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Langevin-dynamics study of the dynamical properties of small magnetic particles
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The stochastic Landau-Lifshitz-Gilbert equation of motion for a classical magnetic moment is numerically
solved(properly observing the customary interpretation of it &ratonovich stochastic differential equatjon
in order to study the dynamics of magnetic nanoparticles. The corresponding Langevin-dynamics approach
allows for the study of the fluctuating trajectories of individual magnetic moments, where we have encountered
remarkable phenomena in the overbarrier rotation process, such as crossing-back or multiple crossing of the
potential barrier, rooted in the gyromagnetic nature of the system. Concerning averaged quantities, we study
the linear dynamic response of the archetypal ensemble of noninteracting classical magnetic moments with
axially symmetric magnetic anisotropy. The results are compared with different analytical expressions used to
model the relaxation of nanoparticle ensembles, assessing their accuracy. It has been found that, among a
number of heuristic expressions for the linear dynamic susceptibility, only the simple foprapasedby
Shliomis and Stepanov matches the coarse features of the susceptibility reasonably. By comparing the numeri-
cal results with theasymptoticformula of Storonkin{Sov. Phys. Crystallogi30, 489 (1985 [Kristallografiya
30, 841 (19891}, the effects of the intra-potential-well relaxation modes on the low-temperature longitudinal
dynamic response have been assessed, showing their relatively small reflection in the susceptibility curves but
their dramatic influence on the phase shifts. Comparison of the numerical results wékettteero-damping
expression for the transverse susceptibility by Garanin, Ishchenko, and Fahéw. Math. PhysSUSSR 82,
169 (1990 [Teor. Mat. Fiz.82, 242 (19901}, reveals a sizable contribution of the spread of the precession
frequencies of the magnetic moment in the anisotropy field to the dynamic response at intermediate-to-high
temperatured.S0163-182608)00446-9

[. INTRODUCTION relaxation mechanism itslocked Finally, under intermediate
conditions, nonequilibrium phenomenaaccompanied by
Magnetically ordered particles of hanometric size generimagnetic “relaxation,” are observed. It is to be noted that, in
ally consist of a single domain, whose constituent spins, athe Arrhenius range mentioned, the system may pass through
temperatures well below the Curie temperature, rotate in uniall these regimes in a relatively narrow temperature interval.
son. The magnetic energy of a nanometric particle is then In order to study the properties of classical magnetic mo-
determined by its magnetic moment orientation, and has aents, numerical simulation techniques can be used, with
number of stable directions separated by potential barrierg10st of the studies that have been performed being based on
(associated with the magnetic anisotrpp¥s a result of the  the Monte Carlo method. Although this method is a rigorous
coupling of the magnetic moment of the partiuﬁg, with the  and _eff|C|ent to_ol to compute ther_mal—equmbr_lum quantities,
microscopic degrees of freedom of its environmentthe interpretation of the dyn_amlcal properties derived _by
(phonons, conducting electrons, nuclear spins),ate mag- mgans_of Monte Carlo teghr)lqugs, especially for non-lsing
netic moment is subjected to thermal fluctuations and magPins IS not free from criticisth> On the contrary, when
undergo a Brownian-type rotation, surmounting the potential'Sing stochastic methods based on Fokker-Planck or Lange-
barriers. This solid-state relaxation process was proposed B{" €quations, time does not merely label the sequential or-
Néel in the late 1940'¢,and subsequently reexamined by 9€r of generated states when sampling the phase space, but is

Brown? by means of the theory of stochastic procesgés ~related to physical time. _ _ o
Ref. 3. For classical spins, the basic Langevin equation is the

In the high potential-barrier rang&U/kgT>1, the char- stochastic Landau-Lifshitz-Gilbert equation introduced by
acteristic time for the overbarrier rotation procegsan ap- Browr? (see' aIsp Ref. B Th? multlpl!catwe fluctuating
proximately be written in the Arrhenius formn, terms occurring in this Langevin equati¢gee Sec. )lwere
= 7,expAU/ksT), wherero(~10"1°-10712 s) is related to treated in Brown’s work, as well as in the subsequent theo-

the intra-potential-well dynamics. Fej<t, (t,is the mea- retical developments, by means of theratonovich stochas-
tic calculus In this context, Brown constructed the cel-

surement or observation timen maintains the equilibrium o, o404 Fokker-PlancKdiffusion) equation for the time
distribution of orientations as in a classical paramagnet; ag, o ytion of the nonequilibrium probability distribution of
m=|m|[ is much larger than a typical microscopic magneticmagnetic moment orientationéf one uses the alternative
moment (n~10°-1C° wg) this phenomenon is namesli- |16 stochastic calculuso treat the multiplicative fluctuating
perparamagnetismOn the contrary, whem>t,, m ro-  terms, Brown’s Fokker-Planck equation and hence all the
tates rapidly about a potential minimum and the overbarrieresults derived from it—relaxation times, dynamic suscepti-
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bilities, etc.—should be altergdin order to solve Brown’s hysteresis loops, field-cooled and zero-field-cooled magneti-
Fokker-Planck equatio(which is a partial differential equa- zation curves, relaxation times, linear and nonlinear suscep-
tion of parabolic type a number of techniques have been tibilities, magnetic specific heat, and, with appropriate rela-
used, such as direct solution technidues more elaborate tionships between line shapes and correlation functions of
approaches involving continued-fractions techniques or thé&he system, even spectroscopic quantities. We shall restrict
numerical calculation of the eigenvalues and amplitudes ofur study to the linear dynamic response of the archetypal
the relevant dynamical modést! mode! for the _nanoparticle system—an ensemble of noni.n—
An approach equivalent to solving a Fokker-Planck equa:[eractlng cla§S|caI magnetic moments WIFh axially symmetric
tion is to construct solutions of the underlying stochastic@dnetic anisotropy, dispersed in a solid nonmagnetic ma-

equation of motion of the system. Thisngevin-dynamics tr'x'bﬂ:ﬁ ![|ne||ar dynam;c respo_nsetr:s _cflo_se_n Zlnce It is ?
approach bypasses the Fokker-Planck equation as it direct obe that aflows one 1o examine the intrinsic dynamics o
generates the stochastic trajectories of the variables of t

Hge system. _ _ .
system, from which averages can be computed. This is a We shall investigate the effects of the intra-potential-well

relevant point since the solution of the Fokker-Planck equa[el"’lx"’mon modes on the longitudinal dynamic response as

tion for multivariate systems, either numerically or analyti-We” as the contribution .Of the spreed of the_precessu_)n fre-
cally, is usually a formidable task. quencies of the magnetic moment in the anisotropy field to

Lyberatos, Berkov, and Chantréiideveloped a rigorous the transverse response. In addition, because some relevant
method, in tr;e conte;(t of the Langevin-dynamics formalismParameters of nanopartlcle ensembles é:aa%be extracted from
for linear systems, for the numerical modelingsofall ther- the analysis of the dynamlc-re_sponse we shall as-
mal fluctuations in micromagnetic systerfimearized sto- sess the accuracy of the heuristic models employed in such

chastic Landau-Lifshitz-Gilbert equatiprSubsequently, Ly- analyses.

beratos and Chantréfl employed a generalization of this B The Ergbanlﬁatl(;nt of this art(ljclefls &:ﬁ folltowr?. Irt1_ Sic. I th_e
method to accommodatarge fluctuations(a generalization rown-rubo-rasnitsume modet for the stochastic dynamics

that is equivalent to Brown approach; see Ref. 2, p. 1681 of classical magnetic moments is discussed. The results of

Unfortunately, in the corresponding numerical integration ofth.e numenca! integration of the'stochast|c Landau-Lifshitz-
the stochastic Landau-Lifshitz-Gilbert equation, care was no |Ibert equation _are_presented in Secs. .”I a”d(‘?“’_e hu-
taken with the treatment of the aforementioned multiplicativemerlcal _method is discussed in Appendlx: (Speelflcally, .
fluctuating terms when choosing the numerical integrations.ec' lll is deveted to the stud_y of the trajectories of |nd|_—
scheme. The method employéd bare Euler scheme; see vidual magnetic moments, while the dynamles of the spin
Appendix Q converges to an ltsolution of the stochastic ensemb_le is etudled in Sec. IV. Some concluding remarks are
differential equation. This fact, together with the relation be-f'na"y given in Sec. V.

tween the temperature and the amplitude of the fluctuating

terms used, which is essentially that derived from Brown’s |l. BROWN-KUBO-HASHITSUME STOCHASTIC MODEL
ZOkIr(g;;:F;]I%?CIE( gg?;ggfggtgﬂg\:; lecﬁlgg:%si;,; r;gers the The description of the dynamics of a classical spin via the
pproac =y : y introduction of a Langevin equation was done by Brdtin,
In this article, we shall integrate the stochastic Landaus

Lifshitz-Gilbert equation numerically in the context of the the context of the small-particle magnetism, and by Kubo
. q X y _~ .~ and Hashitsumé who studied generic classical spins. The
Stratonovich stochastic calculus, by means of a judiciou

choice of the numerical integration scheme. This is undersg‘ievelopments based on each of these approaches have taken
. . | lace separately in the literature. Nevertheless, both ap-

taken taking account of the underlying subtleties of the stoP : : !
chastic calculus as compared with the deterministic calcuIus!:.)roa.c.heS are ess_entlally equivalent and we shall present here
- ; a unified discussion of them.

As the Langevin-dynamics method employed generates
the self-same stochastic trajectories of each individual mag- _ _
netic moment, it provides much insight into the dynamics of A. Dynamical equations
the system. In addition, the theoretical study of single- 1. Stochastic Landau-Lifshitz-Gilbert equation
particle phenomena is of special interest because dynamical ) )
measurements dhdividual magneticnangarticles have re- In the Brown-Kubo-Hashitsume model the starting equa-
cently been performetf. tion of motion for a classical magnetic momemt is the

In the study of individual trajectories, we shall find strik- stochastic Gilbert equatidf cast into the archetypal
ing phenomena in the overbarrier rotation process—Landau-Lifshitz form. The resulting equation will be called
crossing-back and multiple crossing of the potential barrierfhe stochastic Landau-Lifshitz-Gilbert equatioand reads

having their origins in the gyromagnetic nature of the sys-

tem, are frequently encountered. The first suggestion of the dm - . - ) R
former process goes back to Brotim his lucid criticism of = Y™ ABerrt ba(H)] = v - mA{MA[Begr+ (1) I},
the calculation of Nel* of the relaxation time in terms of the 2.1

rate of potential-barrier crossings of the magnetic moment.

Here, this and related phenomena will be numerically veriwhere y is a gyromagnetic ratio anll is a dimensionless
fied. damping coefficient that measures the magnitude of the re-
Concerning the response of an ensemble of classical madgxation(damping term relative to the gyromagnetic term in

netic momentgaveraged quantiti¢sthe Langevin-dynamics the dynamical equation(For magnetic nanoparticles
method allows the computation of any desired quantity, e.g.= nym/v with » being the damping coefficient in the equa-
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tion of Gilbert for the magnetization andthe volume of the damping @ <1) we can drop the fluctuating field from the
nanoparticle. We have not introduced the customary renor-relaxation term of Eq(2.1), to arrive at

malized gyromagnetic ratig/(1+\?) since one can alter-
natively consider Eq(2.1) as the starting equation; if one m . . . . .
wishes to consider the Gilbert form as the commencing equa- T yM/A\[ Begi+ by (t)]— yﬁm/\(m/\Beﬁ). (2.9
tion, one just needs to substituge— y/(1+\?) throughout.

