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Langevin-dynamics study of the dynamical properties of small magnetic particles
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Cientı́ficas-Universidad de Zaragoza, 50015 Zaragoza, Spain
~Received 3 March 1998; revised manuscript received 17 August 1998!

The stochastic Landau-Lifshitz-Gilbert equation of motion for a classical magnetic moment is numerically
solved~properly observing the customary interpretation of it as aStratonovich stochastic differential equation!,
in order to study the dynamics of magnetic nanoparticles. The corresponding Langevin-dynamics approach
allows for the study of the fluctuating trajectories of individual magnetic moments, where we have encountered
remarkable phenomena in the overbarrier rotation process, such as crossing-back or multiple crossing of the
potential barrier, rooted in the gyromagnetic nature of the system. Concerning averaged quantities, we study
the linear dynamic response of the archetypal ensemble of noninteracting classical magnetic moments with
axially symmetric magnetic anisotropy. The results are compared with different analytical expressions used to
model the relaxation of nanoparticle ensembles, assessing their accuracy. It has been found that, among a
number of heuristic expressions for the linear dynamic susceptibility, only the simple formulaproposedby
Shliomis and Stepanov matches the coarse features of the susceptibility reasonably. By comparing the numeri-
cal results with theasymptoticformula of Storonkin$Sov. Phys. Crystallogr.30, 489 ~1985! @Kristallografiya
30, 841 ~1985!#%, the effects of the intra-potential-well relaxation modes on the low-temperature longitudinal
dynamic response have been assessed, showing their relatively small reflection in the susceptibility curves but
their dramatic influence on the phase shifts. Comparison of the numerical results with theexactzero-damping
expression for the transverse susceptibility by Garanin, Ishchenko, and Panina$Theor. Math. Phys.~USSR! 82,
169 ~1990! @Teor. Mat. Fiz.82, 242 ~1990!#%, reveals a sizable contribution of the spread of the precession
frequencies of the magnetic moment in the anisotropy field to the dynamic response at intermediate-to-high
temperatures.@S0163-1829~98!00446-9#
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I. INTRODUCTION

Magnetically ordered particles of nanometric size gen
ally consist of a single domain, whose constituent spins
temperatures well below the Curie temperature, rotate in
son. The magnetic energy of a nanometric particle is t
determined by its magnetic moment orientation, and ha
number of stable directions separated by potential barr
~associated with the magnetic anisotropy!. As a result of the
coupling of the magnetic moment of the particle,mW , with the
microscopic degrees of freedom of its environme
~phonons, conducting electrons, nuclear spins, etc.!, the mag-
netic moment is subjected to thermal fluctuations and m
undergo a Brownian-type rotation, surmounting the poten
barriers. This solid-state relaxation process was propose
Néel in the late 1940’s,1 and subsequently reexamined b
Brown,2 by means of the theory of stochastic processes~cf.
Ref. 3!.

In the high potential-barrier range,DU/kBT@1, the char-
acteristic time for the overbarrier rotation processt i can ap-
proximately be written in the Arrhenius formt i
.t0exp(DU/kBT), wheret0(;10210–10212 s) is related to
the intra-potential-well dynamics. Fort i!tm (tm is the mea-
surement or observation time!, mW maintains the equilibrium
distribution of orientations as in a classical paramagnet
m5umW u is much larger than a typical microscopic magne
moment (m;103–105 mB) this phenomenon is namedsu-

perparamagnetism. On the contrary, whent i@tm, mW ro-
tates rapidly about a potential minimum and the overbar
PRB 580163-1829/98/58~22!/14937~22!/$15.00
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relaxation mechanism isblocked. Finally, under intermediate
conditions, nonequilibrium phenomena, accompanied by
magnetic ‘‘relaxation,’’ are observed. It is to be noted that,
the Arrhenius range mentioned, the system may pass thro
all these regimes in a relatively narrow temperature interv

In order to study the properties of classical magnetic m
ments, numerical simulation techniques can be used, w
most of the studies that have been performed being base
the Monte Carlo method. Although this method is a rigoro
and efficient tool to compute thermal-equilibrium quantitie
the interpretation of the dynamical properties derived
means of Monte Carlo techniques, especially for non-Is
spins, is not free from criticism.4,5 On the contrary, when
using stochastic methods based on Fokker-Planck or La
vin equations, time does not merely label the sequential
der of generated states when sampling the phase space,
related to physical time.

For classical spins, the basic Langevin equation is
stochastic Landau-Lifshitz-Gilbert equation introduced
Brown2 ~see also Ref. 3!. The multiplicative fluctuating
terms occurring in this Langevin equation~see Sec. II! were
treated in Brown’s work, as well as in the subsequent th
retical developments, by means of theStratonovich stochas
tic calculus. In this context, Brown constructed the ce
ebrated Fokker-Planck~diffusion! equation for the time
evolution of the nonequilibrium probability distribution o
magnetic moment orientations.~If one uses the alternative
Itô stochastic calculusto treat the multiplicative fluctuating
terms, Brown’s Fokker-Planck equation and hence all
results derived from it—relaxation times, dynamic suscep
14 937 ©1998 The American Physical Society
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bilities, etc.—should be altered.! In order to solve Brown’s
Fokker-Planck equation~which is a partial differential equa
tion of parabolic type! a number of techniques have be
used, such as direct solution techniques6 or more elaborate
approaches involving continued-fractions techniques or
numerical calculation of the eigenvalues and amplitudes
the relevant dynamical modes.7–11

An approach equivalent to solving a Fokker-Planck eq
tion is to construct solutions of the underlying stochas
equation of motion of the system. ThisLangevin-dynamics
approach bypasses the Fokker-Planck equation as it dire
generates the stochastic trajectories of the variables of
system, from which averages can be computed. This
relevant point since the solution of the Fokker-Planck eq
tion for multivariate systems, either numerically or analy
cally, is usually a formidable task.

Lyberatos, Berkov, and Chantrell12 developed a rigorous
method, in the context of the Langevin-dynamics formali
for linear systems, for the numerical modeling ofsmall ther-
mal fluctuations in micromagnetic systems~linearized sto-
chastic Landau-Lifshitz-Gilbert equation!. Subsequently, Ly-
beratos and Chantrell13 employed a generalization of thi
method to accommodatelarge fluctuations~a generalization
that is equivalent to Brown approach; see Ref. 2, p. 168!.
Unfortunately, in the corresponding numerical integration
the stochastic Landau-Lifshitz-Gilbert equation, care was
taken with the treatment of the aforementioned multiplicat
fluctuating terms when choosing the numerical integrat
scheme. The method employed~a bare Euler scheme; se
Appendix C! converges to an Itoˆ solution of the stochastic
differential equation. This fact, together with the relation b
tween the temperature and the amplitude of the fluctua
terms used, which is essentially that derived from Brow
Fokker-Planck equation~Stratonovich calculus!, renders the
approach of Lyberatos and Chantrell inconsistent.

In this article, we shall integrate the stochastic Land
Lifshitz-Gilbert equation numerically in the context of th
Stratonovich stochastic calculus, by means of a judici
choice of the numerical integration scheme. This is und
taken taking account of the underlying subtleties of the s
chastic calculus as compared with the deterministic calcu

As the Langevin-dynamics method employed genera
the self-same stochastic trajectories of each individual m
netic moment, it provides much insight into the dynamics
the system. In addition, the theoretical study of sing
particle phenomena is of special interest because dynam
measurements ofindividual magneticnanoparticles have re-
cently been performed.14

In the study of individual trajectories, we shall find stri
ing phenomena in the overbarrier rotation proces
crossing-back and multiple crossing of the potential barr
having their origins in the gyromagnetic nature of the s
tem, are frequently encountered. The first suggestion of
former process goes back to Brown15 in his lucid criticism of
the calculation of Ne´el1 of the relaxation time in terms of th
rate of potential-barrier crossings of the magnetic mome
Here, this and related phenomena will be numerically ve
fied.

Concerning the response of an ensemble of classical m
netic moments~averaged quantities!, the Langevin-dynamics
method allows the computation of any desired quantity, e
e
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hysteresis loops, field-cooled and zero-field-cooled magn
zation curves, relaxation times, linear and nonlinear susc
tibilities, magnetic specific heat, and, with appropriate re
tionships between line shapes and correlation functions
the system, even spectroscopic quantities. We shall res
our study to the linear dynamic response of the archety
model for the nanoparticle system—an ensemble of non
teracting classical magnetic moments with axially symme
magnetic anisotropy, dispersed in a solid nonmagnetic
trix. The linear dynamic response is chosen since it is
probe that allows one to examine the intrinsic dynamics
the system.

We shall investigate the effects of the intra-potential-w
relaxation modes on the longitudinal dynamic response
well as the contribution of the spread of the precession
quencies of the magnetic moment in the anisotropy field
the transverse response. In addition, because some rele
parameters of nanoparticle ensembles can be extracted
the analysis of the dynamic-response data,16,17 we shall as-
sess the accuracy of the heuristic models employed in s
analyses.

The organization of this article is as follows. In Sec. II th
Brown-Kubo-Hashitsume model for the stochastic dynam
of classical magnetic moments is discussed. The result
the numerical integration of the stochastic Landau-Lifshi
Gilbert equation are presented in Secs. III and IV~the nu-
merical method is discussed in Appendix C!. Specifically,
Sec. III is devoted to the study of the trajectories of ind
vidual magnetic moments, while the dynamics of the s
ensemble is studied in Sec. IV. Some concluding remarks
finally given in Sec. V.

II. BROWN-KUBO-HASHITSUME STOCHASTIC MODEL

The description of the dynamics of a classical spin via
introduction of a Langevin equation was done by Brown,2 in
the context of the small-particle magnetism, and by Ku
and Hashitsume,3 who studied generic classical spins. Th
developments based on each of these approaches have
place separately in the literature. Nevertheless, both
proaches are essentially equivalent and we shall present
a unified discussion of them.

