) [see
also Eq. (3)]. The critical current of a junction is given by
Io=(2¢/h)Eo. The A;; ;s summed around a plaquette
obeys the following relation:
Aiji—tAi—rji-y—1 VY Ai—y——1F A= =2xf

where the frustration f=Ha?/®, is a constant giving the
average number of flux quanta ®y=hc/2e of the external
magnetic field H through the area a? of each plaquette of
the array. We also introduce the fractional charge g;;, ob-
tained as the gauge-invariant phase sum around the ijth
plaquette:

qij ’=(I/27r)[(91j - 9;j—| —A,-j— 1‘;j)mod7r+(0;,—_1 —9,-—- Lji—1 _A,--— 1j—1,ij—1 )modzt
+ (9,'—|j—| - 9,-—|j "‘Ai——lj,i—lj—l )modzr+(0,-_u '—9,‘] -—A,-j,;-u-)modn'] . (2)

Two situations are discussed in detail below: (@) f=

uniformly. In this case g; =% $:

The ground state is a

checkerboard pattern, and thus it is sometimes convenient to introduce the staggered order parameter §; =(—1) G+i )q(j.
(b) f= % with static Gaussian disorder®?® of the positions of the superconducting islands.

In all of the numerical experiments considered here we model relaxation to a prescribed equilibrium temperature of an
initially random flux configuration (i.e., quenching from high temperature), with dynamics introduced in the RSJ model

in the form?3

45

91]"8iﬂ(9,'j+| —‘9,'] —A,-j,,-j+|)+sin(0,~j_r| _Bij_A,'j‘,‘j—l)"' Sin(9,'+1j -—ij—A,-j,i+1,-)+sin(0,~_|j "9,'j _Aij,l—lj)
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where the thermal noise is introduced in a classical
Langevin sense: ;) =0, ;A ())=20Giji
xTé(t —¢'), with the temperature 7 normalized to
Eo/ks, and kg the Bolizmann constant. Time is normal-
ized to 1 =(Coh/2elg) ', Gijx is the discrete Green’s
function for the square lattice, the normalized dissipation
is given by n=(1/R)(h/2eCol,)'"* with R the normal
resistance of a junction, and Cy is the capacitance between
a superconducting island and the ground plane. As ex-
plained in Ref. 2, this choice of capacitance is appropriate
to model local capacitance coupling of each island.
Throughout this paper we have used a damping parameter
of n=1. Periodic boundary conditions are employed in
currents and voltages and the following global and
gauge-invariant quantity C(z) is monitored in time:
CW)=(/NZi jqi(qi+1j+qi-j+qi+1+q5-1). We
note that gauge invariance for observable quantities must
be carefully implemented, which has not typically been
the case in small-system studies.

First we consider case (a), namely, f=% uniformly.
Figure 1 shows the global quantity C(¢). The initial con-
ditions in ;; are random in all cases and normalized times
up to 104 are included. The results are shown for various
temperatures 7. Here it is important to note that the
transition temperature 7, for f= L is T.=0.45;3 for
T > T. long-range flux order and superconductivity are
lost. C(¢) is displayed for a selection of temperatures in
Fig. 1 to illustrate the following time dependences that we
have observed.

(i) T T. and short times. Here, flux creep is observed
with C(¢t) ~In¢ albeit over a short time [see Fig. 1(a)l.
We also observe from this figure that the *“‘asymptotic”
value of C first decreases as T is increased from T KT,
and then increases again (T2 T.). This can be under-
stood as trapping into a metastable (after the initial relax-
ation) flux configuration at very low T because of the uni-
form frustration; as T is increased, thermal tunneling over
the frustration barriers is allowed and C approaches closer
to its f =% ground-state value (C— —1); at higher T
(= frustration pinning energy) thermal randomization
occurs (C— 0 for T>>T,). This interpretation is sup-
ported by the final states of the time evolutions of the ac-
tual flux structures shown in Fig. 2. At low T, we indeed
observe a §;; structure which is frozen after its initial re-
laxation [Fig. 2(a)], but continues to slowly evolve at in-
termediate T [Fig. 2(b)], and is nearly random at high T
[Fig. 2(c)]. Note again that the 7 =0 absolute ground
state for f==% is a pure checkerboard pattern in g;; and
thus uniform in §j;.

(ii) Intermediate T (0.3T.ST S0.7T.). Here, after
the initial rapid relaxation, we observe [Fig. 1(b)] an ex-
cellent fit to a glassy stretched-exponential type of relaxa-
tion.” Specifically, Fig. 1(b) shows the fit to C(z)
~expl— (¢/7)71, for which we find $=0.45 (T'=0.2), in
good agreement with studies of other multiple time scale
systems.®’ Strikingly, essentially the same B value is
found for the whole temperature range. Studies of actual
flux structure evolution clearly illustrates the detailed
domain growth mechanisms controlling this slow relaxa-
tion regime (Figs. 2). In particular, we note the interre-
lated roles of domain wall and vortex defects with respect
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FIG. 1. Relaxation time dependence of the global correlation
function C(z) for frustration f= 5 and disorder A=0. At =0
the flux configuration is random. (a)-(c) Results for different
values of the final temperature are shown.

to the f =% flux ground state. Thus, as illustrated in the
sequence of snapshots shown in Fig. 3, domains typically
grow by vortex-antivortex pairs nucleating, attaching to
domain walls, and then counter propagating around the
domain. This same growth mechanism was observed in
simpler current-driven responses reported in Ref. 2.