In Eq. (2.1), the (deterministi¢ effective fields given by  This equation, which was indeed the equation studied by
Kubo and Hashitsuméwill be called thestochastic Landau-
- IH Lifshitz equation This is a Langevin equation more arche-
Berr=— Py (2.2 typal than Eq.(2.1), because the fluctuating and relaxation
terms are not entangled.
>y I . . On the other hand, one can bypass the reasoning em-
where H(m) is tpe Hamiltonian of the classical maggetlc ployed to obtain Eq(2.4) from Eq. (2.1), and consider the
moment and?/dm stands for the gradient operafoff/dm  former as an alternative stochastic model. It will be shown
=(aflam)x+(af/am))y+ (d9f/om,)z]. For H=-m-B, below that, when the condition of thermodynamic consis-

one indeed haB;=B (this was the case thoroughly studied tency is applied, theverageproperties derived from both
by Kubo and Hashitsumewhereas, in a more general situ- EGs.(2.1) and(2.4) are completely equivalent.

ation, By incorporates the(deterministi¢ effects of the
magnetic-anisotropy energy, the interaction with other spins,
etc., on the dynamics ah. Apparently, for a givenD, Egs.(2.1) or (2.4), supple-
On the other hand, in Ed2.1), geﬁ has been augmented mented by !Eqs(.2:3), fully determine the dynamical problem
. e . under consideration. Nevertheless, due to the ventmiucts
by afluctuating or stochastic fieldft), accounting for the

. . > . _ of m and Bﬂ(t) occurring in those equations, the fluctuating
effects of the interaction ain with the microscopic degrees . - . S . .
field by(t) enters in amultiplicative way. This gives rise to

of freedom (phonons, conducting electrons, nuclear spins, ; L
etc), which cause fluctuations of the magnetic moment ori->°M€ formal proplems because, for white multiplicative
entation. Those environmental degrees of freedom are aldypise.any Langevin equation must be_ supplemented by an
. e interpretation rule to properly define ifRef. 18, p. 24k
responsible for the damped precessiomof since fluctua-  15"qominant interpretations, which lead to either thedto
tions and @ssma’qon are related m_anlfestatlons_of one a'.qfi]e Stratonoviclhstochastic calculusare usually considered,
the same interaction of the magnetic moment with its enV"yieIding different dynamical properties for the system. For
ronment. R instance, depending on the stochastic calculus used, disparate
The customary assumptions abdaji(t) are that it is @ Fokker-Planck equations for the time evolution of the non-
Gaussian stochastic process with the following statisticabquilibrium probability distribution of the corresponding
properties variables, are obtainedFor fluctuations with finite autocor-
relation time or, for additive fluctuations, no ambiguity oc-
(bqi(t))=0, (bgi(t)bg;(s))=2D5;6(t—s) (2.3)  curs and the mentioned stochastic calculi are equivalent.
The 1to calculus is commonly chosen on certain mathemati-
(recall that the first two moments determine a Gaussian procal grounds, since rather general results of probability theory
cesg, wherei andj are Cartesian indices, the constdt can then be employed. On the other hand, as the white noise
measures the strength of the thermal fluctuatiG@ssumed s an idealization of physical noise with short autocorrelation
isotropig, and () denotes an average taken over differenttime, the Stratonovich calculus is usually preferred in physi-
realizationsof the fluctuating field(The constanD is deter-  cal applications, since the associated results coincide with
mined on the grounds of statistical-mechanical considerthose obtained in the formal zero-correlation-time limit of
ations; see belowThe Gaussian property of the fluctuations fluctuations with finite autocorrelation timgee, e.g., Ref.
arises because they emerge from the interactiom efith a ~ 19). Both the seminal works of Bro#rand Kubo and
large number of microscopic degrees of freedom withHashitsumé, as well as all the subsequent theoretical devel-
equivalent statistical propertigsentral limit theoremn The  opments, are based, implicitly or explicitly, on the Stratonov-
Dirac § in the second Eq(2.3) expresses that above certain ich stochastic calculus

temperature the autocorrelation time bfi(t) (of micro-
scopic scalgis much shorter than the rotational-response B. Fokker-Planck equation

time of the syster Wh'te noise), Wh'leathe Kroneckew The Fokker-Planck equation governing the time evolution
expresses that the different componentbgtf) are assumed of the nonequilibrium probability distribution of magnetic
to be uncorrelated. Finally, it is also customarily assumeqnoment orientations associated with the stochastic Landau-
that the fluctuating fields acting on different magnetic mo-| ifshitz-Gilbert equation(2.1) was originally derived by

-

3. The multiplicative noise terms

ments are independent. Brown? By a different method and starting from the stochas-
_ o _ tic Landau-Lifshitz equatior(2.4), Kubo and Hashitsunie
2. Stochastic Landau-Lifshitz equation arrived at an equation for the probability distribution, which,

As will be shown below, the thermodynamic consistencywhen the autocorrelation times 6‘ﬂ(t) are much shorter
of the approach entail$by~\Y2 Therefore, for weak than the precession period of, coincides with the Fokker-
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Planck equation of Brown in the absence of the anisotropy N keT

potential (recall that they considerei.z=B). In Appendix Die
B we give an alternative and simple derivation of the
Fokker-Planck equations associated with E¢®.1) and
(2.4), showing thatboth equations lead to Fokker-Planck
equations that are structurally the same
Thus, on introducing the appropriaiéeel time 7y [Eq. kT
(B8)], which is the characteristic time of diffusion in the D =A——. (2.8
absence of potentialfree-diffusion time; see below the ym
Fokker-Planck equations associated with Hgsl) and(2.4)  These Einstein-type relations between the amplitude of the
can be written in a unified way dsf. Ref. 20 thermal-agitation field and the temperature, via the damping
coefficient, ensure that the proper thermal-equilibrium prop-
JP Jd
At om [

SR 2.
1+A2 ym @7

whereas for the stochastic Landau-Lifshitz equatiggt
=2D+?, so that

erties are obtained from the stochastic Landau-Lifshitz
(-Gilbert) equation. Thus, although the stochastic trajectories

for a given realization of the fluctuating fielsh(t) are, in

principle, different for each stochastic model, the average
Pl (2.9 dynamical propertie$which are determined by the Fokker-

Planck equationresult to be identical in both approaches.
whereP(rﬁ,t) is the nonequilibrium probability distribution In the following sections we shall integrate the stochastic

- . - . Landau-Lifshitz-Gilbert equatio§2.1) numerically. Never-
for m at timet, andd/sm- stands for the divergence operator theless, the above considerations ensure that, if we integrate

[(9/dm)-A=Z;(dA; ] Im;)]. the stochastic Landau-Lifshitz equatiq@.4) instead, we
shall obtain the same results for theeragedquantities.

L Nl
YMABeg—y =M/\(M/\Bey)

1. . 0
+ —mN\| M\ —
27y Jm

1. Stationary solution

In order to ensure that the stationary properties of the 3. Ito case
system derived from Eqd2.1) or (2.4), supplemented by It is to be noted that the relation@.7) and (2.8) [or
Egs.(2.3), coincide with the appropriate thermal-equilibrium equivalently Eq(2.6)], being derived from Brown’s Fokker-

properties, the Fokker-Planck equation associated with thesgjanck equatiori2.5), pertain to the Stratonovich stochastic
Langevin equations is forced to have the Boltzmann distri¢a)cylus Let us briefly examine this point. In order to con-

bution struct the corresponding Fokker-Planck equation by using
R R the 1to calculus, one simply omits the noise-induced drift
Po(m)ocexp — BH(M)] when deriving the Fokker-Planck equation; this leads to an

e 71 - .
as a stationary solution. To do so, note first that, by means dtdditional termr"m into the square brackets of E(.5).
éeﬁ: —oHIom, one can WriteaPO/arﬁzﬁéeﬁPo, from Therefore, on usingP,/dt=0 and Eq(2.6) for 7y, such an

e . o o . Ito Fokker-Planck equation yields fé&= P,
which it follows thatm/\BgPy is divergenceless. On using
these results, one sees by inspection that, in order to have the
Boltzmann distribution as stationary solution of the Fokker- 0= —-(MPy)=(3+8m-Bgy)P, (Ito case,
Planck equation(2.5), it is sufficient to set y(A/m) am
= B/21y, from which one gets the following expression for = | . -
the Neel time: which is not necessarily satisfied by a general form of the
Boltzmann distributiorPo(rF\) (that is, by a general form of
1 m the Hamiltoniaf. The simplest example is that of the dy-

(2.6 namics in the absence of potential. Thégﬁ=0 and the

. . equilibrium distribution—Po(rﬁ) uniform—is not a solution
Note that, since this result does not depend on the actugkhe |15 case of the Fokker-Planck equatidiherefore, the
form of the Hamiltoniar¢, it also holds for assemblies of gochastic Landau-Lifshitz (-Gilbert) equation, when inter-
Interacting magnetic moments. preted in the Ifosense, does not yield the correct thermal-

, o equilibrium properties
2. Comparison between the Landau-Lifshitz-Gilbert

and Landau-Lifshitz stochastic models )
) ] C. Equations for the averages
Because the thermodynamic consistency of the approach

determinesry, completely, we arrive at Eq2.6) both start- Let us finally conside_r the dynami_cal equations for the
ing from Egs.(2.1) and (2.4), so thatthe Fokker-Planck 2Verages of the magnetic moment \iwth respect to the non-
equations associated with these stochastic models result ®Auilibrium probability distributionP(m,t). (Because these
be identical Then, sincery is related to the amplitudB of ~ equations involve averaged quantities, they will be identical
the fluctuating field by different expressiofsq. (B8)], the  for both the stochastic Landau-Lifshitz-Gilbert and Landau-
only difference between these stochastic models lies in thkifshitz equations.

relation amongD, N, and T. For the stochastic Landau- The equation for the first moment(m;)(t)
Lifshitz-Gilbert equationry*=2D y?(1+\?), whence = [ m/=md®*mP(m,t)m; reads
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d . - . ) R 1 . and some details of its implementation are discussed in Ap-
a<m>:'y<m/\Beff>_'ym<m/\(m/\Beff)>_T_N<m>1 pendix C.
(2.9
. A. System studied
where the term-(m)/ry is analogous to the relaxation term . : 5o
in a Bloch-type equatiof For the second-order moments Hereafter, the magnetic anisotropy mfwill be assumed

(m;m;)(t) one finds to have the simplest axial symmetr):. Thenifis subjected
g to an external constar(biag field, B, and a low probing
3 .. . = 3 AR . N
a<mimj>:_ZTN(<mimj>_%m25ij)+7<mi(m/\8eff)j> :g;%,SAB(t) [e.g., AB(t)=ABqcost)], its Hamiltonian

A VU -
— Y (MIMAMABer) ] +i=j, (210 H(rﬁ,t):_rﬁ.[§+m§(t)]_K_l;(rﬁ.ﬁ){ (3.
m

wherei«— | stands for the interchange in the entire previous ~ . . .
expression of the subscriptznd]. wheren is a unit vector along the symmetry axis add is

Equations(2.9) and (2.10 show that, for a general form the anisotropy-energy barri¢we shall mainly consider an-

of the Hamiltonian, no closed equation exists for the time!SOrOPy Of easy-axis typeK=>0). In terms of By
evolution of the averages of the magnetic moment. For in-~ 2Kv/m, the effective fieldEq. (2.2] associated with the

stance, even iB.; does not depend om, the Landau- aPoveH(mt) can be written as

Lifshitz-type relaxation term introduce@mm;)(t) in Eq. > = = > Ala

(2.9 for {(m;)(t). Therefore, an additional differential equa- Ber=[B+AB(D]+ (B /m)(m-n)n. 82
tion for (mym;)(t) is requiredi.e., Eq.(2.10], however that ~ Accordingly, the quantityB| is the magnitude of the maxi-

equation involvegmm;my)(t), and so onThe absence of mum anisotropy field B=(Bx/m)(m-n)n, which occurs

such a closed dynamical equation is a major source of math- - - : '
: A . -~ whenm==mn. N hat the anisotr fiel r
ematical difficulties in the theoretical study of the dynamical - € ote that the anisotropy field decreases as

properties of classical spins m approaches the equatorial regiomi(n), where it van-
Free-diffusion caseA situation where the equations for 'SN€S. On the other hand, in a longitudinal bias field

the averages are not coupled and can in addition be expliciti{B|[n), H(m) has two minima atn= = m n, if B<By (with

solved, is that where the Hamiltonian is independent ofa potential barrier between them of heigh! =Kuv for B

m (Ber=0). Note that, becausey 'xkgT [Eq. (2.6)], this =0), whereas the uppéshallowej potential minimum dis-

apparently academic case can be a reasonable approximatifP&ars foB=By .

for sufficiently high temperatures, where the terms multi- €t us finally introduce some dimensionless quantities.
plied byml in Egs.(2.9 and(2.10 dominate the remaining Bk provides a suitable reference magnetic-field scale that

. . - ields the dimensionless fields
ones. The solutions of these equationsBgi=0 are y

. B . B . by (t
(mp)(t)=(m;)(to)e™ "1, h=—, Ra=—r, Rg(t)= Bul®). (3.3
Bk Bk Bk
(mm;)(t) = §m?8;; +[(mm;)(to) — §m?8;;Je 31/, A suitable time scale is provided by = (A yBg) "%, which

which justify calling the characteristic time constamt the IS the inverse ofathe detfzrmlnlstld'(ZO) decay rate of the
free-diffusiontime. For ¢—to)> 7y, one finds(m;)(t)—0 angle between m. and n Elose to thel bottom of the
and(mimj>(t)—>%m25-- expressing that the orientations of anisotropy-potential wells &=0, as obtained from the de-

ij JUOF Vels . .
m become distributed at random for long times, as it should€Ministic Landau-Lifshitz equatior(see Appendix A
Thus, one has the dimensionless time

for a diffusion in a constant orientational potenfiat at very
high temperaturgsNote finally that these natural results are ot 1
not obtained when one interprets the stochastic Landau- =—, —=\yBgk. (3.9
Lifshitz (-Gilbert) equationa la Ito. T« 7K

Note that in terms ofr¢, the Neel time (2.6) merely reads

IIl. TRAJECTORIES OF INDIVIDUAL =0Tk, Where o=Ku/kgT is the dimensionless
MAGNETIC MOMENTS anisotropy-barrier height parameter.
In this section we shall study thHE#0 (stochastit dy- B. The overbarrier rotation process

namics ofindividual magnetic moments. In order to provide Fi 1 displ h S f th . f

the necessary background to undertake this study, in Appen- -lgure ISplays the prOJeptlon N .t € traject_ory ofan
dix A we analyze solutions of theleterministic (T=0) |nd|v.|dual'magnet|c mom.ent with the simplest axially sym-
Landau-Lifshitz equation. Here, we shall integrate the- metric anisotropy potential onto selected planes. No mag-

chastic Landau-Lifshitz-Gilbert equation numerically in the netic field has been applied, so the graphs show(ithenis

context of the Stratonovich calculus, by means of the sto-Sensé free” dynamics.

chastic generalization of the Heun scheme. This schme  The projection om(t) onto a plane containing the anisot-
sort of second-order Runge-Kutta algorithm; see &p)]  ropy axisn (defining thez direction in Fig. 3, corresponds
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L Tanlisotfor)ylaxils I thg pr_oj_ection ofﬁ(t) onto a plang containing tr_]e anisqtropy
T T/AU=0.2 axis, it is clearly seen that crossing the potential barrier does
. B or not entail an immediate descent to the other potential mini-
s - mum, but the gyromagnetic terms plus an appropriate se-
IR\ - quence of fluctuating fields can produce a rapid crossing
L back to the initial potential well.