A. Dynamical equations

1. Stochastic Landau-Lifshitz-Gilbert equation

In the Brown-Kubo-Hashitsume model the starting equ
tion of motion for a classical magnetic momentmW is the
stochastic Gilbert equation2,3 cast into the archetypa
Landau-Lifshitz form. The resulting equation will be calle
the stochastic Landau-Lifshitz-Gilbert equation, and reads

dmW

dt
5gmW `@BW eff1bW fl~ t !#2g

l

m
mW `$mW `@BW eff1bW fl~ t !#%,

~2.1!

where g is a gyromagnetic ratio andl is a dimensionless
damping coefficient that measures the magnitude of the
laxation~damping! term relative to the gyromagnetic term i
the dynamical equation.~For magnetic nanoparticlesl
5hgm/v with h being the damping coefficient in the equ
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tion of Gilbert for the magnetization andv the volume of the
nanoparticle.! We have not introduced the customary ren
malized gyromagnetic ratiog/(11l2) since one can alter
natively consider Eq.~2.1! as the starting equation; if on
wishes to consider the Gilbert form as the commencing eq
tion, one just needs to substituteg→g/(11l2) throughout.

In Eq. ~2.1!, the ~deterministic! effective fieldis given by

BW eff52
]H
]mW

, ~2.2!

whereH(mW ) is the Hamiltonian of the classical magnet
moment and]/]mW stands for the gradient operator@] f /]mW

5(] f /]mx) x̂1(] f /]my) ŷ1(] f /]mz) ẑ#. For H52mW •BW ,
one indeed hasBW eff5BW ~this was the case thoroughly studie
by Kubo and Hashitsume!, whereas, in a more general sit
ation, BW eff incorporates the~deterministic! effects of the
magnetic-anisotropy energy, the interaction with other sp
etc., on the dynamics ofmW .

On the other hand, in Eq.~2.1!, BW eff has been augmente
by a fluctuating or stochastic field bW

fl(t), accounting for the
effects of the interaction ofmW with the microscopic degree
of freedom ~phonons, conducting electrons, nuclear spi
etc.!, which cause fluctuations of the magnetic moment o
entation. Those environmental degrees of freedom are
responsible for the damped precession ofmW , since fluctua-
tions and dissipation are related manifestations of one
the same interaction of the magnetic moment with its en
ronment.

The customary assumptions aboutbW fl(t) are that it is a
Gaussian stochastic process with the following statist
properties

^bfl, i~ t !&50, ^bfl, i~ t !bfl, j~s!&52Dd i j d~ t2s! ~2.3!

~recall that the first two moments determine a Gaussian
cess!, where i and j are Cartesian indices, the constantD
measures the strength of the thermal fluctuations~assumed
isotropic!, and ^ & denotes an average taken over differe
realizationsof the fluctuating field.~The constantD is deter-
mined on the grounds of statistical-mechanical consid
ations; see below.! The Gaussian property of the fluctuatio
arises because they emerge from the interaction ofmW with a
large number of microscopic degrees of freedom w
equivalent statistical properties~central limit theorem!. The
Dirac d in the second Eq.~2.3! expresses that above certa
temperature the autocorrelation time ofbW fl(t) ~of micro-
scopic scale! is much shorter than the rotational-respon
time of the system~‘‘white’’ noise!, while the Kroneckerd
expresses that the different components ofbW fl(t) are assumed
to be uncorrelated. Finally, it is also customarily assum
that the fluctuating fields acting on different magnetic m
ments are independent.

2. Stochastic Landau-Lifshitz equation

As will be shown below, the thermodynamic consisten
of the approach entailsubW flu;l1/2. Therefore, for weak
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damping (l!1) we can drop the fluctuating field from th
relaxation term of Eq.~2.1!, to arrive at

dmW

dt
5gmW `@BW eff1bW fl~ t !#2g

l

m
mW `~mW `BW eff!. ~2.4!

This equation, which was indeed the equation studied
Kubo and Hashitsume,3 will be called thestochastic Landau-
Lifshitz equation. This is a Langevin equation more arch
typal than Eq.~2.1!, because the fluctuating and relaxatio
terms are not entangled.

On the other hand, one can bypass the reasoning
ployed to obtain Eq.~2.4! from Eq. ~2.1!, and consider the
former as an alternative stochastic model. It will be sho
below that, when the condition of thermodynamic cons
tency is applied, theaverageproperties derived from both
Eqs.~2.1! and ~2.4! are completely equivalent.

3. The multiplicative noise terms

Apparently, for a givenD, Eqs. ~2.1! or ~2.4!, supple-
mented by Eqs.~2.3!, fully determine the dynamical problem
under consideration. Nevertheless, due to the vectorproducts

of mW andbW fl(t) occurring in those equations, the fluctuatin
field bW fl(t) enters in amultiplicativeway. This gives rise to
some formal problems because, for white multiplicati
noise,any Langevin equation must be supplemented by
interpretation rule to properly define it~Ref. 18, p. 246!.
Two dominant interpretations, which lead to either the Itoˆ or
the Stratonovichstochastic calculus, are usually considered
yielding different dynamical properties for the system. F
instance, depending on the stochastic calculus used, disp
Fokker-Planck equations for the time evolution of the no
equilibrium probability distribution of the correspondin
variables, are obtained.~For fluctuations with finite autocor
relation time or, for additive fluctuations, no ambiguity o
curs and the mentioned stochastic calculi are equivale!
The Itô calculus is commonly chosen on certain mathem
cal grounds, since rather general results of probability the
can then be employed. On the other hand, as the white n
is an idealization of physical noise with short autocorrelat
time, the Stratonovich calculus is usually preferred in phy
cal applications, since the associated results coincide w
those obtained in the formal zero-correlation-time limit
fluctuations with finite autocorrelation time~see, e.g., Ref.
19!. Both the seminal works of Brown2 and Kubo and
Hashitsume,3 as well as all the subsequent theoretical dev
opments, are based, implicitly or explicitly, on the Stratono
ich stochastic calculus.

B. Fokker-Planck equation

The Fokker-Planck equation governing the time evolut
of the nonequilibrium probability distribution of magnet
moment orientations associated with the stochastic Land
Lifshitz-Gilbert equation~2.1! was originally derived by
Brown.2 By a different method and starting from the stocha
tic Landau-Lifshitz equation~2.4!, Kubo and Hashitsume3

arrived at an equation for the probability distribution, whic
when the autocorrelation times ofbW fl(t) are much shorter
than the precession period ofmW , coincides with the Fokker-



op

he

k

e

or

th

m
e
tr

s

g
e
er

or

tu
f

a

lt

th
-

the
ing
p-
itz
ies

ge
r-
.
tic

rate

-
ic
-
ing
ift
an

the
f
-

r-
l-

he
on-

cal
u-

14 940 PRB 58GARCÍA-PALACIOS AND LÁZARO
Planck equation of Brown in the absence of the anisotr
potential~recall that they consideredBW eff5BW ). In Appendix
B we give an alternative and simple derivation of t
Fokker-Planck equations associated with Eqs.~2.1! and
~2.4!, showing thatboth equations lead to Fokker-Planc
equations that are structurally the same.

Thus, on introducing the appropriateNéel time tN @Eq.
~B8!#, which is the characteristic time of diffusion in th
absence of potential~free-diffusion time; see below!, the
Fokker-Planck equations associated with Eqs.~2.1! and~2.4!
can be written in a unified way as~cf. Ref. 20!

]P

]t
52

]

]mW
•H FgmW `BW eff2g

l

m
mW `~mW `BW eff!

1
1

2tN
mW `S mW `

]

]mW
D GPJ , ~2.5!

whereP(mW ,t) is the nonequilibrium probability distribution
for mW at timet, and]/]mW • stands for the divergence operat

@(]/]mW )•AW 5( i(]Ai /]mi)#.

1. Stationary solution

In order to ensure that the stationary properties of
system derived from Eqs.~2.1! or ~2.4!, supplemented by
Eqs.~2.3!, coincide with the appropriate thermal-equilibriu
properties, the Fokker-Planck equation associated with th
Langevin equations is forced to have the Boltzmann dis
bution

P0~mW !}exp@2bH~mW !#

as a stationary solution. To do so, note first that, by mean
BW eff52]H/]mW , one can write]P0 /]mW 5bBW effP0 , from
which it follows thatmW `BW effP0 is divergenceless. On usin
these results, one sees by inspection that, in order to hav
Boltzmann distribution as stationary solution of the Fokk
Planck equation ~2.5!, it is sufficient to set g(l/m)
5b/2tN , from which one gets the following expression f
the Néel time:

tN5
1

l

m

2gkBT
. ~2.6!

Note that, since this result does not depend on the ac
form of the HamiltonianH, it also holds for assemblies o
interacting magnetic moments.

2. Comparison between the Landau-Lifshitz-Gilbert
and Landau-Lifshitz stochastic models

Because the thermodynamic consistency of the appro
determinestN completely, we arrive at Eq.~2.6! both start-
ing from Eqs. ~2.1! and ~2.4!, so that the Fokker-Planck
equations associated with these stochastic models resu
be identical. Then, sincetN is related to the amplitudeD of
the fluctuating field by different expressions@Eq. ~B8!#, the
only difference between these stochastic models lies in
relation amongD, l, and T. For the stochastic Landau
Lifshitz-Gilbert equationtN

2152Dg2(11l2), whence
y

e

se
i-

of

the
-

al

ch

to

e

DLLG5
l

11l2

kBT

gm
, ~2.7!

whereas for the stochastic Landau-Lifshitz equationtN
21

52Dg2, so that

DLL5l
kBT

gm
. ~2.8!

These Einstein-type relations between the amplitude of
thermal-agitation field and the temperature, via the damp
coefficient, ensure that the proper thermal-equilibrium pro
erties are obtained from the stochastic Landau-Lifsh
~-Gilbert! equation. Thus, although the stochastic trajector
for a given realization of the fluctuating fieldbW fl(t) are, in
principle, different for each stochastic model, the avera
dynamical properties~which are determined by the Fokke
Planck equation! result to be identical in both approaches

In the following sections we shall integrate the stochas
Landau-Lifshitz-Gilbert equation~2.1! numerically. Never-
theless, the above considerations ensure that, if we integ
the stochastic Landau-Lifshitz equation~2.4! instead, we
shall obtain the same results for theaveragedquantities.