(§i; > 0, black; g, <0, white) and the spectral power |g(k)|?
(right) at 1 =10* for three different temperatures. (a) T =0.01;
(b) T=0.25; (c) T=0.45. The color code for the spectral
power is log(|g(k)[2) > 1073, black; 107°<log(|g(k)|?)
<1073, grey; log(Jg(k)|2) < 10 =5, white.

(iii) T~T. (~-0.45). Here critical effects dominate.
An *“activated dynamic” behavior of the form C(z)
~exp(—I[in(z/7)1%) has been proposed.®’ As seen in
Fig. 1(c), this is in fair agreement for T~T,, with
5§~0.9.

(iv) T> T.. Here the flux lattice melts, as illustrated
in Figs. 1 and found in flux patterns (not shown).

It is of particular interest to understand the connections
between many time scales and many length scales in
glassy systems.”*!® Phenomenological theories based on
typical clusters have been proposed, e.g., the Lifshitz-
Slyozov’ law. The present large-scale Langevin MD ap-
proach offers the¢ opportunity to directly probe such

(@) (b) ()
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FIG. 3. Annihilation of a thermally nucleated (7 =0.25)
vortex-antivortex pair on a domain boundary. The plots show a
16X 16 section of the total 128 X 128 system for three different
times (ta <ty <tr, tc—ta=2). As in Fig. 2 the gy con-
figuration is shown by the two colors, black (§;; > 0) and white
Gy <0).
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phenomenologies. As an initial step, we have monitored
the spatial Fourier transform g(k), k=(k,k,). This
function will be sensitive to the distribution of domain
sizes rather than the detailed structure of domain walls.
We see in Fig. 2(c) that the disordered phase at 7> T. is
indeed characterized by weight on many k scales, whereas
the large domain structures for 7=0.25 in Fig. 2(b) are
characterized by a few dominant k scales. It will be im-
portant in the future to examine (a) whether scaling in
| —1] or k is observed analogous to the temporal scaling
described above, and (b) whether characteristic correla-
tion lengths scale with time, as suggested by domain
phenomenologies.’

As noted earlier, we have also introduced various forms
of spatial disorder, including the “‘vortex-glass” model®
with A,; 4/ distributed independently for each link with
uniform probability in [0,2z]. This will be reported else-
where. Here, we describe illustrative examples of Gauss-
ian positional disorder:

Aijot =27f 3 Oy +x0) o — i)
)

xi=x+8x;;, yiy=yd+8y;,

where dx;; and Sy;; represent the spatial disorder around
the ordered positions (x,y3), (8x;;) =(8y;;) =0,

(5x,~j6xk,) "(By,-jb'yk/) -Agij,kl .

We might anticipate that “intermediate” strength disor-
der (at 7=0) will act somewhat like thermal fluctuations,
namely, relaxation closer to the (slightly disordered)
S =% checkerboard ground state, whereas very weak dis-
order, like very low T, will lead to long-lived metastable
states. Path-integral treatment of disorder fields support
this view of a comparison with an effective temperature. '!
Higher strength disorder must, however, provide local
traps for elementary vortex and domain flux defects, as
well as mesoscale flux structures, inhibiting relaxation.
Finally, sufficiently high strength disorder (analogous to
T > T.) will destroy flux order and the resulting liquidlike
flux state with disorder should, at finite 7, exhibit phe-
nomena of flux localization, variable range hopping, etc.?
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FIG. 4. Time dependences of the global correlation function

C(t) for T=0. Three different cases of disorder A are shown.
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Our initial studies with disorder of form (3) are con-
sistent with this general scenario. Figure 4 shows relaxa-
tion from an initially random state for various disorder
strengths. As the strength is increased from a very low
value, we sec the same trends as for low-intermediate
temperature [Fig. 1(a)l. However, at large disorder
strengths, we observe clear local pinning.

In summary, we have demonstrated a qualitative alter-
native capability to follow long-time dynamics of large
JJA, using a realistic Langevin MD technique combined
with a fine-grained massively parallel computer architec-
ture like the CM-2. This capability is very significant for
a wide range of applications, e.g., in condensed matters
and materials science.'? In the context of JJA (or related
models of weak-link or even high-temperature supercon-
ductors), it allows us to explore glassy dynamics in consid-
erable detail-—namely, including and comparing effects of
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spatial disorder and thermal noise, directly correlating
multiple length scales with multiple time scales, and iden-
tifying the nature of specific elementary defects and
mesoscopic patterns which control macroscopic responses.
The simple relaxation studies reported here already illus-
trate each of these features, exhibiting a rich interplay of
uniform frustration, temperatures and disorder, and re-
vealing a substantial regime of stretched-exponential re-
laxation.
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