For an ordinary, nongyromagnetic system, i.e., a mechani-
cal system with inertia, this guarantees that, unless the sys-
tem reaches the potential barrier with zero velocity, it will
descend to the other potential well with a large probability.
B In addition, the forces, after the potential-barrier crossing,
B accelerate the system downward. However, in the gyromag-
- netic case the dynamics is “noninertiallthe equation of
| displayed ime ~ 20m mx/m motion is of first order in the time Besides, the anisotropy

ST 8 S Ahiaciod S field B,=(Bx/m)(m-n)n indeed drivesm down to the

.12 08 -04 O 04 08 12 bottom of the potential well, but this is effected via a
(damped precession about the anisotropy axis. Moreover,
the effective precession “frequency” of such motia.
=(yBK/m)(rﬁ- n) is initially rather low because the anisot-
ropy field is low in the potential-barrier regioﬂﬁzO).
Consequently, in the beginning of the spiraling down after a
potential-barrier crossing, the magnetic moment rotates quite
slowly (say, along a parallel of latitudienot far from the
potential-barrier region, so that an appropriate sequence of

fluctuations can driven back to the initial potential well.
What is shown in Fig. 1 is precisely a multiple occurrence
of this phenomenon; more than 10 potential-barrier crossings
can be identified in the overall excursion between the two
potential minima. On the other hand, the magnetic moment
might also have eventually fallen into the original potential
12T T T T 1 well. As will be shown below, none of these processes are
-2 08 04 0 04 08 12 infrequent. The physical acumen of Brot®ris noteworthy
since, on considering the gyromagnetic nature of the dynam-

FIG. 1. Two-dimensional projections of the time evolution of . h d th il f this kind of ph
the magnetic moment, as determined by numerical integration oS _e ﬁpse t .e pOSfSIhe oclc:urlrepce Of,t és fmh 0 F: enom-
the stochastic Landau-Lifshitz-Gilbert equatiofi2.1). The ena in his criticism of the calculation of NE of the relax-

magnetic-anisotropy potential is AU(m,/m)2, no magnetic field ation time as the inverse of the rate of equatorial crossings of

has been applied, and the damping coefficient in the dynamicdn€ magnetic moment.
equation isn=0.1. Upper panel: Projection of the trajectory onto a

plane containing the anisotropy axis. Lower panel: Projection onto a
plane perpendicular to the anisotropy axis of the first stages of the

C. The effect of the temperature

damped precession down to tire= —mZz potential minimum, after In order to assess the role of the temperature in the dy-
the last potential-barrier crossing. The small dashes demarcate tfEamics of the magnetic moment, we have displayed in Fig. 2
unit circle. some typical time evolutions of the projectionmfonto the

anisotropy axis. It is seen that, at low temperatujsnel

to a typical stochastic trajectory that starts close to one of thEs T/AU=0.12), the dynamics merely consist of the rota-
) - - A . tions of the magnetic moment close to the bottom of the
potential minima th=m2 and, after some irregular rota-

. : . : potential wells(intra-potential-well relaxation modgswith
tions about it, reaches the potential-barrieguatorial re- the overbarrier relaxation mechanism being “blocked.” As

gion, where it wanders for a while, and eventually descends i i, reased, the magnetic moment can effect overbarrier

to_the ot_her potential minimum. C_oncerning the projection (_)frotations at the expense of the energy gained from the heat
this motion onto a plane perpendicular to the anisotropy axi ath, and a number of them do occur during the displayed

we have just shown the first stages, after the last potentia-Ime interval (panelsksT/AU=0.18 and 0.28 Finally, at

barrier crossing, of the damped precessiomptbout the  higher temperaturepanelkgT/AU = 0.4), the magnetic mo-
anisotropy field, when spiraling down to the bottom of thement effects a considerable number of overbarrier rotations
m,<0 potential well. during the observation time interval, exhibiting almost the
From these graphs, the role of the gyromagnetic terms ithermal-equilibrium distribution of orientations.

the stochastic dynamics of the magnetic moment is shown. The curves of Fig. 2 resemble those of the experiments of
Thus, the projection af(t) onto the equatorial plane shows Wernsdorferet al. on individual ferromagnetic nanoparticles
some of the irregular features of ordinary Brownian motion,(see Fig. 6 in Ref. 14 Furthermore, if the same trajectory is
although the rotary character is neatly exhibited. Concerninglotted with a larger sampling time interval, in order to
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FIG. 2. Projection onto the anisotropy axis pf(t), as determined by numerical integration of the stochastic Landau-Lifshitz-
Gilbert equation(2.1), for various temperatures. The magnetic-anisotropy energyAs)(m,/m)?2, B=0, and\=0.1. The small circles
mark potential-barrier crossings followed by a back rotation to the initial potential well. In the kgl U = 0.4 such crossings have not
been marked and the trajectory has also been plotted with a larger sampling time interval.

mimic the finite resolution time of a measuring device, thethe anisotropy axis X\BoLn) are markedly differente.g.,
resemblance is more apparent, since the curves then hawgs projection corresponds to plotting the trajectory of the
less and wider angleisee the panetgT/AU=0.4). (Recall  ypper panel of Fig. 1 as, vst). Here, the response is
that the strong dependence of the appearance of the timgminated by the fast 7¢) intra-potential-well relaxation
evolution curves on the sampling period, is a typical featurgnodes, and the transverse projection is a highly irregular

of the stochastic dynamigs. sequence of sharp peaks. Finally, the projectiorﬁ(ﬁ) onto

Note finally that in Fig 2 a number of potential-barrier ~ - . ) . . . .
ABo making an intermediate angle with the anisotropy axis

crossings followed by a rotation back to the original potentia ; e .
well can be identifiedmarked with small circlgs one for (/4 for the displayed curyeshows the magnetic bistability

keT/AU=0.18; three fokgT/AU=0.28, the one occurring of the longitudinal projection, but the fast intra-potential-
at ~ 360/ 7¢ being a double crossing back; and about severf’ell motions are sup_erimposgq on it. This leads to a less
for kgT/AU=0.4 (not marked for the sake of clarjtylt is weII-reso]ved magnetic b'St?‘b"'ty- :

also to be noted that an apparent singiedoublg crossing Note finally that curves like those of Fig. 3 are the ones

back can be multiple instead. Indeed, when the about 16""”3'3,’,28(1” by the probing field_ in a dynamical “measure-

potential-barrier crossings of Fig. 1 are representemhass ment.” Recall also that the application of the oscillating field

t, they seem to be a mere double crossing back of the pote@]—ardly cha_nges the OV?“'J.‘” features of th? curves fro”? the

tial barrier. ree evolution ones. This is naturally so, since one applies a
low enough field in order to probe the intrinsic dynamics of
the system.

D. Projection of m(t) onto the direction of a probing field

It is also illuminating to show the projection of the trajec- V. DYNAMIC RESPONSE OF THE ENSEMBLE OF SPINS
torjes ofingividual spir]s onto the direction of.a pro.bing field Keeping Figs. 2 and 3 in mind, we shall undertake the
AB(t) =ABocosft). Figure 3 shows such trajectories in the sydy of the dynamic response of an ensemble of classical
intermediate temperature range. ___ magnetic moments. As a suitable probe of the intrinsic dy-

The projection onto the anisotropy axis direction namics of the system, we shall compute the linear dynamic
(ABg|In) exhibits, as in the corresponding case of Fig. 2, asusceptibilityy(w) as a function of the temperature for vari-
well resolved bistability, andn “jumps” from one well to  ous frequencies and orientations of an external probing field
the other a number of times during a cycle of the probingAB(t) = AB,ycos(t). If one wishes to have a reference of the
field. Similar features are encountered when a longitudinafliscussed time scales, one can assume, B,g=150 mT
bias field is also applied, the main difference being that theind \ ~0.01-1, so that *~0.1-6x10° s * by Eq. (3.4)

lower potential well is less frequented by the magnetic moand the frequencies employea fc/2m~10"3-10"2) are
ment. In contrast, the features of the stochastic trajectoryhen in the MHz range.

obtained by projecting(t) onto a direction perpendicular to In the calculations presented in this section, ensembles of
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FIG. 3. Projection onto the direction of a probing fielcﬁ(t):Aéocos@t) of rﬁ(t), as determined by numerical integration of the
stochastic Landau-Lifshitz-Gilbert equati¢®.1). The magnetic-anisotropy energy isAU(m,/m)? and all the results are fdegT/AU
=0.2 and\=0.1. The displayed time interval corresponds to a complete cycle of the oscillatingdigld2m=0.0025). In the longitudinal
probing field case, results in the presence of a longitudinal bias field are also shown.

1000 magnetic moments have been employed. We integrate

numerically the stochastic Landau-Lifshitz-Gilbert equation e I I B B L L =
of each spin, by means of t_he stochastic Heun sc_h(éIﬁ)a 73 X'“ LI w0t /2m=0.001 3
and analyze the time evolution of the total magnetic moment 3 £
of the ensemble; the results for the dynamic susceptibility 6'; 2 - om2n=0.0025 3
have typically been averaged over 50—100 cycles of the os- 5] 3- 01 /21=0.005 F
cillating field. 4_5 4-01/2n=001 F
The damping coefficienk, the magnetic-anisotropy po- ] E
tential barrierAU=Kuv, and the magnitude of the magnetic 33 -
momentm have been assumed to be the same for each spin. 2 a2
(For noninteracting entities, the effects of a distribution of 1_5 3
these parameters, as typically occurs in a nanoparticle en- 3 ]
[¢ = S WP 'y o

semble, can be incorporated by an appropriate summation of
the corresponding resultdn addition, as explained in Ap-
pendix C, in order to reduce the statistical error bars of the
computed quantities, we apply at each temperature a suffi-
ciently high probing field hhABy=0.3gT) without leaving 5
the equilibrium linear-response range.

Finally, in all the figures that follow, the linear suscepti- 4
bilities are measured in units @fom/By= uom?/2Kv (the
transverse equilibrium susceptibility per spin at zero tem-
perature in the absence of a bias fjel[Burthermore, where
they are not shown, the size of the statistical error bars of the
numerical results is, at most, that of the plotted symbols. 1
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A. Dynamic response in the absence of a bias field

0.1 0.2 0.3 0.4 0.5 0

We shall first study the response of the ensemble in the

absence of a constatiiag magnetic field. FIG. 4. Longitudinal linear dynamic susceptibiligf vs T in the

absence of a bias field. The symbols are for the numerically com-

putedy;(w,T) and the thin solid lines are E¢D10) with 7 defined

as integral relaxation timgeq. (D13)]. The thick solid line in the
Figure 4 displays the results for the longitudinal linearupper panel is the thermal-equilibrium susceptibilizg. (D4)].

dynamic susceptibility vs the temperature for an ensemble ahset: Modulus and phase shift gf for w7/27=0.0025.

1. Longitudinal response
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magnetic moments with parallel anisotropy akA®(t)||n].