3. Itô case

It is to be noted that the relations~2.7! and ~2.8! @or
equivalently Eq.~2.6!#, being derived from Brown’s Fokker
Planck equation~2.5!, pertain to the Stratonovich stochast
calculus. Let us briefly examine this point. In order to con
struct the corresponding Fokker-Planck equation by us
the Itô calculus, one simply omits the noise-induced dr
when deriving the Fokker-Planck equation; this leads to
additional termtN

21mW into the square brackets of Eq.~2.5!.
Therefore, on using]P0 /]t50 and Eq.~2.6! for tN , such an
Itô Fokker-Planck equation yields forP5P0

05
]

]mW
•~mW P0!5~31bmW •BW eff!P0 ~ Itô case!,

which is not necessarily satisfied by a general form of
Boltzmann distributionP0(mW ) ~that is, by a general form o
the Hamiltonian!. The simplest example is that of the dy
namics in the absence of potential. ThenBW eff50 and the
equilibrium distribution—P0(mW ) uniform—is not a solution
of the Itô case of the Fokker-Planck equation.Therefore, the
stochastic Landau-Lifshitz (-Gilbert) equation, when inte
preted in the Itoˆ sense, does not yield the correct therma
equilibrium properties.

C. Equations for the averages

Let us finally consider the dynamical equations for t
averages of the magnetic moment with respect to the n
equilibrium probability distributionP(mW ,t). ~Because these
equations involve averaged quantities, they will be identi
for both the stochastic Landau-Lifshitz-Gilbert and Landa
Lifshitz equations.!

The equation for the first moment ^mi&(t)
5* umW u5md3mW P(mW ,t)mi reads
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d

dt
^mW &5g^mW `BW eff&2g

l

m
^mW `~mW `BW eff!&2

1

tN
^mW &,

~2.9!

where the term2^mW &/tN is analogous to the relaxation ter
in a Bloch-type equation.21 For the second-order momen
^mimj&(t) one finds

d

dt
^mimj&52

3

2tN
~^mimj&2 1

3 m2d i j !1g^mi~mW `BW eff! j&

2g
l

m
^mi@mW `~mW `BW eff!# j&1 i↔ j , ~2.10!

wherei↔ j stands for the interchange in the entire previo
expression of the subscriptsi and j.

Equations~2.9! and ~2.10! show that, for a general form
of the Hamiltonian, no closed equation exists for the tim
evolution of the averages of the magnetic moment. For
stance, even ifBW eff does not depend onmW , the Landau-
Lifshitz-type relaxation term introduceŝmimj&(t) in Eq.
~2.9! for ^mi&(t). Therefore, an additional differential equ
tion for ^mimj&(t) is required@i.e., Eq.~2.10!#, however that
equation involveŝ mimjmk&(t), and so on.The absence o
such a closed dynamical equation is a major source of ma
ematical difficulties in the theoretical study of the dynami
properties of classical spins.

Free-diffusion case.A situation where the equations fo
the averages are not coupled and can in addition be expli
solved, is that where the Hamiltonian is independent
mW (BW eff50). Note that, becausetN

21}kBT @Eq. ~2.6!#, this
apparently academic case can be a reasonable approxim
for sufficiently high temperatures, where the terms mu
plied bytN

21 in Eqs.~2.9! and~2.10! dominate the remaining

ones. The solutions of these equations forBW eff50 are

^mi&~ t !5^mi&~ t0!e2~ t2t0!/tN,

^mimj&~ t !5 1
3 m2d i j 1@^mimj&~ t0!2 1

3 m2d i j #e
23~ t2t0!/tN,

which justify calling the characteristic time constanttN the
free-diffusiontime. For (t2t0)@tN , one finds^mi&(t)→0
and^mimj&(t)→ 1

3 m2d i j , expressing that the orientations
mW become distributed at random for long times, as it sho
for a diffusion in a constant orientational potential~or at very
high temperatures!. Note finally that these natural results a
not obtained when one interprets the stochastic Land
Lifshitz ~-Gilbert! equationà la Itô.

III. TRAJECTORIES OF INDIVIDUAL
MAGNETIC MOMENTS

In this section we shall study theTÞ0 ~stochastic! dy-
namics ofindividual magnetic moments. In order to provid
the necessary background to undertake this study, in App
dix A we analyze solutions of thedeterministic (T.0)
Landau-Lifshitz equation. Here, we shall integrate thesto-
chasticLandau-Lifshitz-Gilbert equation numerically in th
context of the Stratonovich calculus, by means of the s
chastic generalization of the Heun scheme. This schem@a
sort of second-order Runge-Kutta algorithm; see Eq.~C6!#
s
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and some details of its implementation are discussed in
pendix C.

A. System studied

Hereafter, the magnetic anisotropy ofmW will be assumed
to have the simplest axial symmetry. Then, ifmW is subjected
to an external constant~bias! field, BW , and a low probing
field, DBW (t) @e.g., DBW (t)5DBW 0cos(vt)#, its Hamiltonian
reads

H~mW ,t !52mW •@BW 1DBW ~ t !#2
Kv

m2
~mW •n̂!2, ~3.1!

wheren̂ is a unit vector along the symmetry axis andKv is
the anisotropy-energy barrier~we shall mainly consider an
isotropy of easy-axis type,K.0). In terms of BK
52Kv/m, the effective field@Eq. ~2.2!# associated with the
aboveH(mW ,t) can be written as

BW eff5@BW 1DBW ~ t !#1~BK /m!~mW •n̂!n̂. ~3.2!

Accordingly, the quantityuBKu is the magnitude of the maxi
mum anisotropy field BW a5(BK /m)(mW •n̂)n̂, which occurs
whenmW 56mn̂. Note that the anisotropy field decreases
mW approaches the equatorial region (mW'n̂), where it van-
ishes. On the other hand, in a longitudinal bias fie
(BW i n̂), H(mW ) has two minima atmW 56m n̂, if B,BK ~with
a potential barrier between them of heightDU5Kv for B
50), whereas the upper~shallower! potential minimum dis-
appears forB>BK .

Let us finally introduce some dimensionless quantiti
BK provides a suitable reference magnetic-field scale
yields the dimensionless fields

hW 5
BW

BK
, hW eff5

BW eff

BK
, hW fl~ t !5

bW fl~ t !

BK
. ~3.3!

A suitable time scale is provided bytK5(lgBK)21, which
is the inverse of the deterministic (T.0) decay rate of the
angle between mW and n̂ close to the bottom of the
anisotropy-potential wells atBW 50, as obtained from the de
terministic Landau-Lifshitz equation~see Appendix A!.
Thus, one has the dimensionless time

t̄ 5
t

tK
,

1

tK
5lgBK . ~3.4!

Note that in terms oftK , the Néel time ~2.6! merely reads
tN5stK , where s5Kv/kBT is the dimensionless
anisotropy-barrier height parameter.

B. The overbarrier rotation process

Figure 1 displays the projection of the trajectory of
individual magnetic moment with the simplest axially sym
metric anisotropy potential onto selected planes. No m
netic field has been applied, so the graphs show the~in this
sense! ‘‘free’’ dynamics.

The projection ofmW (t) onto a plane containing the aniso
ropy axisn̂ ~defining theẑ direction in Fig. 1!, corresponds
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to a typical stochastic trajectory that starts close to one of

potential minima (mW 5mẑ) and, after some irregular rota
tions about it, reaches the potential-barrier~equatorial! re-
gion, where it wanders for a while, and eventually desce
to the other potential minimum. Concerning the projection
this motion onto a plane perpendicular to the anisotropy a
we have just shown the first stages, after the last poten
barrier crossing, of the damped precession ofmW about the
anisotropy field, when spiraling down to the bottom of t
mz,0 potential well.

From these graphs, the role of the gyromagnetic term
the stochastic dynamics of the magnetic moment is sho
Thus, the projection ofmW (t) onto the equatorial plane show
some of the irregular features of ordinary Brownian motio
although the rotary character is neatly exhibited. Concern

FIG. 1. Two-dimensional projections of the time evolution
the magnetic moment, as determined by numerical integratio
the stochastic Landau-Lifshitz-Gilbert equation~2.1!. The
magnetic-anisotropy potential is2DU(mz /m)2, no magnetic field
has been applied, and the damping coefficient in the dynam
equation isl50.1. Upper panel: Projection of the trajectory onto
plane containing the anisotropy axis. Lower panel: Projection on
plane perpendicular to the anisotropy axis of the first stages of

damped precession down to themW 52mẑ potential minimum, after
the last potential-barrier crossing. The small dashes demarcat
unit circle.
e

s
f
s,
l-

in
n.

,
g

the projection ofmW (t) onto a plane containing the anisotrop
axis, it is clearly seen that crossing the potential barrier d
not entail an immediate descent to the other potential m
mum, but the gyromagnetic terms plus an appropriate
quence of fluctuating fields can produce a rapid cross
back to the initial potential well.

For an ordinary, nongyromagnetic system, i.e., a mech
cal system with inertia, this guarantees that, unless the
tem reaches the potential barrier with zero velocity, it w
descend to the other potential well with a large probabili
In addition, the forces, after the potential-barrier crossi
accelerate the system downward. However, in the gyrom
netic case the dynamics is ‘‘noninertial’’~the equation of
motion is of first order in the time!. Besides, the anisotrop
field BW a5(BK /m)(mW •n̂)n̂ indeed drivesmW down to the
bottom of the potential well, but this is effected via
~damped! precession about the anisotropy axis. Moreov
the effective precession ‘‘frequency’’ of such motionveff

5(gBK/m)(mW •n̂) is initially rather low because the aniso
ropy field is low in the potential-barrier region (mW •n̂.0).
Consequently, in the beginning of the spiraling down afte
potential-barrier crossing, the magnetic moment rotates q
slowly ~say, along a parallel of latitude! not far from the
potential-barrier region, so that an appropriate sequenc
fluctuations can drivemW back to the initial potential well.

What is shown in Fig. 1 is precisely a multiple occurren
of this phenomenon; more than 10 potential-barrier crossi
can be identified in the overall excursion between the t
potential minima. On the other hand, the magnetic mom
might also have eventually fallen into the original potent
well. As will be shown below, none of these processes
infrequent. The physical acumen of Brown15 is noteworthy
since, on considering the gyromagnetic nature of the dyn
ics, he posed the possible occurrence of this kind of phen
ena in his criticism of the calculation of Ne´el1 of the relax-
ation time as the inverse of the rate of equatorial crossing
the magnetic moment.