No bias field has been applied and a damping coefficient
=0.1 has been useBecause of the axial symmetry consid-
ered, the effect ok on the averaged quantities merely enters
via the Nel time 7y=07¢ , as can be shown from Brown’s

| RJNLINLED fuL B B B Rt

Fokker-Planck equation. Thus, since we measure the time 0.6 1-B=0; wt,/2n=0.001, X, (T.B)
and the frequencies in units ef , the results presented for 1 0.0025, and 0.005 r
the longitudinal response must be independent of the 0.4 2-B/Bg=0.1 -
1 3-B/B.=0.2 " -
used) .. o 0.2 € L o
At low temperatures the longitudinal relaxation timg . -
" , ] 1,2, and 3 kg T/Kv |
obeys the conditionr>27/w [ty(w)=2m/w is the dy- 1 PUUUU Bd v O PUUUS TOUUU SUUN §
namical measurement tinje Consequently, over a large 0 0.1 0.2 0.3 0.4 05 0.6

number of cycles of the probing field the probability of over- . ) .
barrier rotations is almost zero; the response consists of the F'Gﬁ 5| Tra”/SZV er_sg ggiarodgggsm'c r?gsg%%t'sb'}‘%' VS dT Ir?r_t:e
rotations of the magnetic moments close to the bottom of the cauenceswrfem =100, 9. 8 U, The damping co-

. _ . efficient is\=0.1. Results in the unbiase®€0) case and in the
potential wells(see the panekgT/AU=0.12 of Fig. 3, presence of the longitudinal bias field@&Bx=0.1 and 0.2(for

whose averagedover the ensembleprojection onto the - />7—0.005 only are shown. The thick solid lines are the equi-
probing-field direction is smalbut nonzero; see the enlarge- |iprium susceptibilities[Eq. (D4)]. x| (circles and x” (rhombj
ment of the lowT range in the inset of Fig.)8Moreover, as  have intentionally been plotted with the same scale to show the
these intra-potential-well relaxation modes are very fast relative smallness of the latter.
(~7¢), this small response is in phase with the probing field
{see the lowF part of the phase shift¢(w,T)  probing field is quasistationary. Consequently, the magnetic
=arctay’(w,T)/x'(w,T)] in the inset of Fig. 4. moments quickly redistribute according to the conditions set
As T is increased the magnetic moments can depart fromhy the instantaneous probing field, almost being in the
the potential minima by means of the energy gained from thehermal-equilibrium state associated with(ilanelkgT/AU
heat bath. Consequently, at an-dependent temperature =0.4 of Fig. 3. Then, theXﬁ(T) curves corresponding to
(kgT/Kv~0.1-0.2 for the frequencies employedhich in-  different frequencies sequentially superimpose on the equi-
creases with increasing, a small probability of surmount- |iprium linear susceptibility x(T) and, correspondingly,
ing the magnetic-anisotropy potential barrier during a num—X‘/l/(T) approaches zero.
ber of cycles of the probing field, emergghis corresponds The appearance of a frequency-dependent maximum in
to the panekgT/AU=0.18 of Fig. 3. Accordingly, the av-  the response of a noisy nonlinear multistable system to a
eraged response starts to increase steeply Withowever,  periodic stimulus, as a function of the noise intensity, is one
as this thermally activated response mechanism via overbags the features usually accompanyistpchastic resonance
rier rotations is not efficient enough at these temperaturesy, this spin-dynamics case, the maximum in the magnitude
the signal exhibits a considerable lag behind the probing fielgt the dynamic response as a functionTofcan be under-
(see the inset of Fig.)4This is also reflected by the occur- sigod in terms of the quoted twofold role played by the tem-
rence of a sizable out-of-phase component of the responsgeraturef(i) activating the dynamics of overbarrier rotations,
x| (T) (in fact the response is mainly “out of phase” allowing the spins tdstatistically follow the instantaneous
At higher temperatures, the mechanism of overbarrier rofield, but, (ii) provoking the thermal misalignment of the
tations becomes increasingly efficieripanel kgT/AU spins from the driving-field direction.
=0.28 of Fig. 3. Consequently, after exhibiting a maximum,
the phase shift starts tecreasewvhereas the magnitude of 2. Transverse response

the response stilincreasessteeply withT (see the inset of .
Fig. 4. However, if the temperature is further increased, the We shall now study théransversedynamic response of

very thermal agitation, which up to these temperatures wa8" ense»mbIerf m_agnetu: moments with parallel ar?lsotropy
responsible for the increase in the magnitude of the respons@Xes[AB(t).L n]. Figure 5 displays, (w) vs T for various
reaches a value théb efficiently produces overbarrier rota- frequencies of the probing fielgturves labeled 1; results in
tions, allowing the magnetic moments to approximately rethe presence of a bias field to be discussed below are also
distribute according to the instantaneous probing field, bugghown. o
simultaneously,(ii) disturbs sizably the alignment of the ~ For this transverse probing-field geometry, the mecha-
magnetic moments in the probing-field direction. Consefism of inter-potential-well rotations plays a minor dynami-
quently, at aT above that of the phase maximurkgT/Ky  cal role, since it mainly pertains to the components of the
~0.2-0.3 for the frequencies considexetthe magnitude of Magnetic moments perpendicular to the probing field,
the response has a maximum and starts to decrease with i¥hereas the response in the probing-field direction is the one
creasingT. The frequency-dependent temperature at whicHecorded. The latter consists of mtra—poteﬂntlaAI—weII rotations,
this maximum occurs is usually called thiockingtempera-  which are very fast{ 7« ; see the paneAByL n of Fig. 3
ture. as compared to.,(w)=27/w. Consequently, the dynamic
Finally, at still higher temperatureskdT/Kv=0.3—-0.5 susceptibilities obtained are close to the equilibrium suscep-
for the frequencies considenedhe inequality 7<2m/w  tibility in the whole temperature range. Indeed, the(T)
holds. Thus, in comparison tq’l, the rate of change of the curves corresponding to different frequencies are very close
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to one anothefthey visually coincidg and almost describe 35 o
the equilibrium susceptibility, (T) (thick solid line), while 1<X>.n AZdD 1- 0 /2m=0.001
the out-of-phase componegt (T) is small. In addition 33 1 2 - @ /2m=0.0025 |
is not only small as compared tp] but it is also much 2.5—? 3- ot /2n-0.005 [
smaller than the out-of-phase longitudinal susceptibi)(i#y ] 4 - ot./2m=0.01 F
(cf. Fig. 4. Neverthelessy’ provides interesting informa- 2 KT E
tion concerning the dynamics af, which will be discussed 1.5 -
in Sec. IV C. 3 :

For the transverse response, the maximuny pfvs T is 13 3
due to the crossover from the free-rotator regintéuv ( 0.5.3\ K T/K _
<kgT) to the discrete-orientation regimé&¢>kgT), in- i 23 B/ BV E
duced by the bistable magnetic-anisotropy potential. At low 0 ' b e b b b
temperatures the transverse probing field competes with the 6 01 02 03 04 05 06
anisotropy energy in aligning the magnetic moments, which 2

are concentrated close to the potential minirrfa:(i mn).

Then, the increase of the thermal agitation allowso (sta-
tistically) separate from the minima and tkeansversgre-
sponse increases. However, as the temperature is further in-

creased m becomes increasingly unfastened from the
anisotropy and the transverse field competes mainly with the

thermal agitation in aligningn; the response then exhibits a
maximum and decreases ass further increased. Note that
this is essentially ahermal-equilibriumeffect, with a mark-
edly different character from thdynamicalmaxima exhib-
ited by the longitudinal susceptibility(w,T).
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3. Response for anisotropy axes distributed at random

Finally, owing to the linearity of the response, when a FIG. 6. Linear dynamic susceptibility VB for anisotropy axes
distribution in anisotropy-axis orientations occuggw) in  distributed at randomB=0, andA=0.1. The symbols are for the
the absence of a bias field merely given by the weighted numerically computedx(w,T))rn and the thin solid lines are Eq.
sum of the longitudinal and transverse dynamic susceptibili{P10 with 7 defined as integral relaxation tinjeq. (D13)], and
ties, the weight factors being:052a> and (sinza), respec- 7. giveq by tht_e modified effective_ eigenvalue res([II;L_S)._The
tively. (The angular brackets enclosing functions:gfwhich thICK §9I|d line in the upper panel is the thermal-equilibrium sus-
is the angle between the anisotropy axis and the probin§ePtbility (x(T))rads-o=om?/3ksT. Inset: Modulus and phase
field, or susceptibilities, stand for average over the anisotShift of (x(@,T))ran for wry/27=0.0025.
ropy axis distribution of an ensemble with the same param-
eters\, Kv, andm.)

_ The linear dynamic suscep_tibility for ani_sotr_opy axes dis-  Figure 7 displays the Iongitudin@Aé(t)||ﬁ||l§] linear dy-
tributed at random(osa)=(sir’)/2=1/3) is displayed in  namic susceptibility vs the temperature for various values of
Fig. 6. The out-of-phase componefi§”(w,T))ran, IS OVer-  the pias field. The qualitative features of the susceptibility
whelmingly dominated by the responses to the componentsyryes are similar to those encountered in the unbiaged (
.of.the problrllg"ﬂeldalongthe' different anisotropy axes, and =0) case, and can be interpreted in terms of the same pro-
it is almost s x|(w,T) (cf. Fig. 4. On the other hand, the eggas(i) At low temperatures the response consists of the
in-phase component,(x'(w,T))ran, IS approximately oot rotations of the magnetic moments close to the bottom of
3X|(,T) plus a nonuniform upwards shift of magnitude o potential wells, with the overbarrier relaxation mecha-
3x.(T), wherey, (T) is the equilibrium transverse suscep- nigm peing blocked(ii) As T is increased the magnetic mo-
tibility. This occurs in such a way that) at high tempera-  ents can depart from the potential minima, by means of the
tsuergséthe gg]f;e Izazwi%smo/b?)gi d[gﬂé::')bgfgfnx (Tr) >trarrJB:3v’ | €nergy gained from the heat bath, and the response starts to

» €85 C Y peratures Well increase steeply witfi (with a sizable lag behind the probing

below the blocking temperatures, the response consis " .

mainly of the projection in the probing field direction of the |eIQ). (i) If.T IS f“”h‘?f mcrease(_j the SySte”.‘ reache; t_he

rotations of the magnetic moments close to the bottom of thé9'Me dominated by inter-potential-well rotations, exhibit-
ing dynamical maxima first in the phase shift and subse-

potential wells €y, |r—o). Due to the short characteristic quently in the magnitude of the respong®) In the high-
time of these intra-potential-well rotations-{r ; see Fig.  amperature range, the magnetic moments are almost in the
i\?;Egsfv\)l\/-iiﬁntqﬁeerp?rtgtr)ei}n;e?ig(l)(gzg 'tshgeiﬁglgt'g?tggf;geous Afermal-equilibrium state associated with the instantaneous
' probing field and, henc%i(T,B) tends to the equilibrium
B. Dynamic response in a longitudinal bias field linear susceptibility whiley|/(T,B) approaches zero.

We shall now study the effects of a constant magneti Thus, the dynamlcs. is qual|tat|vely.5|mllar to that of the

> QUnbiased case, the main difference being that the system now
field B applied along the common anisotropy axis directiongonsists of bistabl@onsymmetricagntities. The two poten-
of a spin ensemble with parallel anisotropy axgn). tial wells, which do exist since the applied bias fields are

1. Longitudinal response
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4 T F Figure 5 also displayy, (w,T,B) vs T for B/Bx=0.1 and
] x'" ) 2-B/Bg=0.1 [ 0.2 (curves labeled 2 and 3, respectivelgnd o 7¢/27

3] 3-B/Bg=0.15] =0.005. The qualitative features of the susceptibility curves
] B/BK=O'2 i are similar to those encountered in the unbiased dastie
v \\ i mechanism of inter-potential-well rotations plays a minor

24 NN dynamical role, with the response being dominated by the
4 hd X fast intra-potential-well rotations(ji) the x| (T,B) curves

. obtained are rather close to the corresponding equilibrium
1 susceptibilitieqthick solid lineg, and(iii) x| (T,B) is small
. as compared to bot{ (T,B) and x|/ (T,B).

0 rA N BT A BT TN N NS DA AR AT A

0 0.1 0.2 0.3 0.4 0.5 0.6
C. Comparison of the numerical results
with different analytical expressions

We shall finally compare the linear dynamic susceptibil-
ity, obtained by numerical integration of the stochastic
Landau-Lifshitz-Gilbert equation, with the heuristic models
discussed in Appendix D and rigorous expressions. In this
comparisomo adjustable parametewill be employed.

We shall sometimes use the waegactwhen referring to
the numerical results. Along with the considerations of Ap-
pendix C about the feasible diminishing of the statistical er-
ror bars of the computed quantities by averaging over a suf-
ficiently large number of trajectories, we also implicitly
mean that the numerical results axactin the context of the

FIG. 7. Longitudinal linear dynamic susceptibiliM vs T, for Brown-Kubo-Hashitsume stochastic model.

A=0.1, w7¢/27m=0.005, and various values of the longitudinal

bias field. The symbols are for the numerically computed o

x|(@,T,B) and the thin solid lines are E¢D10) with 7 defined as 1. Longitudinal response

integral relaxation timdEq. (D13)]. The thick solid lines in the Figure 8 shows the computed(w) in the unbiased case
upper panel are the corresponding equilibrium susceptibiiies 504 i the bias field8/B,=0.1. The predictions of the
(:Dg')i' Inset: Modulus and phase shift gf(«.T,B) for B/By discrete-orientatiofiEq. (D12)]; Gittleman, Abeles, and Bo-

o zowski [Eq. (D10) with the approximate Eq(D7)]; and
below the critical oneB=By where the uppefshallowej  Shliomis and Stepand\Eq. (D10)] heuristic models for the
potential well disappears, now have different depths. Furdynamic susceptibility are also shown. The longitudinal re-
thermore, the magnitude of the equilibrium response idaxation timer| defined as théntegral relaxation timer,
smaller than that of the unbiased case, and decreases wiiig. (D13)] has been incorporated in the three equations.