C. The effect of the temperature

In order to assess the role of the temperature in the
namics of the magnetic moment, we have displayed in Fig
some typical time evolutions of the projection ofmW onto the
anisotropy axis. It is seen that, at low temperatures~panel
kBT/DU50.12), the dynamics merely consist of the rot
tions of the magnetic moment close to the bottom of
potential wells~intra-potential-well relaxation modes!, with
the overbarrier relaxation mechanism being ‘‘blocked.’’ A
T is increased, the magnetic moment can effect overbar
rotations at the expense of the energy gained from the
bath, and a number of them do occur during the displa
time interval ~panelskBT/DU50.18 and 0.28!. Finally, at
higher temperatures~panelkBT/DU50.4), the magnetic mo-
ment effects a considerable number of overbarrier rotati
during the observation time interval, exhibiting almost t
thermal-equilibrium distribution of orientations.

The curves of Fig. 2 resemble those of the experiment
Wernsdorferet al. on individual ferromagnetic nanoparticle
~see Fig. 6 in Ref. 14!. Furthermore, if the same trajectory
plotted with a larger sampling time interval, in order
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FIG. 2. Projection onto the anisotropy axis ofmW (t), as determined by numerical integration of the stochastic Landau-Lifsh

Gilbert equation~2.1!, for various temperatures. The magnetic-anisotropy energy is2DU(mz /m)2, BW 50, andl50.1. The small circles
mark potential-barrier crossings followed by a back rotation to the initial potential well. In the panelkBT/DU50.4 such crossings have no
been marked and the trajectory has also been plotted with a larger sampling time interval.
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mimic the finite resolution time of a measuring device, t
resemblance is more apparent, since the curves then
less and wider angles~see the panelkBT/DU50.4). ~Recall
that the strong dependence of the appearance of the
evolution curves on the sampling period, is a typical feat
of the stochastic dynamics.!

Note finally that in Fig. 2 a number of potential-barrie
crossings followed by a rotation back to the original poten
well can be identified~marked with small circles!: one for
kBT/DU50.18; three forkBT/DU50.28, the one occurring
at ;360t/tK being a double crossing back; and about se
for kBT/DU50.4 ~not marked for the sake of clarity!. It is
also to be noted that an apparent single~or double! crossing
back can be multiple instead. Indeed, when the about
potential-barrier crossings of Fig. 1 are represented asmz vs
t, they seem to be a mere double crossing back of the po
tial barrier.

D. Projection of m¢ „t… onto the direction of a probing field

It is also illuminating to show the projection of the traje
tories of individual spins onto the direction of a probing fie
DBW (t)5DBW 0cos(vt). Figure 3 shows such trajectories in th
intermediate temperature range.

The projection onto the anisotropy axis directio
(DBW 0i n̂) exhibits, as in the corresponding case of Fig. 2
well resolved bistability, andmW ‘‘jumps’’ from one well to
the other a number of times during a cycle of the prob
field. Similar features are encountered when a longitud
bias field is also applied, the main difference being that
lower potential well is less frequented by the magnetic m
ment. In contrast, the features of the stochastic trajec
obtained by projectingmW (t) onto a direction perpendicular t
ve

e
e

l

n

0

n-

a

g
al
e
-
ry

the anisotropy axis (DBW 0'n̂) are markedly different~e.g.,
this projection corresponds to plotting the trajectory of t
upper panel of Fig. 1 asmx vs t). Here, the response i
dominated by the fast (;tK) intra-potential-well relaxation
modes, and the transverse projection is a highly irregu
sequence of sharp peaks. Finally, the projection ofmW (t) onto
DBW 0 making an intermediate angle with the anisotropy a
(p/4 for the displayed curve!, shows the magnetic bistability
of the longitudinal projection, but the fast intra-potentia
well motions are superimposed on it. This leads to a l
well-resolved magnetic bistability.

Note finally that curves like those of Fig. 3 are the on
‘‘analyzed’’ by the probing field in a dynamical ‘‘measure
ment.’’ Recall also that the application of the oscillating fie
hardly changes the overall features of the curves from
free evolution ones. This is naturally so, since one applie
low enough field in order to probe the intrinsic dynamics
the system.

IV. DYNAMIC RESPONSE OF THE ENSEMBLE OF SPINS

Keeping Figs. 2 and 3 in mind, we shall undertake t
study of the dynamic response of an ensemble of class
magnetic moments. As a suitable probe of the intrinsic
namics of the system, we shall compute the linear dyna
susceptibilityx(v) as a function of the temperature for var
ous frequencies and orientations of an external probing fi
DBW (t)5DBW 0cos(vt). If one wishes to have a reference of th
discussed time scales, one can assume, e.g.,BK;150 mT
andl;0.01–1, so thattK

21;0.1–63109 s21 by Eq. ~3.4!
and the frequencies employed (vtK/2p;1023–1022) are
then in the MHz range.

In the calculations presented in this section, ensemble
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FIG. 3. Projection onto the direction of a probing fieldDBW (t)5DBW 0cos(vt) of mW (t), as determined by numerical integration of th
stochastic Landau-Lifshitz-Gilbert equation~2.1!. The magnetic-anisotropy energy is2DU(mz /m)2 and all the results are forkBT/DU
50.2 andl50.1. The displayed time interval corresponds to a complete cycle of the oscillating field (vtK/2p50.0025). In the longitudinal
probing field case, results in the presence of a longitudinal bias field are also shown.
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1000 magnetic moments have been employed. We integ
numerically the stochastic Landau-Lifshitz-Gilbert equati
of each spin, by means of the stochastic Heun scheme~C6!,
and analyze the time evolution of the total magnetic mom
of the ensemble; the results for the dynamic susceptib
have typically been averaged over 50–100 cycles of the
cillating field.

The damping coefficientl, the magnetic-anisotropy po
tential barrierDU5Kv, and the magnitude of the magnet
momentm have been assumed to be the same for each s
~For noninteracting entities, the effects of a distribution
these parameters, as typically occurs in a nanoparticle
semble, can be incorporated by an appropriate summatio
the corresponding results.! In addition, as explained in Ap
pendix C, in order to reduce the statistical error bars of
computed quantities, we apply at each temperature a s
ciently high probing field (mDB050.3kBT) without leaving
the equilibrium linear-response range.

Finally, in all the figures that follow, the linear suscep
bilities are measured in units ofm0m/BK5m0m2/2Kv ~the
transverse equilibrium susceptibility per spin at zero te
perature in the absence of a bias field!. Furthermore, where
they are not shown, the size of the statistical error bars of
numerical results is, at most, that of the plotted symbols

A. Dynamic response in the absence of a bias field

We shall first study the response of the ensemble in
absence of a constant~bias! magnetic field.

1. Longitudinal response

Figure 4 displays the results for the longitudinal line
dynamic susceptibility vs the temperature for an ensembl
te
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FIG. 4. Longitudinal linear dynamic susceptibilityx i vs T in the
absence of a bias field. The symbols are for the numerically c
putedx i(v,T) and the thin solid lines are Eq.~D10! with t i defined
as integral relaxation time@Eq. ~D13!#. The thick solid line in the
upper panel is the thermal-equilibrium susceptibility@Eq. ~D4!#.
Inset: Modulus and phase shift ofx i for vtK/2p50.0025.
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magnetic moments with parallel anisotropy axes@DBW (t)i n̂#.
No bias field has been applied and a damping coefficienl
50.1 has been used.~Because of the axial symmetry consi
ered, the effect ofl on the averaged quantities merely ente
via the Néel time tN5stK , as can be shown from Brown’
Fokker-Planck equation. Thus, since we measure the
and the frequencies in units oftK , the results presented fo
the longitudinal response must be independent of thel
used.!

At low temperatures the longitudinal relaxation timet i
obeys the conditiont i@2p/v @ tm(v)52p/v is the dy-
namical measurement time#. Consequently, over a larg
number of cycles of the probing field the probability of ove
barrier rotations is almost zero; the response consists of
rotations of the magnetic moments close to the bottom of
potential wells ~see the panelkBT/DU50.12 of Fig. 2!,
whose averaged~over the ensemble! projection onto the
probing-field direction is small~but nonzero; see the enlarg
ment of the low-T range in the inset of Fig. 8!. Moreover, as
these intra-potential-well relaxation modes are very fa
(;tK), this small response is in phase with the probing fi
$see the low-T part of the phase shift f(v,T)
5arctan@x9(v,T)/x8(v,T)# in the inset of Fig. 4%.

As T is increased the magnetic moments can depart f
the potential minima by means of the energy gained from
heat bath. Consequently, at anv-dependent temperatur
(kBT/Kv;0.1–0.2 for the frequencies employed!, which in-
creases with increasingv, a small probability of surmount
ing the magnetic-anisotropy potential barrier during a nu
ber of cycles of the probing field, emerges~this corresponds
to the panelkBT/DU50.18 of Fig. 2!. Accordingly, the av-
eraged response starts to increase steeply withT. However,
as this thermally activated response mechanism via over
rier rotations is not efficient enough at these temperatu
the signal exhibits a considerable lag behind the probing fi
~see the inset of Fig. 4!. This is also reflected by the occu
rence of a sizable out-of-phase component of the respo
x i9(T) ~in fact the response is mainly ‘‘out of phase’’!.

At higher temperatures, the mechanism of overbarrier
tations becomes increasingly efficient~panel kBT/DU
50.28 of Fig. 2!. Consequently, after exhibiting a maximum
the phase shift starts todecreasewhereas the magnitude o
the response stillincreasessteeply withT ~see the inset of
Fig. 4!. However, if the temperature is further increased,
very thermal agitation, which up to these temperatures
responsible for the increase in the magnitude of the respo
reaches a value that~i! efficiently produces overbarrier rota
tions, allowing the magnetic moments to approximately
distribute according to the instantaneous probing field, b
simultaneously,~ii ! disturbs sizably the alignment of th
magnetic moments in the probing-field direction. Con
quently, at aT above that of the phase maximum (kBT/Kv
;0.2–0.3 for the frequencies considered!, the magnitude of
the response has a maximum and starts to decrease wit
creasingT. The frequency-dependent temperature at wh
this maximum occurs is usually called theblockingtempera-
ture.

Finally, at still higher temperatures (kBT/Kv>0.3–0.5
for the frequencies considered! the inequality t i!2p/v
holds. Thus, in comparison tot i

21 , the rate of change of the
s

e

he
e

d

m
e

-

r-
s,
ld

se,

-

e
s

se,

-
t,

-

in-
h

probing field is quasistationary. Consequently, the magn
moments quickly redistribute according to the conditions
by the instantaneous probing field, almost being in
thermal-equilibrium state associated with it~panelkBT/DU
50.4 of Fig. 2!. Then, thex i8(T) curves corresponding to
different frequencies sequentially superimpose on the e
librium linear susceptibility x i(T) and, correspondingly
x i9(T) approaches zero.

The appearance of a frequency-dependent maximum
the response of a noisy nonlinear multistable system t
periodic stimulus, as a function of the noise intensity, is o
of the features usually accompanyingstochastic resonance.
In this spin-dynamics case, the maximum in the magnitu
of the dynamic response as a function ofT, can be under-
stood in terms of the quoted twofold role played by the te
perature:~i! activating the dynamics of overbarrier rotation
allowing the spins to~statistically! follow the instantaneous
field, but, ~ii ! provoking the thermal misalignment of th
spins from the driving-field direction.

2. Transverse response

We shall now study thetransversedynamic response o
an ensemble of magnetic moments with parallel anisotr
axes@DBW (t)'n̂#. Figure 5 displaysx'(v) vs T for various
frequencies of the probing field~curves labeled 1; results in
the presence of a bias field to be discussed below are
shown!.

For this transverse probing-field geometry, the mec
nism of inter-potential-well rotations plays a minor dynam
cal role, since it mainly pertains to the components of
magnetic moments perpendicular to the probing fie
whereas the response in the probing-field direction is the
recorded. The latter consists of intra-potential-well rotatio
which are very fast (;tK ; see the panelDBW 0'n̂ of Fig. 3!
as compared totm(v)52p/v. Consequently, the dynami
susceptibilities obtained are close to the equilibrium susc
tibility in the whole temperature range. Indeed, thex'8 (T)
curves corresponding to different frequencies are very cl

FIG. 5. Transverse linear dynamic susceptibilityx' vs T for the
frequenciesvtK/2p50.001, 0.0025, and 0.005. The damping c
efficient isl50.1. Results in the unbiased (B50) case and in the
presence of the longitudinal bias fieldsB/BK50.1 and 0.2~for
vtK/2p50.005 only! are shown. The thick solid lines are the equ
librium susceptibilities@Eq. ~D4!#. x'8 ~circles! and x'9 ~rhombi!
have intentionally been plotted with the same scale to show
relative smallness of the latter.
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to one another~they visually coincide! and almost describe
the equilibrium susceptibilityx'(T) ~thick solid line!, while
the out-of-phase componentx'9 (T) is small. In addition,x'9
is not only small as compared tox'8 but it is also much
smaller than the out-of-phase longitudinal susceptibilityx i9
~cf. Fig. 4!. Nevertheless,x'9 provides interesting informa
tion concerning the dynamics ofmW , which will be discussed
in Sec. IV C.

For the transverse response, the maximum ofx'8 vs T is
due to the crossover from the free-rotator regime (Kv
!kBT) to the discrete-orientation regime (Kv@kBT), in-
duced by the bistable magnetic-anisotropy potential. At l
temperatures the transverse probing field competes with
anisotropy energy in aligning the magnetic moments, wh
are concentrated close to the potential minima (mW 56mn̂).
Then, the increase of the thermal agitation allowsmW to ~sta-
tistically! separate from the minima and the~transverse! re-
sponse increases. However, as the temperature is furthe
creased mW becomes increasingly unfastened from t
anisotropy and the transverse field competes mainly with
thermal agitation in aligningmW ; the response then exhibits
maximum and decreases asT is further increased. Note tha
this is essentially athermal-equilibriumeffect, with a mark-
edly different character from thedynamicalmaxima exhib-
ited by the longitudinal susceptibilityx i(v,T).

3. Response for anisotropy axes distributed at random

Finally, owing to the linearity of the response, when
distribution in anisotropy-axis orientations occurs,x(v) in
the absence of a bias fieldis merely given by the weighted
sum of the longitudinal and transverse dynamic suscepti
ties, the weight factors beinĝcos2a& and ^sin2a&, respec-
tively. ~The angular brackets enclosing functions ofa, which
is the angle between the anisotropy axis and the prob
field, or susceptibilities, stand for average over the anis
ropy axis distribution of an ensemble with the same para
etersl, Kv, andm.!

The linear dynamic susceptibility for anisotropy axes d
tributed at random (̂cos2a&5^sin2a&/251/3) is displayed in
Fig. 6. The out-of-phase component,^x9(v,T)& ran, is over-
whelmingly dominated by the responses to the compon
of the probing fieldalong the different anisotropy axes, an
it is almost 1

3 x i9(v,T) ~cf. Fig. 4!. On the other hand, the
in-phase component,^x8(v,T)& ran, is approximately
1
3 x i8(v,T) plus a nonuniform upwards shift of magnitud
2
3 x'(T), wherex'(T) is the equilibrium transverse susce
tibility. This occurs in such a way that~i! at high tempera-
tures, the Curie lawm0m2/3kBT @equilibrium^x(T)& ranuB50 ;
see, e.g., Refs. 22,23# is obeyed and~ii ! at temperatures wel
below the blocking temperatures, the response cons
mainly of the projection in the probing field direction of th
rotations of the magnetic moments close to the bottom of
potential wells (23 x'uT.0). Due to the short characteristi
time of these intra-potential-well rotations (;tK ; see Fig.
3!, this low-temperature response is nearly instantaneous
in phase with the probing field~see the inset of Fig. 6!.

B. Dynamic response in a longitudinal bias field

We shall now study the effects of a constant magne
field BW applied along the common anisotropy axis directi
of a spin ensemble with parallel anisotropy axes (BW i n̂).
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1. Longitudinal response

Figure 7 displays the longitudinal@DBW (t)i n̂iBW # linear dy-
namic susceptibility vs the temperature for various values
the bias field. The qualitative features of the susceptibi
curves are similar to those encountered in the unbiasedB
50) case, and can be interpreted in terms of the same
cesses:~i! At low temperatures the response consists of
fast rotations of the magnetic moments close to the bottom
the potential wells, with the overbarrier relaxation mech
nism being blocked.~ii ! As T is increased the magnetic mo
ments can depart from the potential minima, by means of
energy gained from the heat bath, and the response star
increase steeply withT ~with a sizable lag behind the probin
field!. ~iii ! If T is further increased the system reaches
regime dominated by inter-potential-well rotations, exhib
ing dynamical maxima first in the phase shift and sub
quently in the magnitude of the response.~iv! In the high-
temperature range, the magnetic moments are almost in
thermal-equilibrium state associated with the instantane
probing field and, hence,x i8(T,B) tends to the equilibrium
linear susceptibility whilex i9(T,B) approaches zero.

Thus, the dynamics is qualitatively similar to that of th
unbiased case, the main difference being that the system
consists of bistablenonsymmetricalentities. The two poten-
tial wells, which do exist since the applied bias fields a

FIG. 6. Linear dynamic susceptibility vsT for anisotropy axes
distributed at random,B50, andl50.1. The symbols are for the
numerically computed̂x(v,T)& ran and the thin solid lines are Eq
~D10! with t i defined as integral relaxation time@Eq. ~D13!#, and
t' given by the modified effective eigenvalue result~D15!. The
thick solid line in the upper panel is the thermal-equilibrium su
ceptibility ^x(T)& ranuB505m0m2/3kBT. Inset: Modulus and phase
shift of ^x(v,T)& ran for vtK/2p50.0025.
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below the critical oneB5BK where the upper~shallower!
potential well disappears, now have different depths. F
thermore, the magnitude of the equilibrium response
smaller than that of the unbiased case, and decreases
increasingB, since the equilibriumx i(T,B) is the slope of
the magnetization vs field curve atB, instead of the initial
slope of the unbiased case.

We remark in passing that the simple idea that the ap
cation of a constant magnetic field reduces the potential
riers, so that the relaxation rate increases and the bloc
temperatures shift to lower temperatures, should be vie
with caution. The location of the maximum of the dynam
response indeed depends on the potential-barrier heights
also on the form of the equilibrium response, which is ma
edly different from that of the unbiased case.~In a bias field
the equilibrium response exhibits a maximum as a funct
of T and then decreases to zero asT is lowered, since
x i(T,B) is the slope of the longitudinal magnetization cur
at B and, for a fixed finiteB, the magnetization saturates
low T.! Indeed, for the frequencies and bias fields cons
ered, the location of the maxima ofx i9(T) is not very sensi-
tive to the bias field, while those ofx i8(T) shift slightly to
higher temperatures asB increases.

2. Transverse response

We shall finally consider thetransversedynamic response
in the presence of alongitudinal bias field @DBW (t)'n̂iBW #.

FIG. 7. Longitudinal linear dynamic susceptibilityx i vs T, for
l50.1, vtK/2p50.005, and various values of the longitudin
bias field. The symbols are for the numerically comput
x i(v,T,B) and the thin solid lines are Eq.~D10! with t i defined as
integral relaxation time@Eq. ~D13!#. The thick solid lines in the
upper panel are the corresponding equilibrium susceptibilities@Eq.
~D4!#. Inset: Modulus and phase shift ofx i(v,T,B) for B/BK

50.1.
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Figure 5 also displaysx'(v,T,B) vs T for B/BK50.1 and
0.2 ~curves labeled 2 and 3, respectively! and vtK/2p
50.005. The qualitative features of the susceptibility curv
are similar to those encountered in the unbiased case:~i! the
mechanism of inter-potential-well rotations plays a min
dynamical role, with the response being dominated by
fast intra-potential-well rotations,~ii ! the x'8 (T,B) curves
obtained are rather close to the corresponding equilibr
susceptibilities~thick solid lines!, and~iii ! x'9 (T,B) is small
as compared to bothx'8 (T,B) andx i9(T,B).

C. Comparison of the numerical results
with different analytical expressions

We shall finally compare the linear dynamic susceptib
ity, obtained by numerical integration of the stochas
Landau-Lifshitz-Gilbert equation, with the heuristic mode
discussed in Appendix D and rigorous expressions. In
comparisonno adjustable parameterwill be employed.