0 0.1 0.2 0.3 0.4 0.5 0.6

increasingB, since the equilibriumy(T,B) is the slope of It is apparent that EqD12) fails to describe the numeri-
the magnetization vs field curve Bt instead of the initial  cal results; neither is the equilibriuthigh-temperaturesus-
slope of the unbiased case. ceptibility properly described. Indeed, the overall failure of

We remark in passing that the simple idea that the applithjs expression could mainly be attributed to the rough ap-
cation of a constant magnetic field reduces the potential bats oximation used for its equilibrium paf€q. (D9)]. The
riers, so that the relaxation rate increases and the bIOCkinarobability thatrh makes a finite angle with the anisotropy

temperatures shift to lower temperatures, should be viewed -~ : . . ;
with caution. The location of the maximum of the dynamic axis is completely neglected in such a discrete-orientation

response indeed depends on the potential-barrier heights, beuation. , .
also on the form of the equilibrium response, which is mark- concerning the Gittleman, Abeles, and Bozowski equa-

edly different from that of the unbiased ca¢e a bias field tion, it is more suitable than the previous one, especially for
the equilibrium response exhibits a maximum as a functiorihe matching of x{(T,B), although it fails to describe
of T and then decreases to zero asis lowered, since Xﬁ(T,B). Again, not even the equilibrium susceptibility is
X|(T,B) is the slope of the longitudinal magnetization curve correctly described; the high-barrier approximation for
at B and, for a fixed finiteB, the magnetization saturates at y,(T,B) occurring in this modelEq. (D7)], although better
low T.) Indeed, for the frequencies and bias fields considthan the discrete-orientation approximation, is still not accu-
ered, the location of the maxima gf (T) is not very sensi- rate enough at the relevant temperatures. Furthermore, for
tive to the bias field, while those of;(T) shift slightly to  bias fieldsB/Bx=0.15, the divergence of this model from
higher temperatures d&increases. the exact results becomes dramdtiarves not shown

In contrast, Eq(D10) approximates the numerical results
_ _ _ reasonably. Recall that the exact expressionfgrw) com-
We shall finally consider thiransversedynamic response prises an infinite number of Debye-type relaxation mecha-

in the presence of ongitudinal bias field[AB(t)Ln|B].  nisms, namely,

2. Transverse response
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5] Lol iserete contribution in the low-temperaturg o=Kuv/kgT> 1) re-
Xy A orientation gion (A7 * can then largely deviate from, anda,;>ay no
longer holds; see Ref. 11for the frequencies employed
here, the relevant dynamical phenomena occur in the range
o~3-5, so that, for the bias fields applied, E§.10) de-
scribes the exact results reasonably.

However, one could expect, even B0, a significant
contribution of the intra-potential-well relaxation modes to
the longitudinal response when the overbarrier dynamics is
blocked at low T (w/A;>1). Indeed, when scrutinizing
Figs. 4 and 7, one sees that E§.10) predicts, both foiB
=0 andB#0, a smallerxﬁ, when departing from zero at
temperatures well below the blocking temperatures, than the
) LAY ¢ DALARALE RARAA RARAA AL, exacty| . In addition, because the intra-potential-well relax-

1-B=0
2-B/B=0.1

[\ w

H
1.
L L B DL L B

—

TT T TR

(=]
e
=
=N

0.2 0.3 0.4 0.5 0.

4] X"u N ation modes are very fast<{(rx), their contribution to the
- i n B out-of-phase susceptibility is smaller than their contribution
3] P R e o o5 to x| , so thaty( is still described reasonably by the Debye-
1 caB i1}, % [2BBe=o01 "o type term associated with the inter-potential-well dynamics
) ; ; kgTRY] [ (X[ =X (@l A)/[1+ (w/A1)?]). . _
- 015 02 | These considerations are substantiated by comparing the
71 shs N numerical results with the asymptotioc$ 1) expression for
1 r the longitudinal dynamic SL%_;,ceptibiIity of the nematic liquid
1. kBT/KV - crystal derived by Storonkiftf, namely,
0 01 02 03 04 05 06 07 0.8 - pom? [ 1 3 1
FIG. 8. x; vs T for B=0 andB/B=0.1 with w7 /27 =0.005 keT o 4g?/ltielAy
(symbols. The short-dashed line is for EqD12), the medium-
dashed line for Eq(D10) with the approximate EqD7), and the + 1 .1 + _1 ) (4.2)
solid lines for Eq.(D10). 7 defined as integral relaxation tinjEq. 8o2\1+tiw/Ay 1+iwl/Ag)|
(D13)] has been incorporated in the three heuristic models. Inset:
Enlargement of the low-temperature part pf vs T showing the where
effect of the intra-potential-well relaxation modes. The thick solid
line is the equilibrium susceptibility foB/B,=0.1, the thin solid 1 7 ~3i2g 1 7
lines are again for Eq(D10), and the dashed-dotted lines for the Ay TINTSO xplo)| 1+ P 402]" (4.3
asymptotic result4.2) by Storonkin(for B=0 only). For x|, Egs.
(D10) and (4.2 visually coincide.
AglengieiT > # (4.4
o 8% T 20 200 4¢2)° '

a,(T,B)

2 THiwiAqTB) 4D

x|(o.T,B)=x(T.B), [Note that (uom?/kgT)(1—Lo—3/402)=x (T)+O(L/

o?), while the result forA; ! agrees with that by Browf:
wherea, (,-;a,=1) is the amplitude corresponding to S€€ also Ref. 9.In thellnset of Fig. 8 it is shown that Eq.
the eigenvalue\, (0<A;<A,---) of the Sturm-Liouville (4.2) remarkably describes thig=0 numerical results at low
equation associated with the Fokker-Planck equation. Théémperatures. Because; s~ /o =7« andwrc<1 for the
first nonvanishing eigenvalu®, is associated with the inter- frequencies considered, it follows that 14lw/Azg=1
potential-well dynamics, whereas the higher-order eigenval=i®/Azs. Therefore, since om?/kgT)X (1/80%)kgT,
uesA,, k=2 are related to the intra-potential-well relax- Storonkin formula(4.2) yields the low-temperature linear in-
ation modes. Therefore, the mentioned agreement could B&ease ofy; with T due to the intra-potential-well relaxation
expected in the unbiased case since, as it was shown numefitodes, whereas their contributionyf is smaller by a factor
cally by Coffeyet al:® (i) a;(B=0)>a,(B=0),Yk=2 and o/Azs~wT.

(i) A;Y(B=0)= Tine|(B=0). Indeed, in Ref. 24 it was This takes a dramatic reflection in the phase shifts. As any
shown that an expression equivalent to the longitudinal comexpression of the forny(w) = x/(1+iw7) (Debye typg, the
ponent of Eq(D10), together with the interpolation formula longitudinal component of Eq(D10) yields a phase shift

of Cregg, Crothers, and Wickstéddor A; !, describes well ~ ¢sns|=arctanf7), which increases monotonically with de-
the longitudinal dynamic polarizability of the congeneric creasingT (corresponding to the emergence of a sizajle
nematic liquid crystal with Meier-Saupe potential in the ab-and, eventually, reaches/2 (see the insets of Figs. 4 any| 7
sence of a bias field(The longitudinal relaxation in this since at low temperatures7>1. However, since the fast
system is mathematically identical with that of classicalintra-potential-well relaxation modes yield an almost instan-
magnetic momentsin addition, although in a constant lon- taneous contribution to the respongg, decreases withl
gitudinal field the higher-order modes can make a substantidéss steeply tharp(||/[1+(w/A1)2] at low temperatures,
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For the transverse probing-field geometry, the discrete-
orientation formula(D12) predicts obviously an identically
zero response, while the Gittleman, Abeles, and Bozowski
formula yields a constang| (T) and a zergy/ (T). In con-
trast, the exacyy| (T) is described well by Eq(D10), al-
though, becauser, <1 holds in the considered frequency
range,x; (T) almost coincides with the equilibrium suscep-
tibility x, (T). Concerningy! (T), Eg. (D10) with the ex-
pression(D15) for 7, only matches the out-of-phase re-

] a=01 F001 sponse in the low-temperature range€v(kgT=7) for the
L iep2ete,etettttereret smallest damping coefficient used €0.1). Nevertheless,
0™ or 02 03 o0z 05 06 Fig. 9 shows that, as the damping coefficient is enlarged, the
k,T/Kv matching between the numerical results and the simple Eq.
0.024 e (D10) improves when one uses the proposedEq. (D15)].
] an }HH},} }_H 13- This constitutes an advance over the usual approach, where
0018_3 f} R i one uses the, derived by the effective-eigenvalue method
R = 2=0.5 [Eq. (D14)], which yields the thick dashed curve of Fig. 9
. irrespective of\.
0.012 ] The above comparison is in agreement with that made by

x"), by Garanin,
Ishchenko, and Panina

Kalmykov and Coffey! of their numerical results, obtained

LILA L L L L L L L B N

by continued-fraction techniques, with the compléiat ap-
] ‘ 133 2=0.1 proximate expression for x,(w,T) of Rakher and
] S ir. .}I—{- 11513438 Shliomis?*° The failure of this expression for weak damp-
] 333 1 ing was explained in terms of the effects of the gyromagnetic
0 0‘ * 0"1’ '02 : 0’3' L '0f4' = '055' = '0'6 terms of the dynamical equation. When these terms dominate
k,T/Kv (A<€1), due to the occurrence of a spread of the precession

frequencies ofn in the anisotropy field at intermediate tem-

peraturegthese frequencies apeyBK(rﬁ~ n)], the response
is not well described by a simple relaxation mechanism.
Thus, only at low temperatures, where the magnetic mo-
ments are concentrated close to the bottom of the potential
wells (so the spread in precession frequencies is reduced
pthe exact results are well described by the(w,T) of
Raikher and Shliomigor equivalently by Eq(D10) with the
expressionD15) for 7, ].
The effects of the spread of the precession frequencies of

whereasy| is still approximately given byy (w/A;)/[1  m in the anisotropy field had already been investigated by

+ (w/A4)?]. Consequently, the actual phase skiffisets of  Garanin, Ishchenko, and PaniflaThey derived from the

Figs. 4 and 7, also increases monotonically with decreasingFokker-Planck equation thexactexpression foy’ (o, T,B)

T but, at a temperature close to that of the peak ofin thex—0 limit, which fully accounts for the effects of this

x[(T), #|(T) exhibits a maximum and then decreases tophenomenon. Their formula can be written as

zero asT is further lowered, since at loW, due to the fast

intra-potential-well relaxation modes, the response is again (20)2— (w—§&)2 p(z)z_gz

in phase” with the probing field. This behavior of the x||,_o= kaT §(2|0|)3 Z ex 1o |
(4.9

FIG. 9. Upper panely, vs T for B=0, wn/27=0.005, and
various values of the damping coefficient The circles are foy | ,
and the rhombi foly| . The medium dashed line corresponds to the
constanty| given by Eq.(D11) and the solid lines to EqD10)
with 7, given by Eq.(D15). The thick dashed curve ig| (w,T)
with 7, given by thex>1 result(D14). Lower panel: Detail of
X! (»,T) in the intermediate-to-weak damping regime together wit
the exact zero-damping formul@.5) of Garanin, Ishchenko, and
Panina(dashed-dotted lings

,LLOmZ aw w

phase shift, which is in agreement with the results of Ref. 10,
is qualitatively similar to that encountered in one-
dimensional bistable systerffsand ascribed to the crossover ~ ) -
from the high-noise regime, dominated by inter-potential-Whereé @=w(m/ykgT), é=mB/kgT, Z is the partition
well jumps, to the low-noise regime, dominated by the fastfunction (D3), and x| (w) is nonzero in the interval ¢
intra-potential-well motions. —§)?<(20)2. (In order to compare this zero-damping for-

mula with the numerical results, we wri@= w(2\ r¢o),

which for fixedw ¢ , as it occurs in the plot, is a “function”
Figure 9 displays the corresponding comparison forof X.) The lower panel of Fig. 9 shows that, fer=0.5, Eq.

x. (o) in the unbiased case for various values of the damp¢4.5 compares reasonably with the numerical results at

ing coefficient. For the transverse relaxation timewe have intermediate-to-high temperatures, while the agreement ex-

used Eq(D15), which has been derivedppendix D from  tends to quite low temperatures already %o 0.1.

the low-frequency expansion of the equation far(w) of Since Eq.(4.5 is aA=0 formula, this comparison indi-

Raikher and Shliomig®°(In the frequency range below the cates that, in the intermediate-to-weak damping regime, the

ferromagnetic resonance range e o) of these authors is contribution of the spread of the precession frequencies of

indistinguishable from the low expansion used heje. the magnetic moment @/ (w) is sizable as compared to the

2. Transverse response
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25 e e much larger than to the longitudinal response. Therefore, as
N Shs <> r the former contribution is in some way accounted for by Eq.
9] fan (D10), via the equilibrium transverse susceptibility, one finds
X that, inasmuch agcoS«) departs from unity, the Shliomis
15 and Stepanov equation also describes the low-temperature

phase shifts reasonably wéfiee the inset of Fig.)6

V. DISCUSSION AND CONCLUSIONS

LILA LI B L B

In this work, the stochastic Landau-Lifshitz-Gilbert equa-
tion (Brown-Kubo-Hashitsume modehas been integrated
numerically, taking account of the differences of the stochas-

01t 02 03 04 05 06 tic calculus from the deterministic calculus. This Langevin-
k,T/Kv . \
B dynamics approach has been shown to be a useful tool in the
FIG. 10. (x(,T))an VS T for @rg/2m=0.0025,8=0, and\ study of the dynamics of magnetic nanopatrticles.