We shall sometimes use the wordexactwhen referring to
the numerical results. Along with the considerations of A
pendix C about the feasible diminishing of the statistical
ror bars of the computed quantities by averaging over a
ficiently large number of trajectories, we also implicit
mean that the numerical results areexactin the context of the
Brown-Kubo-Hashitsume stochastic model.

1. Longitudinal response

Figure 8 shows the computedx i(v) in the unbiased case
and in the bias fieldB/BK50.1. The predictions of the
discrete-orientation@Eq. ~D12!#; Gittleman, Abeles, and Bo
zowski @Eq. ~D10! with the approximate Eq.~D7!#; and
Shliomis and Stepanov@Eq. ~D10!# heuristic models for the
dynamic susceptibility are also shown. The longitudinal
laxation timet i defined as theintegral relaxation timet int,i
@Eq. ~D13!# has been incorporated in the three equations

It is apparent that Eq.~D12! fails to describe the numeri
cal results; neither is the equilibrium~high-temperature! sus-
ceptibility properly described. Indeed, the overall failure
this expression could mainly be attributed to the rough
proximation used for its equilibrium part@Eq. ~D9!#. The
probability thatmW makes a finite angle with the anisotrop
axis is completely neglected in such a discrete-orienta
equation.

Concerning the Gittleman, Abeles, and Bozowski eq
tion, it is more suitable than the previous one, especially
the matching ofx i9(T,B), although it fails to describe
x i8(T,B). Again, not even the equilibrium susceptibility
correctly described; the high-barrier approximation f
x i(T,B) occurring in this model@Eq. ~D7!#, although better
than the discrete-orientation approximation, is still not ac
rate enough at the relevant temperatures. Furthermore
bias fieldsB/BK*0.15, the divergence of this model from
the exact results becomes dramatic~curves not shown!.

In contrast, Eq.~D10! approximates the numerical resul
reasonably. Recall that the exact expression forx i(v) com-
prises an infinite number of Debye-type relaxation mec
nisms, namely,



o

Th
-
va
x-
d

m
a

ic
b

a
-

nt

d
nge

to
s is

t
the
x-

on
e-
ics

the

id

.

-
n

any

-

t
n-

,

se

lid

e

14 948 PRB 58GARCÍA-PALACIOS AND LÁZARO
x i~v,T,B!5x i~T,B!(
k51

`
ak~T,B!

11 iv/Lk~T,B!
, ~4.1!

where ak ((k>1ak51) is the amplitude corresponding t
the eigenvalueLk (0,L1<L2•••) of the Sturm-Liouville
equation associated with the Fokker-Planck equation.
first nonvanishing eigenvalueL1 is associated with the inter
potential-well dynamics, whereas the higher-order eigen
ues Lk , k>2 are related to the intra-potential-well rela
ation modes. Therefore, the mentioned agreement coul
expected in the unbiased case since, as it was shown num
cally by Coffeyet al.:9 ~i! a1(B50)@ak(B50),;k>2 and
~ii ! L1

21(B50).t int,i(B50). Indeed, in Ref. 24 it was
shown that an expression equivalent to the longitudinal co
ponent of Eq.~D10!, together with the interpolation formul
of Cregg, Crothers, and Wickstead25 for L1

21 , describes well
the longitudinal dynamic polarizability of the congener
nematic liquid crystal with Meier-Saupe potential in the a
sence of a bias field.~The longitudinal relaxation in this
system is mathematically identical with that of classic
magnetic moments.! In addition, although in a constant lon
gitudinal field the higher-order modes can make a substa

FIG. 8. x i vs T for B50 andB/BK50.1 with vtK/2p50.005
~symbols!. The short-dashed line is for Eq.~D12!, the medium-
dashed line for Eq.~D10! with the approximate Eq.~D7!, and the
solid lines for Eq.~D10!. t i defined as integral relaxation time@Eq.
~D13!# has been incorporated in the three heuristic models. In
Enlargement of the low-temperature part ofx i vs T showing the
effect of the intra-potential-well relaxation modes. The thick so
line is the equilibrium susceptibility forB/BK50.1, the thin solid
lines are again for Eq.~D10!, and the dashed-dotted lines for th
asymptotic result~4.2! by Storonkin~for B50 only!. For x i9 , Eqs.
~D10! and ~4.2! visually coincide.
e
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be
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l
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contribution in the low-temperature(s5Kv/kBT@ 1) re-
gion (L1

21 can then largely deviate fromt int,i anda1@ak no
longer holds; see Ref. 11!, for the frequencies employe
here, the relevant dynamical phenomena occur in the ra
s;3 –5, so that, for the bias fields applied, Eq.~D10! de-
scribes the exact results reasonably.

However, one could expect, even forB50, a significant
contribution of the intra-potential-well relaxation modes
the longitudinal response when the overbarrier dynamic
blocked at low T (v/L1@1). Indeed, when scrutinizing
Figs. 4 and 7, one sees that Eq.~D10! predicts, both forB
50 andBÞ0, a smallerx i8 , when departing from zero a
temperatures well below the blocking temperatures, than
exactx i8 . In addition, because the intra-potential-well rela
ation modes are very fast (;tK), their contribution to the
out-of-phase susceptibility is smaller than their contributi
to x i8 , so thatx i9 is still described reasonably by the Deby
type term associated with the inter-potential-well dynam
(x i9.x i(v/L1)/@11(v/L1)2#).

These considerations are substantiated by comparing
numerical results with the asymptotic (s@1) expression for
the longitudinal dynamic susceptibility of the nematic liqu
crystal derived by Storonkin,26 namely,

x i.
m0m2

kBT F S 12
1

s
2

3

4s2D 1

11 iv/L1

1
1

8s2S 1

11 iv/L3
1

1

11 iv/L5
D G , ~4.2!

where

L1
21.tN

Ap

2
s23/2exp~s!S 11

1

s
1

7

4s2D , ~4.3!

L3
21.L5

21.
1

2

tN

s S 11
5

2s
1

41

4s2D . ~4.4!

@Note that (m0m2/kBT)(121/s23/4s2).x i(T)1O(1/
s2), while the result forL1

21 agrees with that by Brown;27

see also Ref. 9.# In the inset of Fig. 8 it is shown that Eq
~4.2! remarkably describes theB50 numerical results at low
temperatures. BecauseL3,5;tN /s5tK andvtK!1 for the
frequencies considered, it follows that 1/(11 iv/L3,5).1
2 iv/L3,5. Therefore, since (m0m2/kBT)3(1/8s2)}kBT,
Storonkin formula~4.2! yields the low-temperature linear in
crease ofx i8 with T due to the intra-potential-well relaxatio
modes, whereas their contribution tox i9 is smaller by a factor
v/L3,5;vtK .

This takes a dramatic reflection in the phase shifts. As
expression of the formx(v)5x/(11 ivt) ~Debye type!, the
longitudinal component of Eq.~D10! yields a phase shift
fShS,i5arctan(vti), which increases monotonically with de
creasingT ~corresponding to the emergence of a sizablex i9)
and, eventually, reachesp/2 ~see the insets of Figs. 4 and 7!,
since at low temperaturesvt i@1. However, since the fas
intra-potential-well relaxation modes yield an almost insta
taneous contribution to the response,x i8 decreases withT
less steeply thanx i /@11(v/L1)2# at low temperatures

t:
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whereasx i9 is still approximately given byx i(v/L1)/@1
1(v/L1)2#. Consequently, the actual phase shift~insets of
Figs. 4 and 7!, also increases monotonically with decreasi
T but, at a temperature close to that of the peak
x i9(T), f i(T) exhibits a maximum and then decreases
zero asT is further lowered, since at lowT, due to the fast
intra-potential-well relaxation modes, the response is ag
‘‘in phase’’ with the probing field. This behavior of th
phase shift, which is in agreement with the results of Ref.
is qualitatively similar to that encountered in on
dimensional bistable systems,28 and ascribed to the crossov
from the high-noise regime, dominated by inter-potenti
well jumps, to the low-noise regime, dominated by the f
intra-potential-well motions.

2. Transverse response

Figure 9 displays the corresponding comparison
x'(v) in the unbiased case for various values of the dam
ing coefficient. For the transverse relaxation timet' we have
used Eq.~D15!, which has been derived~Appendix D! from
the low-frequency expansion of the equation forx'(v) of
Ra�kher and Shliomis.29,30 ~In the frequency range below th
ferromagnetic resonance range thex'(v) of these authors is
indistinguishable from the low-v expansion used here.!

FIG. 9. Upper panel:x' vs T for B50, vtK/2p50.005, and
various values of the damping coefficientl. The circles are forx'8 ,
and the rhombi forx'9 . The medium dashed line corresponds to t
constantx'8 given by Eq.~D11! and the solid lines to Eq.~D10!
with t' given by Eq.~D15!. The thick dashed curve isx'9 (v,T)
with t' given by thel@1 result ~D14!. Lower panel: Detail of
x'9 (v,T) in the intermediate-to-weak damping regime together w
the exact zero-damping formula~4.5! of Garanin, Ishchenko, and
Panina~dashed-dotted lines!.
f
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For the transverse probing-field geometry, the discre
orientation formula~D12! predicts obviously an identically
zero response, while the Gittleman, Abeles, and Bozow
formula yields a constantx'8 (T) and a zerox'9 (T). In con-
trast, the exactx'8 (T) is described well by Eq.~D10!, al-
though, becausevt'!1 holds in the considered frequenc
range,x'8 (T) almost coincides with the equilibrium susce
tibility x'(T). Concerningx'9 (T), Eq. ~D10! with the ex-
pression~D15! for t' only matches the out-of-phase re
sponse in the low-temperature range (Kv/kBT*7) for the
smallest damping coefficient used (l50.1). Nevertheless
Fig. 9 shows that, as the damping coefficient is enlarged,
matching between the numerical results and the simple
~D10! improves when one uses thet' proposed@Eq. ~D15!#.
This constitutes an advance over the usual approach, w
one uses thet' derived by the effective-eigenvalue metho
@Eq. ~D14!#, which yields the thick dashed curve of Fig.
irrespective ofl.