—0.1 (symbol3. The short-dashed line is for EqD12), the When studying the_long-time_ dynamics of the magnetic
medium-dashed line for EqD11), and the solid lines for Eq. Moments, the Langevin-dynamics method used requires an

(D10). The integral relaxation timéD13) has been used far . For extens_ive computational effort and _is then less eﬁicient than
7., Eq.(D15) and 7, =0 have been employeghoth results visu- numerical methods especially suitable for noninteracting
ally coincide. spins, such as those based on continued-fraction techniques
or the computation of the eigenvalues and amplitudes of the
effects of the damping. Therefore, by omitting that zero-elevant dynamical modes by matrix methddsS. However,
damping effect one could erroneously extract values\ of with a significant increase of the computational effort, the
from they! (») data that overestimate the actaahnd, e.g., Langevin-dynamics technique could also be used to study

infer that the damping in superparamagnets is strong assemblies of interacting magnetic moments. In addition, the
' direct attainment of the time evolutiamealization$ of the

variables of the system, renders the Langevin-dynamics
method unique as it directly yields the dynamics of the indi-
The comparison is finally effected for anisotropy axes diswidual magnetic moments. This is especially relevant consid-
tributed at random. In principle, this comparison could ap-ering the current experiments on individual magnetic
pear unnecessary due to the linearity of the response. Nevesanoparticles?
theless, we shall carry it out since additional conclusions can In the study of the dynamics of individual magnetic mo-
be drawn. ments, we have found interesting phenomena in the overbar-
First, as Fig. 10 shows, the discrete-orientation model igier rotation process, such as crossing-back and multiple
not able to yield the sizable low-temperature in-phase recrossing, which can be explained in terms of the gyromag-
sponse, while the correspondifig’(T) ), Overestimates the netic nature of the system. On the other hand, as a suitable
exact one. The curious point is the reasonable agreement pfobe of the intrinsic dynamics of the ensemble of magnetic
the Gittleman, Abeles, and Bozowski equation with the exacinoments, we have studied its linear dynamic susceptibility
results for this anisotropy-axis distribution. Neverthelessand set this in the context of the previously determined fea-
one should keep in mind that this agreem@ well as that tures of the individual dynamics. We have investigated the
of the discrete-orientation model at high temperatures effect of the intra-potential-well relaxation modes on the
originates from the cancellation of two faulty results for the low-temperature longitudinal dynamic response, showing
longitudinal and transverse susceptibiliti¢secall Figs. 8 their relatively small reflection in they (,T) curves (re-
and 9. Any departure of the anisotropy-axis distribution markably small iny|/) but their spectacular influence on the
from random will show the limitations of such a model. Fi- phase shifts. On the other hand, the sizable contribution of
nally, as could be anticipated, the accord obtained betweefhe spread of the precession frequencies of the magnetic mo-
Eq. (D10) and the exact results is merely a consequence ohent in the anisotropy field to the out-of-phase transverse
the previously encountered agreements plus the linearity qfsponse at intermediate-to-high temperatures, has been
the response. In addition, this accord is maintained even i§emonstrated by comparing the numerical results with the
we put7, =0 in the transverse component of that equationexact zero-damping expression fef (w). Accounting for
(instantaneous transverse resporisecause the out-of-phase s effect may be relevant to properly assess the strength of
susceptibility is, at the frequencies considered, overwhelmg,g damping in superparamagnetic systems.
ingly dominated by the responses to the components of the \ye have also compared the numerical results with heuris-
probing field along the different anisotropy = axes i analytical expressions. It has been demonstrated that both
[{x"(T))rar=3 x| (T)]. Note that this would also reasonably the discrete-orientation and the Gittleman, Abeles, and Bo-
work for stronger damping since the thick dashed curve irzowski equations fail to describe the exact results, whereas
Fig. 9, which isy (w,T) with the overdamped\>1) trans-  the simple formula proposed by Shliomis and Stepaisowmn
verse relaxation time, works out an upper bound)féras a of two Debye-type relaxation mechanismmatches the
function of X (specifically x| =5x 10~ 2uom?/2Kv). coarse features of the susceptibility reasonably. In addition,
Concerning the phase behavior, the fast intra-potentialowing to the fact that the intra-potential-well relaxation
well motions make a contribution to the transverse responseodes are very fast and, thyg; is well described by Eq.

orientation - 0
U BT IR I

[

P Y T
[=4
<
2

3. Response for anisotropy axes distributed at random
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(D10) (see the inset of Fig.)8while x' is relatively small, dm, N,

the theoretical background of the methods of determination W:weﬁﬁ(m —my).

of the energy-barrierv) distribution that are based on the

use of theout-of-phasecomponent of the Shliomis and Next, on introducing spherical coordinatem,+im,

Stepanov equatiofwith w7, =0) %" is supported in the =msindexp(-ig) and m,=mcosd (we measure the azi-

context of the Brown-Kubo-Hashitsume stochastic model. muthal angle clockwise the above system of differential
Finally, since the frequencies considered héire the equations can equivalently be written as

MHz rangg are much lower than those where resonant be-

havior occurs, the results obtained for the averaged quantities do )

would be valid in the usual frequency range of experiments i~ Mwersind, (A2)
on small magnetic particlesay w/27~10 2-10" Hz). In

addition, the large value of the effective, (~10 8- de 1 do

107 s) in the Arrhenius lawr = 70exp(AU/kgT), encoun- (or de/dt=weg). (A3)

tered in molecular magnetic clusters having high spin in their dt Asind dt
ground state, entails that experimental conditions withequation (A3) can be solved by separation of variables,
w/2m~10°-10" Hz already correspond to the frequency yielding

range considered in this work. Indeed, these systems neatly

exhibit the qualitative features encountered for the linear dy- 1 9 I

namic susceptibility at “high” (but below ferromagnetic ¢(9)—e(Fg)=—In tani/ tan-|, (A4
resonancke frequencies(see Refs. 32 and 33 for feand

Mny,, respectively. wide maxima iny(w,T) vs T for only  where 9,=9(t;), to being the initial time. Because.y
one potential barriefrelaxation time, sizablex’(T) attem- = w.(9¥), we can also separate the variables in &) to
peratures well below the blocking temperatures, and flattenget the following implicit expression fof(t):
ing of the peak ofy”(T) with increasingw.

dy’

I(t)
—N(t—t )=f _ (A5)
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APPENDIX A: DETERMINISTIC DYNAMICS 2. The simplest axially symmetric Hamiltonian

Let us now specialize the above general solutions to the
Hamiltonian obtained by the sum of the simplest axially
symmetric anisotropy potential plus a longitudinal Zeeman
term. Then[cf. Eq. (3.2)]

In this appendix, we shall investigate solutions of the
Landau-Lifshitz equation in the absence of fluctuations,

dm . . N
— = yMANABgg— y—M/\(MN\Bg), (A1) - . . an
dt " m of Bog=BZ+ (B /m)(M-2)2, (AB)

restricting our attention to the case where the Hamiltonian Ogndw (M) =B
> . . - M) =

m is axially symmetric. On examining E@2.9), one con- ¢

cludes that the physical range where the fluctuations play a ¢ ()= wg+ wy c0sd, wg=7yB, wx=7yBk, (A7)

minor role is the low-temperature range, in the sense that _ _ _ o
ml< y] éeﬁ| lie., 2}\kBT<m|I§eﬁ|; see Eq(2.6)]. while the integral in the solutiofA5) is given by

eff(ntl) can be written as

dd
(wg+ wkcosy)sind

1. General solution for axially symmetric Hamiltonians

For an axially symmetric Hamiltoniaréeﬁ(rﬁ) is parallel

to the symmetry axis, which can be chosen as zhaxis, 1 Ul WK
3 > . . - = In| tany | + ——— In(wp+ )
Bei=Besi(Mm)z. Then, on introducing then-dependent “fre- wgt wg 2 wg— Wk
quency” wer(M) = yBer(M), we can explicitly write the de-
terministic Landau-Lifshitz equatiotAl) as a system of wk wp— WK 9
coupled ordinary differential equations: +———In 1+ T taan .
wg— Wk wgT WK
dm, A Therefore, from the general res@h5) we get
qr = @efi| My~ MM, |, '
9 wg— Wk 9@k /(@p=wK)
—NMogt+ o)t _— _

dat “’eﬁ( Ty meZ) ' (A8)
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where the constant of integratidh involves both the terms
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=(wg+ wk)(t—tp) by Eq.(A4). However, within the same

evaluated at=ty and the second term on the right-hand sideapproximation y<1) we can replace the tangents by their

of the above integral, which is a constant too.

Particular cases

The above implicit solution fo(t) turns into an explicit
one in various special situations.

arguments, getting

B()=doe et 1), (1)~ o= (wp wx)(t—to).

Thus, m precesses with frequenayg+ wyx when spiraling
towards thed=0 potential minimum and the time constant

a. Dynamics in the absence of the anisotropy energyef the decay of is 1\ (wg+ wx)]= a7« /(7a+ 7). Note

Here wx=0, so that Eqs(A4) and (A8) reduce to the cel-
ebrated resultbeg= ¢(to) ]

0 o —Nowg(t—tg)
tan, =tan—-e "B, (1) — o= wg(t—to).

Thus, the motion ofn consist of a precession with frequency

wg=7yB aboutz and a spiraling towards this axis with a
characteristic time constaptf. Eq. (3.4)]

1 1

O veabert (A9)

b. Dynamics in the absence of an external fiditkre
wg=0, so that, by using tafi=2tan (9/2)/[ 1—tarf(9/2)]
in Eq. (A8), one gets

tand=tande k(1) (A10)

Thus, the spiraling towards the minim& 0 case has a
characteristic tim¢Eq. (3.4)]

1 1

TK:)\(UK - )\’}/BK ’

(A11)

For easy-plane anisotropyK0) one hasBg ,wx<0, so
that lim_, ,tan9d =, that is,¥— 7/2 ast—«, and the mag-
netic moment eventually rests in the equatorial plane.

Concerning the azimuthal angle, by expressing &2}
in terms of tan%, one gets from EqA4)

1+secdy
1+ J1+tarfdge 2ex(t-to)

1
@(t) — po= wk(t—tg) — Xln

where the plus sign correspondsce [0,7/2] and the mi-
nus sign tod e[ w/2,7r]. From this equation it follows that
the asymptotich | wk|(t—1ty)>1 behavior of the azimuthal
angle forK>0 is

11”590190”

1
wx(t=to) = ~In| =

e(t)—@o==*

which corresponds to a precession close to the bottom of the

corresponding potential well with an angular veloaityi in

the z>0 well and — wz in the z<0 well. For easy-plane
anisotropy K<0), one finds from Eq(A4) that the mag-
netic moment finally rests in the equatorial plane @t
— (%) = 1IN In[tan(9¢/2)] (unless it starts at}y=0,m,
which are unstable equilibrium points

c. Dynamics close to the potential minima (case®).
Let us initially assumed=0 (i.e., tan@®/2)<1). Then, on
retaining terms of order taf(2) in Eq. (A8), we get
tan(9/2)=tan(dy/2) exd —\(wgt+ wy)(t—1tg)] and ¢(t) — ¢q

that the characteristic decay timerofx cos9=1—9%2, is a
half of this result. Moreover the approximation used is self-
consistent ifug+ wx >0, that is, if thed=0 potential mini-
mum exists.

We shall finally consider thé= 1 case. In this situation
9/2=m/2 and, hence, tam(/2)>1, so we can use <(wg
—wg)!(wg+ w)tart(9/2) in Eq. (A8), to get tan{/2)
=tan(dy/2)exgMok—wg)(t—tg)] and then ¢(t)— ¢o=
—(wk—wg)(t—1ty) by Eg. (A4). However, for tan{y/2)
>1, one has ta®=—2/tan (%/2), and by expanding tah
aboutd= 7, we finally get

H(t) — m=(o— m)e Mok~ ws)t~to),

@(t) — po=—(wx— wg)(t—1tp).

Therefore, m precesses with frequencwy— wg (about

—2) when spiraling towards thé= 7 minimum, while &
decays with a characteristic time constafi\l{tvk — wg)]
=1g7¢ /(73— 7) (@ndm, with half of this valug. Note fi-
nally that, the approximation used is self-consistentjf
—wg>0, i.e., when the)= 7 minimum exists.