The above comparison is in agreement with that made
Kalmykov and Coffey31 of their numerical results, obtaine
by continued-fraction techniques, with the complete~but ap-
proximate! expression for x'(v,T) of Ra�kher and
Shliomis.29,30 The failure of this expression for weak dam
ing was explained in terms of the effects of the gyromagne
terms of the dynamical equation. When these terms domin
(l!1), due to the occurrence of a spread of the preces
frequencies ofmW in the anisotropy field at intermediate tem
peratures@these frequencies are}gBK(mW •n̂)#, the response
is not well described by a simple relaxation mechanis
Thus, only at low temperatures, where the magnetic m
ments are concentrated close to the bottom of the pote
wells ~so the spread in precession frequencies is reduc!,
the exact results are well described by thex'(v,T) of
Ra�kher and Shliomis@or equivalently by Eq.~D10! with the
expression~D15! for t'#.

The effects of the spread of the precession frequencie
mW in the anisotropy field had already been investigated
Garanin, Ishchenko, and Panina.21 They derived from the
Fokker-Planck equation theexactexpression forx'9 (v,T,B)
in thel→0 limit, which fully accounts for the effects of this
phenomenon. Their formula can be written as

x'9 ul505
m0m2

kBT

p

2

ṽ

~2usu!3

~2s!22~ṽ2j!2

Z expS ṽ22j2

4s
D ,

~4.5!

where ṽ5v(m/gkBT), j5mB/kBT, Z is the partition
function ~D3!, and x'9 (v) is nonzero in the interval (ṽ
2j)2<(2s)2. ~In order to compare this zero-damping fo
mula with the numerical results, we writeṽ5v(2ltKs),
which for fixedvtK , as it occurs in the plot, is a ‘‘function’’
of l.) The lower panel of Fig. 9 shows that, forl50.5, Eq.
~4.5! compares reasonably with the numerical results
intermediate-to-high temperatures, while the agreement
tends to quite low temperatures already forl50.1.

Since Eq.~4.5! is a l50 formula, this comparison indi-
cates that, in the intermediate-to-weak damping regime,
contribution of the spread of the precession frequencies
the magnetic moment tox'9 (v) is sizable as compared to th
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effects of the damping. Therefore, by omitting that ze
damping effect one could erroneously extract values ol
from thex'9 (v) data that overestimate the actuall and, e.g.,
infer that the damping in superparamagnets is strong.

3. Response for anisotropy axes distributed at random

The comparison is finally effected for anisotropy axes d
tributed at random. In principle, this comparison could a
pear unnecessary due to the linearity of the response. Ne
theless, we shall carry it out since additional conclusions
be drawn.

First, as Fig. 10 shows, the discrete-orientation mode
not able to yield the sizable low-temperature in-phase
sponse, while the corresponding^x9(T)& ran overestimates the
exact one. The curious point is the reasonable agreeme
the Gittleman, Abeles, and Bozowski equation with the ex
results for this anisotropy-axis distribution. Neverthele
one should keep in mind that this agreement~as well as that
of the discrete-orientation model at high temperature!,
originates from the cancellation of two faulty results for t
longitudinal and transverse susceptibilities~recall Figs. 8
and 9!. Any departure of the anisotropy-axis distributio
from random will show the limitations of such a model. F
nally, as could be anticipated, the accord obtained betw
Eq. ~D10! and the exact results is merely a consequence
the previously encountered agreements plus the linearit
the response. In addition, this accord is maintained eve
we put t'50 in the transverse component of that equat
~instantaneous transverse response!, because the out-of-phas
susceptibility is, at the frequencies considered, overwhe
ingly dominated by the responses to the components of
probing field along the different anisotropy ax
@^x9(T)& ran.

1
3 x i9(T)#. Note that this would also reasonab

work for stronger damping since the thick dashed curve
Fig. 9, which isx'9 (v,T) with the overdamped (l@1) trans-
verse relaxation time, works out an upper bound forx'9 as a
function of l ~specificallyx'9 &531022m0m2/2Kv).

Concerning the phase behavior, the fast intra-poten
well motions make a contribution to the transverse respo

FIG. 10. ^x(v,T)& ran vs T for vtK/2p50.0025,B50, andl
50.1 ~symbols!. The short-dashed line is for Eq.~D12!, the
medium-dashed line for Eq.~D11!, and the solid lines for Eq
~D10!. The integral relaxation time~D13! has been used fort i . For
t' , Eq. ~D15! and t'50 have been employed~both results visu-
ally coincide!.
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much larger than to the longitudinal response. Therefore
the former contribution is in some way accounted for by E
~D10!, via the equilibrium transverse susceptibility, one fin
that, inasmuch aŝcos2a& departs from unity, the Shliomis
and Stepanov equation also describes the low-tempera
phase shifts reasonably well~see the inset of Fig. 6!.

V. DISCUSSION AND CONCLUSIONS

In this work, the stochastic Landau-Lifshitz-Gilbert equ
tion ~Brown-Kubo-Hashitsume model! has been integrated
numerically, taking account of the differences of the stoch
tic calculus from the deterministic calculus. This Langev
dynamics approach has been shown to be a useful tool in
study of the dynamics of magnetic nanoparticles.

When studying the long-time dynamics of the magne
moments, the Langevin-dynamics method used requires
extensive computational effort and is then less efficient th
numerical methods especially suitable for noninteract
spins, such as those based on continued-fraction techni
or the computation of the eigenvalues and amplitudes of
relevant dynamical modes by matrix methods.7–11 However,
with a significant increase of the computational effort, t
Langevin-dynamics technique could also be used to st
assemblies of interacting magnetic moments. In addition,
direct attainment of the time evolution~realizations! of the
variables of the system, renders the Langevin-dynam
method unique as it directly yields the dynamics of the in
vidual magnetic moments. This is especially relevant cons
ering the current experiments on individual magne
nanoparticles.14

In the study of the dynamics of individual magnetic m
ments, we have found interesting phenomena in the over
rier rotation process, such as crossing-back and mult
crossing, which can be explained in terms of the gyrom
netic nature of the system. On the other hand, as a suit
probe of the intrinsic dynamics of the ensemble of magne
moments, we have studied its linear dynamic susceptib
and set this in the context of the previously determined f
tures of the individual dynamics. We have investigated
effect of the intra-potential-well relaxation modes on t
low-temperature longitudinal dynamic response, show
their relatively small reflection in thex i(v,T) curves ~re-
markably small inx i9) but their spectacular influence on th
phase shifts. On the other hand, the sizable contribution
the spread of the precession frequencies of the magnetic
ment in the anisotropy field to the out-of-phase transve
response at intermediate-to-high temperatures, has b
demonstrated by comparing the numerical results with
exact zero-damping expression forx'9 (v). Accounting for
this effect may be relevant to properly assess the strengt
the damping in superparamagnetic systems.

We have also compared the numerical results with heu
tic analytical expressions. It has been demonstrated that
the discrete-orientation and the Gittleman, Abeles, and
zowski equations fail to describe the exact results, wher
the simple formula proposed by Shliomis and Stepanov~sum
of two Debye-type relaxation mechanisms! matches the
coarse features of the susceptibility reasonably. In addit
owing to the fact that the intra-potential-well relaxatio
modes are very fast and, thus,x i9 is well described by Eq.
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~D10! ~see the inset of Fig. 8!, while x'9 is relatively small,
the theoretical background of the methods of determina
of the energy-barrier (Kv) distribution that are based on th
use of theout-of-phasecomponent of the Shliomis an
Stepanov equation~with vt'50),16,17 is supported in the
context of the Brown-Kubo-Hashitsume stochastic mode

Finally, since the frequencies considered here~in the
MHz range! are much lower than those where resonant
havior occurs, the results obtained for the averaged quant
would be valid in the usual frequency range of experime
on small magnetic particles~say v/2p;1022–104 Hz). In
addition, the large value of the effectivet0 (;1028–
1027 s) in the Arrhenius lawt i.t0exp(DU/kBT), encoun-
tered in molecular magnetic clusters having high spin in th
ground state, entails that experimental conditions w
v/2p;103–104 Hz already correspond to the frequen
range considered in this work. Indeed, these systems ne
exhibit the qualitative features encountered for the linear
namic susceptibility at ‘‘high’’ ~but below ferromagnetic
resonance! frequencies~see Refs. 32 and 33 for Fe8 and
Mn12, respectively!: wide maxima inx(v,T) vs T for only
one potential barrier~relaxation time!, sizablex8(T) at tem-
peratures well below the blocking temperatures, and flat
ing of the peak ofx9(T) with increasingv.
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APPENDIX A: DETERMINISTIC DYNAMICS

In this appendix, we shall investigate solutions of t
Landau-Lifshitz equation in the absence of fluctuations,

dmW

dt
5gmW `BW eff2g

l

m
mW `~mW `BW eff!, ~A1!

restricting our attention to the case where the Hamiltonian
mW is axially symmetric. On examining Eq.~2.9!, one con-
cludes that the physical range where the fluctuations pla
minor role is the low-temperature range, in the sense
tN

21!guBW effu @i.e., 2lkBT!muBW effu; see Eq.~2.6!#.

1. General solution for axially symmetric Hamiltonians

For an axially symmetric Hamiltonian,BW eff(mW ) is parallel
to the symmetry axis, which can be chosen as thez axis,
BW eff5Beff(mW ) ẑ. Then, on introducing themW -dependent ‘‘fre-
quency’’ veff(mW )5gBeff(mW ), we can explicitly write the de-
terministic Landau-Lifshitz equation~A1! as a system of
coupled ordinary differential equations:

dmx

dt
5veffS my2

l

m
mxmzD ,

dmy

dt
5veffS 2mx2

l

m
mymzD ,
n

-
es
s

ir
h

tly
-

n-

r
.
-

f

a
at

dmz

dt
5veff

l

m
~m22mz

2!.

Next, on introducing spherical coordinatesmx1 imy
5m sinq exp(2iw) and mz5m cosq ~we measure the azi
muthal angle clockwise!, the above system of differentia
equations can equivalently be written as

dq

dt
52lveff sinq, ~A2!

dw

dt
52

1

l sinq

dq

dt
, ~or dw/dt5veff!. ~A3!