APPENDIX B: DERIVATION OF THE
FOKKER-PLANCK EQUATIONS

Let us consider the general system of Langevin equations

dy;

dt (B1)

=A(YD+ 25 By DLi(D),
wherey=(y,, ...y, (the variables of the systemk runs

over a given set of indices, and the “Langevin” sources
L.(t) are(independentGaussian stochastic processes satis-

fying
(L(1)=0, (Ly(BILA(S)=2D5 8(t-5).

When the function®3;,(y,t) depend ory, the noise in the
above equations is termed “multiplicative,” whereas for
dBix/dy;j=0 the noise is called “additive’(here the [toand
Stratonovich stochastic calculi coincide

The time evolution ofP(y,t), the nonequilibrium prob-
ability distribution fory at timet, is given by the Fokker-
Planck equation

9P g 9B,
-3 2 A+DY B X|p
ot ZI ayil |\ % gy ) }
2
+ DY BB |P|,
; Y9y 2k 'k Jk) }

where the Stratonovich calculus has been tsgmltreat the
(in general multiplicative fluctuating terms in the Langevin
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equations (B1) [when using the ftocalculus thenoise- dBj/dm;=0 by €;; =0). On the other hand, on introducing
induceddrift coefficientDX Bj(JBjx/dy;) is omitted. On  the reduced expressior;]l:ZDyz for the Neel time, the
taking they; derivatives of the second term on the right-handthird term in Eq.(B2) can also be cast into the for(B6).

side, one alternatively gets the Fokker-Planck equation in the Thus, the Fokker-Planck equations associated with both
form of a continuity equation for the probability distribution, the stochastic Landau-Lifshitz-Gilbert equati¢h1) and the

namely, stochastic Landau-Lifshitz equatid@.4) are given by Eq.
(2.5), the only difference being the relation between thelNe
f: _2 i[ {A-— DE B'k( 2 9Bk time and the amplitude of the fluctuating field:
ot ™ ooyl i Y,
- b 1 [2DyA(1+\2) (LLG), 8
(9 _—
-D>, BiBik gy P]. (B2) ™ 2Dy* (LL).
13 j

Next, on considering thestochastic Landau-Lifshitz- APPENDIX C: NUMERICAL METHOD
Gilbert equation(2.1), supplemented by the statistical prop- 1. Numerical integration scheme
erties (2.3), the following substitutions cast them into the
form of the general system of Langevin equatioil):

(Y1,Y2,¥3) =(my,my,m;), Li(t)=Dby(t), and

On using the dimensionless quantities introduced in Sec.
Il [Egs. (3.3 and (3.4)], the stochastic Landau-Lifshitz-
Gilbert equation(2.1), can be rewritten in a dimensionless

. N . .. form suitable for computation, namely,
Ai = ’)/ m/\ Beff_ Em/\(m/\ Beff) y (B3)
i de 1. . . — . L L
N d_Tz Xe/\[heff+ ha(t)]—e/\{eA\[hegt+ha(t)]},
Bik=7v 2 €ijkm; + E(mz5ik—mimk)}, (B4) (C1)
where ¢;;, is the totally antisymmetrical unit tens¢kevi- ~ Wheree=m/m is a unit vector in the direction of the mag-

Civita symbo) and we have expanded the triple vector prod-netic moment and the statistical propertiesﬁq(t_), which
uct —m/A(m/\bg) = m2by—m(m- by). Note that theB,, de-  arise directly from those dby(t) [Egs.(2.3)], are
pend onm, i.e., the noise terms in the stochastic Landau-

Lifshitz-Gilbert equation are multiplicative (hgi(1))=0, (C2
On using
B (hy,i(Dhy (5)) 2( M kel a9, (ca
JBik A f,i(0)hg j(8)=2| —— 5| djo(t—s),
ﬂ_I'T'IIJ:‘y eijk+ E(Zb]kmj—&]mk— 5kJm,) (BS) 1+)\2 ZKU
(\m= 5ylv has not been differentiated since it is a constantVhere VY? have USEd_ E@.7) for D ar_ld _5(t) = 5(t)dt2/dt
independent ofm) and accounting fore;;; =0, one finds = &(t)7¢" [the factor in the brackets is inde€l (7Bi) |

2dBjlam;=—=2(yN/m)m,, from which we get Next, let us cast the dimensionless £QJ) into the form of
3 Bik(Z;9Bj /dm;,)=0 by Eq.(B4). Therefore, the second the general system of Langevin equatidifil) by setting
term on the right-hand side of the general Fokker-Plancki=hs,i and introducindcf. Egs.(B3) and (B4)]

equation(B2) vanishes identically in this case. For the third

- 2, ’ 1
term, by repeated use 08 (\J');=% €5, s, We get A= KE €ijk® T (Sik— €€ | Nefr k. (C4
k i
D>, ByB A */\( A ap) (B6) 1
_ . g =—Mm m — [}
< Pk ]kamj 2 om) | Bik:X; €ijke T+ (Sik—eey). (CH

wherery'=2D?(1+\?) is the Nel (free-diffusion time.
On introducing these results into E®2) one finally arrives
at the Fokker-Planck equatidg.5).

Likewise, when one considers theochastic Landau- Concerning the choice of the numerical integration
Lifshitz equation(2.4), supplemented by Eq$2.3), the ex- S X .

) L : . scheme, one must keep in mind that the noise terms in Eq.
pression forA; is identical with Eq.(B3), whereasB;, re- o - .
duces to(in this case there are Langevin fields in the (C1) are multiplicative Bj, depends ore). Together with
precession term only Q|ff]cul_t|es at lthe Ieyel _of defmltlon,. the occurrence .of mul-

tiplicative white noise in a Langevin equation entails some
technical problems as well. For instance, serious difficulties
Bik= 72 EijkM; - (B7)  arise in developing high-order numerical integration schemes
. for this case** In general, the mere translation of a numerical
Therefore, B; /om; simplifies to @Bj/dm;) = yejj [cf. scheme valid for deterministic differential equations does not
Eqg. (B5)], so that one again gets that the second term in theecessarily yield a proper scheme in the stochastic ¢gse:
general Fokker-Planck equatioriB2) vanishes (here  Depending on the original deterministic scheme chosen, its

[For the corresponding dimensionless stochastic Landau-
Lifshitz equation Bik=)\*12jeijkej [cf. Eq. (B7)], while
(AN211+N\?) (kg T/2Kv) —N2(kgT/2Kv) in Eq. (C3).]
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nave stochastic translation might converge to an dtdu-
tion, to a Stratonovich solution, or to none of thein). Even
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Landau-Lifshitz equation; we omit the corresponding
proofg, we shall employ the stochastic Heun mettiG#) to

if there exists proper convergence of the scheme chosen integrate Eq(C1) numerically. This is done becaugé: The
the context of the stochastic calculus used, the order of corHeun scheme yields Stratonovich solutions of the stochastic
vergence is usually lower than that of the original determin-gifferential equations naturally, without alterations to the

istic scheme.

drift term and(ii) the deterministic part of the differential

Let us consider the stochastic generalization of the detelsquations is treated with a second order accuracyAtn

ministic Heun scheme, namely,
yi(t+ A =y;(t) + 3[Ai(y,t+ At + Ai(y, 1) JAt
320 [Buy,tHAD +Bi(y,D]AW,

(Co
whereAt is the discretization time intervay=y(t), the;
are Euler-type supporting values,

§i=yi<t>+Ai<y,t>At+2k Bi(Y.DAW,,  (C7)

and theAW, = [1*2'dsL,(s) are Gaussian random numbers

the first two moments of which are

(AW,)=0, (o)

The stochastic Heun schent€6) convergesin quadratic

which renders the Heun scheme numerically more stable
than the Euler-type schemes.

Previous approachesn order to integrate the stochastic
Landau-Lifshitz-Gilbert equation numerically, Lyberatos and
Chantrelt® unfortunately used a bare Euler scheme analo-
gous to Eq.(C7), which omits the noise-induced drift, in-
stead of using the Stratonovich Euler sche@@). Inasmuch
as Eq.(C7) yields Ito solutions of the stochastic differential
equations and, in contrast, they employed a relation between
the amplitude of the thermal-agitation field afacquivalent
to Eqg. (2.7) (which pertains to the Stratonovich stochastic
calculug, their approach is not consistent. Even the station-
ary properties that could be derived by means of such an
approach would not coincide with the proper thermal-
equilibrium propertiegrecall the discussion in Sec)lISimi-
lar considerations hold for the numerical approach of Ref.
36, where a deterministic backward Euler method was sim-
ply used to deal with the stochastic Landau-Lifshitz-Gilbert
equation. In contrast, a rigorous numerical treatment of the

meanto the solution of the general system of stochastic dif-ytiplicative noise terms of the stochastic Landau-Lifshitz
ferential gqugtlons(Bl) when interpreted in the sense of gquation has recently been effected by Antropov, Tretyakov,
Stratonovick?™ On the other hand, if one uses the Euler-typegng Harmor?’ by means of a Runge-Kutta method suitable

Eq. (C7) as the numerical integration schefty identifying

for systems withweaknoise.

yi(t+At)=Yy;], the constructed trajectoryonverges to the
Ito solutionof the same system of equatio(®1) (see, e.g.,
Ref. 39. A proper Euler-type scheme in the context of the
Stratonovich stochastic calculus is obtained when the deter-
ministic drift in Eq. (C7), A;, is augmented by the noise-

2. Implementation

The integration of the stochastic Landau-Lifshitz-Gilbert

induced drift, namely,

9B,
A+D> Bjk—'k} At
Ik (y,t)

Vit A0 =yi(H)+ 7,

+ 2 Bi(y,DAW,. (c9
We note in passing that the noise-induced drift for Ezjl)
is (N%/1+\?)(KgT/2Kv) S kB dBix /de;= — (kg T/Kv)e =
—(7x / 7v) € [which corresponds to the term(rﬁ)/r,\, in the
averaged dynamical equati¢®.9)].

For commutative noisedefined by

o 0Bi/_2 o

Rl
T oy g

(i.e., symmetry with respect to the subscrigtand /), the

&Bik

ir—=——, Vi C10
i’ &yj ( )

equation is performed by starting from a given initial con-
figuration, and updating recursively the state of the system,

m(t)—m(t+At), by means of the set of finite-difference
equations(C6). This generates stochastic trajectories from
which, when required, averages are directly computed. When
one extrapolates the results obtained to zero discretization
time intervalAt, the only error in theaveragedquantities is

a statistical error bar that can, in principle, be made arbi-
trarily small by averaging over a sufficiently large number of
stochastic trajectories. We do not carry out sucAta-0
limiting procedure but we employ a discretization time inter-
val small enough. We usét=0.01r¢ throughout [that

is At=0.01; see Eq(3.4)], except for damping coefficients
A=0.5, where we employt=0.0025r .

The Gaussianrandom numbers required to simulate the
AW, occurring in Eq.(C6), are constructed froraniformly
distributed ones by means of the Box-Muller algoritfiRef.
38, p. 280. As a large amount of uniform random numbers

stochastic Heun scheme has an order of convergence highisrused, we have chosen the subroutaai2 of Ref. 38, p.

than that of the Euler scheni€9).%® The condition of com- 272, to generate them. This subroutine has pefid®'8, so
mutative noise is rather general and includes additive noiseartifacts associated with period exhaustion are safely
dBi,/dy;=0, diagonal multiplicative noise, Bj;(y,t) avoided. On the other hand, since the generation of the ran-
=§;;Bii(yi), and linear multiplicative noise,B;;(y,t) dom numbers is the slowest step in the recursive scheme,
=B;j(t)y; (see, e.g., Ref. 34, p. 3&Although the multipli-  when computing a quantity at various temperatures we gen-
cative noise in the stochastic Landau-Lifshitz-Gilbert equa-erate all the trajectories at once, by using the same sequence
tion is noncommutativthe same holds for the stochastic of random numbers for the different temperatures.



PRB 58 LANGEVIN-DYNAMICS STUDY OF THE DYNAMICAL ... 14 955

When computing average quantities, in order to minimizecomputation of the thermal-equilibrium response will sug-
effects that are not caused by the application of the probingest a way to decreas¥/q more efficiently than to further
field AB(t), the following method is used. Starting from the increase the number of measurements, which is not very ef-
same initial configuration, the equations of motion are solvedicient because of the occurrence of the square K@t in
for two identical systems, one in the presence\@&(t) and the denominator of the above expression dorq.
the other subjected teA@(t), and the time evolution ana- Thermal-equilibrium rgsppnsda‘. ﬂJe I|eld-depend'enz pﬁart
lyzed is that ofm(t) = Hi[AB(t)]— M — AB()]}. More-  ©f the energy depends dhvia —<m-B, on assuming|z
over, we have found that thisubtraction techniqusignifi- ~ and definingm, ,=>m-z, where the sums are taken over
cantly diminishes the number of stochastic trajectoriesh® spins of the system, we know from statistical mechanics
required to achieve convergence in the computed results. ORat the relation
the other hand, as long as one applieinée probing field 5 L
when computing the linear dynamic response of the en- _ 2 2
semble of spins, the possibility of encountering nonlinear a_B<mth°‘>°_|<B_T[<mth°'>°_<mzv‘°‘>°]’ (C13
effects in the response arises. Along with the precautions
described below, the subtraction procedure automaticallyhere (), denotes thermal-equilibrium average, holds irre-
eliminates the nonlinear ternggiadraticin the probing field  spective of the magnitude @. Therefore, on defining the

that occur when a bias field is applied. magnetization in the field directio),, as the time average
of the magnetic momenper spin M, ,= [ dtm, ,(t)/
3. Statistical errors and optimization (tmN) (M, plays the role of th& above, and identifying the

es.tatistical distribution oM, , with the statistical-mechanical

When computing the dynamic response of the ensembl Gistribution, one can write

the system of spins is subjected to a probing fiAIé(t)

f-A éocos@t). Statistical errors occur in the Compytgd quan- SM, 1 W

tities because one makes a finite numbligy of statistically = , (C149
independent “measurements” on the system. By the out- Mz (tN)¥2 M.

come of one such measurement is meant a quantity com-

puted during, e.g., a cycle of the oscillating field, Note that, concerning the computation of averages, the

factor (t,,N) Y2 in Eq. (C14) plays a role akin to that of
N, Y2 above. Thus, to further enlardg or N is as effective
as to enlargeN,, to optimize the simulation. Nevertheless,
for rather general functional dependencesMf on B, the
where the index denotes integration over timh cycle,N is quantity VkgTdgM,/M, (and hencedM,/M,) decreases
the number of spins in the system, ag) is a function of  \jth increasingB. Consequently, if one is interested in the
the time, typically a sinusoidal function abt. The same computation of, e.g., the equilibrium linear susceptibility
notation can be maintained when considering the computay(T), one can apply the largest probing field without leaving
tion of thermal-equilibrium quantities; in this case the inte-the Jinear response rangdle=yABg) and then compute
gral is carried over a “measurement” time intervg| and 1, . This procedure significantly reducéM,/M, and, thus,
g(t)=11t,. the statistical errors of the quantities computed, so that the
An estimation of the exact result is given by calculations are optimized.
Let us finally estimate the temperature-dependent range
B i Em c12 whereM o ABj holds when the system has the simplest axi-
a= Ny, &4 Qn- (C19 ally symmetric anisotropy potentigbee Eq.(3.1)]. On as-
suming a zero bias field and a staimbing field, one has
The quantitiesy and Q are characterized by probability dis- M,=M,(o,A&y;a), wherea is the angle between the an-
tributions whose/'th-order cumulantsx, are related by isotropy axis and the probing field;=Kuv/kgT, and A&,
kA9) =N, Y« (Q) (see, e.g., Ref. 39 Therefore, the =mAB,/kgT. The magnetic anisotropy causes the cross-
over from theo<1, free-rotator(Langevin regime, where
M,=m[coth(A&)—(A&) 1], to the discrete-orientation
(Ising) regime, where M,=(m cosa)tanhAé,cosa), for
with q=Q. For large Ny, because they distribution is  |argeo (low temperatures The narrower linear range occurs
Gaussian to a good approximation, tesult of the simula-  for the last functional dependence when aesl, sinceM,
tion is taken as the intervalq(-[ x»(q)1*%,0+[x2(0)]"),  =mcofaAé, holds up to @ £,cosa)=0.3. Hence, we can
in the sense that the exact value lies within this interval withscgle the probing field withT according to mAB,
probability 0.68, with 2«,(q)]"* being the corresponding —0.3,T (A¢,=0.3), which ensures that at higher tem-
statistical error Accordingly, a relevant parameter for the peratures, where the linear range is somewhat w(ftero
computed quantity is itsrelative fluctuation defined as <1 M,~ImA¢&, up to A&,=0.5), the response still lies in
59/q=[«2(q)]"?/q (standard deviation over mean value the linear response range.
From the above relation between(q) and«,(Q) one gets These considerations, which apply to the computation of
5q/q=N;1’25Q/Q, wheresQ/Q=[«,(Q)]¥¥Q is the rela- thermal-equilibrium quantities, suggest that the same proce-
tive fluctuation of Q. The following considerations on the dure could be tried in the calculation of the dynamical quan-

Qu= [ a0, .. Auwlom, (€11

N

moments required to evaluate these cumulants @fe
=Np'=N™ (Q,)”, which can be computed at the same time
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tities. In the averages computed in this work, this method On the other hand, on applying,=2"192/9¢ and (1
dramatically improves the efficiency of the simulations. +2S,)/3=Z 192l 9o to the approximateZ obtained by in-
troducing in Eqg.(D3) the leading term in the asymptotic

APPENDIX D: MODELS FOR THE LINEAR expansion of the Dawson integrﬁ],(x)zl/Zx, one gets the
DYNAMIC RESPONSE following high-barrier g>1, h=§/20<1) approximations
_ _ . . of Egs.(D4)
In this appendix we shall review, and in some cases gen-
eralize, various expressions that have been proposed to de- o> 1 I 1
scribe they(w) of independent magnetic nanoparticles. X|= - (1-h?)— —
KeT (coshé—hsinhg)?| o
1. Equilibrium quantities 1 [ 1+ 6h2+h*
In order to write down the equilibrium quantities that oc- + 5| 1 —— 55 cosh2¢)
. . . ua . 802 (1-h?)
cur in the expressions discussed below, it is convenient to
introduce the dimensionless anisotropy-barrier and field pa- 4h(1+h?)
rameters + ————sinh(2¢) | ¢, (D7)
(1-h?)?
B Kov B mB
T T T (D1) oM 1 (1+h?)coshé—2h sinhé

XL~ D8)

Thus, when the bias field is applied along the anisotropy axis KeT 20 (1-h?)(coshé—hsinh¢)

(BJn), the equilibrium probability distribution forz  Furthermore, on taking formally thig—eo limit in these
=(m/m)-n, associated with the Hamiltonia8.1 (in the  formulas(i.e., c— o andh=£&/20—0), one gets the “Ising-
absence of the probing figldreads type” equilibrium susceptibilities

,LLomz 1

1
Po(z)=—=e P2 —BH(z)=0Z?+¢z, (D2) - - ~0
2 X~ ke T coshR¢’ AL

(D9)

where Z= 1, dzexp(Z+£&2) is the partition function. This
can be written in terms of the Dawson integEa{x) (Ref. 2. Linear dynamic susceptibility

_ 2 _ _
40, p. 298, 0. =o(1*h)", andh=B/By=¢/20, as When the probing field points along an arbitrary direction

o a with respect to the anisotropy axis, the effective suscepti-
2(0.6)= ——[efD(Vor) +e D(\o_ D3) bility is_given by y=xcosa+y,sir’e. Shliomis and
(0:8) \/E[ (Vo) (Vo)) 03 Stepanof” (see also Ref. 42proposed a simple two Debye
form for y(w), which can be generalized in order to describe

[in order to computéd(x) we employ the subroutinbAW-  the effect of a longitudinal bias field by writing
SON of Ref. 38, p. 252 The equilibrium averages with re-

spect toPy(z) will be denoted by();. x|(T.B) x.(T,B)
On introducing _the equilibrium average of tmh1 Legz- Xshs™ 1+in”u Sa 1tior,

endre polynomial p,(2) [p1(2)=z, p2(2)=3(3z

—1),...], namely, Sn(a,§)=f£1dzm(z)Po(z), and ac- wherer and, are appropriate longitudinal and transverse

counting for the expression for the equilibrium susceptibility relaxation timegsee below.

tensor [cf. Eq. (C13]  xij=(mo/kgT)[{mim;)o In the main text Eq(D210) [with the exact equilibrium

—(mi)o{m;)o], the longitudinal, x;=x,,, and transverse, susceptibilities(D4)] is referred to as the Shliomis and

X1 = Xxx= Xyy Susceptibilities for a spin with a general axi- Stepanov equation. On the other hand, the formula obtained

sirfa, (D10)

ally symmetric Hamiltoniar#{(z) can be written as when in Eq.(D10) one putsr, =0 (instantaneous transverse
responsgand uses the high-barrier approximatidbg’) and
wom?(142S, ) wom? 1-S, (D8), is called the Gittleman, Abeles, and Bozowski equa-

T_Sl)’ XL:kB_T 3 (D4) tion, since it properly generalizes their formtiao B#0
and an arbitrary anisotropy-axis orientation. In fact, on intro-

where we have usedm,)o=m$,, (m§)0=m2§(1+ 2S,), ducing Eqs.(D?) and(D_8) evaluated aB=0 in Eq. (D10

(My,)o=0, and (m§]y>0=%(m2—(m§>o). For —BH(2) and settingr, =0, one first gets

=0g7z°+¢z, S, and S, are explicitly given by(see Refs.

XI™ kT

2 2
41,3): | #oM MHom™ o . o
XGAB™ —kBT COS"a-I— Ko (25|nza 1)
e(T
S,=——=sinhé—h, (D5) . pom? 1
Z S -
o +ioT 5Ko ifa Tiwn’ (D11
3 e’ : 1 1 hich, when averaged over an ensemble with randomly dis-
2 - T which, whe 9 . y dis
S2 2 UZ(COShg hsinhg)+h 20| 2 (D6) tributed anisotropy axes, reduces to the equation proposed in
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Ref. 43. Finally, the expression obtained when one intro- b. Transverse relaxation time

duces the Ising-type Eq€D9) into Eq. (D10), namely The expression usually considered for the transverse re-

laxation time is that yielded by the effective eigenvalo®-

2
_mom* 1 coSa (D12  mend method(see, e.g., Ref. 46

Xlsing_ kBT COSI"’Ff l+i(1)’T||'

is called the discrete-orientation dynamic susceptibility. 7%= ZTNM (D14)

2+8(0,8)”

Nevertheless, this formula does not account for gyromag-
For the relaxation times in the above formulas a numbenetic effects and holds in the overdampad>(1) case only.

3. Relaxation times

of expressions can be used. Raikher and Shliomi®*°studied effects of the gyromag-
- o netic terms on the transverse response by a decoupling ansatz
a. Longitudinal relaxation time for the infinite system of differential equations for the aver-

The response to a longitudinal static probing field is given29€S of the magnetic momefnecall the remarks after Egs.
by the time-domain counterpart of Eq4.1), namely, (2.9 and(2.10]. An expression foy, (w)[g—o was derived,
XSk 12eXp(A), whereay, (Sy=1a,=1) is the ampli- which can be written as
tude corresponding to the eigenvalug, of the Sturm-

Liouville equation associated with the Fokker-Planck equa-

tipn (O=A0§A1sA2~ . ~'). . The firs't nonvanishing X (0, T)=x,(T)
eigenvalueA ; is related with inter-potential-well dynamics,

while the information about the intra-potential-well relax-

ation appears in the higher-order eigenvaldgs k=2. In . . e
some cases, howeven, corresponds to a “long-lived” Wr:)erexl(T) is the equilibrium transverse susceptibility and
mode and characterizes reasonably well the relaxdgan  [S2=S2(0,€)]¢=0]

cept for the earliest stageShe approximate expressions for

Aa

1+iw27Nm
a c

1— 437 —1 +iw2T —)\a—H\b ,
NNaNp+ e NNahpt+ Ae

A ! derived by BrowA are 6
4 2+Sg 20'24_$ 1 o 1 60'53
T 1—Eo'+4—80'2 1-|-£5h2 o<1l )\azl—Sg' )\b:? Sg )\C:F 1—82'
N& 577 875 24 ’ ’
= J 3 exdo(1+h?)] In the low-frequency range, the aboye(w) can be ex-
N T (1—h?)(coshé—hsinhg)’ o>1, panded in powers ob 7y (to first ordey, and then cast into

the form of a Debye-type formula by using—lex=(1

where we have writtem= AIl andry is given by Eq(2.6). +x)7, namely,

Nevertheless, when the relaxation comprises different de-
cay modes, a more useful definition of the thermoactivation X (0, T)=x,(T) X
rate is that ofntegral relaxation timer;,, | , which is the area l+iw27y b
enclosed by the relaxation curgeormalized at=0) after a NakptAc
sudden infinitesimal change &t 0 of the external field. On
employing this definition, Garanin, Ishchenko, and Paffina
obtained the following formula foany axially symmetric

Accordingly, the quantity multiplyinge defines an effective
relaxation time that can be written as

Hamiltonian(z) (see also Refs. 44,45 _ <0

| 2 =5 ! (D15)

2T 1 dz TLlg=0T £7N 0 21
Tim*lzﬁ(Z}ON/&gf11_22[(1)(2)]2[P0(Z)]_1a (D13 2+S, 1+p(o)/N
where

where®(z), for which explicit expressions can be derived
for special forms ofH(z), is in general given byd(z) B (3S9)2 D16
=[%,dz,Py(z1)[(Z)o—21]. In the unbiased case, the inte- p(o)= (2+S)[2+SY1—6/0)] (D16)

gral relaxation time yields the results fdr[l of Brown in

the appropriate limiting casé**However, 7, | depends on  Note that, in the absence of the gyromagnetic terms (
the whole set of eigenvalues, | ==y~1a,A; *, and hence o), Eq. (D15) reduces to the unbiased case of the over-

is more informative tham ; 1 damped resultD14).
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