Equation ~A3! can be solved by separation of variable
yielding

w~q!2w~q0!52
1

l
lnS tan

q

2Y tan
q0

2 D , ~A4!

where q05q(t0), t0 being the initial time. Becauseveff
5veff(q), we can also separate the variables in Eq.~A2! to
get the following implicit expression forq(t):

2l~ t2t0!5E
q0

q~ t ! dq8

veff~q8!sinq8
. ~A5!

Equations~A4! and~A5! are the solution of the determin
istic Landau-Lifshitz equation forany axially symmetric
HamiltonianH(q).

2. The simplest axially symmetric Hamiltonian

Let us now specialize the above general solutions to
Hamiltonian obtained by the sum of the simplest axia
symmetric anisotropy potential plus a longitudinal Zeem
term. Then@cf. Eq. ~3.2!#

BW eff5Bẑ1~BK /m!~mW • ẑ!ẑ, ~A6!

andveff(mW )5gBeff(mW ) can be written as

veff~q!5vB1vK cosq, vB5gB, vK5gBK , ~A7!

while the integral in the solution~A5! is given by

E dq

~vB1vKcosq!sinq

5
1

vB1vK
lnS tan

q

2 D1
vK

vB
22vK

2
ln~vB1vK!

1
vK

vB
22vK

2
lnF11S vB2vK

vB1vK
D tan2

q

2 G .
Therefore, from the general result~A5! we get

Ce2l~vB1vK!t5tan
q

2 F11S vB2vK

vB1vK
D tan2

q

2 GvK /~vB2vK!

,

~A8!
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where the constant of integrationC involves both the terms
evaluated att5t0 and the second term on the right-hand s
of the above integral, which is a constant too.

Particular cases

The above implicit solution forq(t) turns into an explicit
one in various special situations.

a. Dynamics in the absence of the anisotropy ener
Here vK50, so that Eqs.~A4! and ~A8! reduce to the cel-
ebrated results@w05w(t0)#

tan
q

2
5tan

q0

2
e2lvB~ t2t0!, w~ t !2w05vB~ t2t0!.

Thus, the motion ofmW consist of a precession with frequenc
vB5gB about ẑ and a spiraling towards this axis with
characteristic time constant@cf. Eq. ~3.4!#

tB5
1

lvB
5

1

lgB
. ~A9!

b. Dynamics in the absence of an external field.Here
vB50, so that, by using tanq52tan (q/2)/@12tan2(q/2)#
in Eq. ~A8!, one gets

tanq5tanq0e2lvK~ t2t0!. ~A10!

Thus, the spiraling towards the minima (K.0 case! has a
characteristic time@Eq. ~3.4!#

tK5
1

lvK
5

1

lgBK
. ~A11!

For easy-plane anisotropy (K,0) one hasBK ,vK,0, so
that limt→`tanq5`, that is,q→p/2 ast→`, and the mag-
netic moment eventually rests in the equatorial plane.

Concerning the azimuthal angle, by expressing tan (q/2)
in terms of tanq, one gets from Eq.~A4!

w~ t !2w05vK~ t2t0!2
1

l
lnF 11secq0

16A11tan2q0e22lvK~ t2t0!G ,

where the plus sign corresponds toqP@0,p/2# and the mi-
nus sign toqP@p/2,p#. From this equation it follows tha
the asymptoticluvKu(t2t0)@1 behavior of the azimutha
angle forK.0 is

w~ t !2w0.6FvK~ t2t0!2
1

l
lnS 16secq0

2 D G ,
which corresponds to a precession close to the bottom o
corresponding potential well with an angular velocityvKẑ in
the z.0 well and2vKẑ in the z,0 well. For easy-plane
anisotropy (K,0), one finds from Eq.~A4! that the mag-
netic moment finally rests in the equatorial plane atw
2w(q0)5 1/l ln@tan(q0/2)# ~unless it starts atq050,p,
which are unstable equilibrium points!.

c. Dynamics close to the potential minima (case BK.0).
Let us initially assumeq.0 ~i.e., tan(q/2)!1). Then, on
retaining terms of order tan(q/2) in Eq. ~A8!, we get
tan(q/2).tan(q0/2)exp@2l(vB1vK)(t2t0)# and w(t)2w0
y.

he

.(vB1vK)(t2t0) by Eq. ~A4!. However, within the same
approximation (q!1) we can replace the tangents by the
arguments, getting

q~ t !.q0e2l~vB1vK!~ t2t0!, w~ t !2w0.~vB1vK!~ t2t0!.

Thus, mW precesses with frequencyvB1vK when spiraling
towards theq50 potential minimum and the time consta
of the decay ofq is 1/@l(vB1vK)#5tBtK /(tB1tK). Note
that the characteristic decay time ofmz} cosq.12q2/2, is a
half of this result. Moreover the approximation used is se
consistent ifvB1vK.0, that is, if theq50 potential mini-
mum exists.

We shall finally consider theq.p case. In this situation
q/2.p/2 and, hence, tan(q/2)@1, so we can use 1!(vB
2vK)/(vB1vK)tan2(q/2) in Eq. ~A8!, to get tan(q/2)
.tan(q0/2)exp@l(vK2vB)(t2t0)# and then w(t)2w0.
2(vK2vB)(t2t0) by Eq. ~A4!. However, for tan(q/2)
@1, one has tanq.22/tan (q/2), and by expanding tanq
aboutq5p, we finally get

q~ t !2p.~q02p!e2l~vK2vB!~ t2t0!,

w~ t !2w0.2~vK2vB!~ t2t0!.

Therefore, mW precesses with frequencyvK2vB ~about
2 ẑ) when spiraling towards theq5p minimum, while q
decays with a characteristic time constant 1/@l(vK2vB)#
5tBtK /(tB2tK) ~andmz with half of this value!. Note fi-
nally that, the approximation used is self-consistent ifvK
2vB.0, i.e., when theq5p minimum exists.

APPENDIX B: DERIVATION OF THE
FOKKER-PLANCK EQUATIONS

Let us consider the general system of Langevin equati

dyi

dt
5Ai~y,t !1(

k
Bik~y,t !Lk~ t !, ~B1!

wherey5(y1 , . . . ,yn) ~the variables of the system!, k runs
over a given set of indices, and the ‘‘Langevin’’ sourc
Lk(t) are ~independent! Gaussian stochastic processes sa
fying

^Lk~ t !&50, ^Lk~ t !L l ~s!&52Ddkl d~ t2s!.

When the functionsBik(y,t) depend ony, the noise in the
above equations is termed ‘‘multiplicative,’’ whereas f
]Bik /]yj[0 the noise is called ‘‘additive’’~here the Itoˆ and
Stratonovich stochastic calculi coincide!.

The time evolution ofP(y,t), the nonequilibrium prob-
ability distribution for y at time t, is given by the Fokker-
Planck equation

]P

]t
52(

i

]

]yi
F S Ai1D(

jk
Bjk

]Bik

]yj
D PG

1(
i j

]2

]yi]yj
F S D(

k
BikBjkD PG ,

where the Stratonovich calculus has been used19 to treat the
~in general! multiplicative fluctuating terms in the Langevi
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equations ~B1! @when using the Itoˆ calculus thenoise-
induceddrift coefficientD( jkBjk(]Bik /]yj ) is omitted#. On
taking theyj derivatives of the second term on the right-ha
side, one alternatively gets the Fokker-Planck equation in
form of a continuity equation for the probability distribution
namely,

]P

]t
52(

i

]

]yi
H FAi2D(

k
BikS (

j

]Bjk

]yj
D

2D(
jk

BikBjk

]

]yj
GPJ . ~B2!

Next, on considering thestochastic Landau-Lifshitz
Gilbert equation~2.1!, supplemented by the statistical pro
erties ~2.3!, the following substitutions cast them into th
form of the general system of Langevin equations~B1!:
(y1 ,y2 ,y3)5(mx ,my ,mz), Lk(t)5bfl,k(t), and

Ai5gFmW `BW eff2
l

m
mW `~mW `BW eff!G

i

, ~B3!

Bik5gF(
j

e i jkmj1
l

m
~m2d ik2mimk!G , ~B4!

where e i jk is the totally antisymmetrical unit tensor~Levi-
Civita symbol! and we have expanded the triple vector pro
uct 2mW `(mW `bW fl)5m2bW fl2mW (mW •bW fl). Note that theBik de-
pend onmW , i.e., the noise terms in the stochastic Landa
Lifshitz-Gilbert equation are multiplicative.

On using

]Bik

]mj
5gFe i jk1

l

m
~2d ikmj2d i j mk2dk jmi !G ~B5!

(l/m5hg/v has not been differentiated since it is a const
independent ofmW ) and accounting fore j jk50, one finds
( j]Bjk /]mj522(gl/m)mk , from which we get
(kBik(( j]Bjk /]mj )50 by Eq. ~B4!. Therefore, the secon
term on the right-hand side of the general Fokker-Pla
equation~B2! vanishes identically in this case. For the thi
term, by repeated use of (JW`JW8) i5( rse irsJrJs8 , we get

2D(
jk

BikBjk

]P

]mj
5

1

2tN
FmW `S mW `

]P

]mW
D G

i

, ~B6!

wheretN
2152Dg2(11l2) is the Néel ~free-diffusion! time.

On introducing these results into Eq.~B2! one finally arrives
at the Fokker-Planck equation~2.5!.

Likewise, when one considers thestochastic Landau-
Lifshitz equation~2.4!, supplemented by Eqs.~2.3!, the ex-
pression forAi is identical with Eq.~B3!, whereasBik re-
duces to ~in this case there are Langevin fields in t
precession term only!

Bik5g(
j

e i jkmj . ~B7!

Therefore,]Bik /]mj simplifies to (]Bik /]mj )5ge i jk @cf.
Eq. ~B5!#, so that one again gets that the second term in
general Fokker-Planck equation~B2! vanishes ~here
e

-

t

k

e

]Bjk /]mj[0 by e j jk50). On the other hand, on introducin
the reduced expressiontN

2152Dg2 for the Néel time, the
third term in Eq.~B2! can also be cast into the form~B6!.

Thus, the Fokker-Planck equations associated with b
the stochastic Landau-Lifshitz-Gilbert equation~2.1! and the
stochastic Landau-Lifshitz equation~2.4! are given by Eq.
~2.5!, the only difference being the relation between the N´el
time and the amplitude of the fluctuating field:

1

tN
5H 2Dg2~11l2! ~LLG!,

2Dg2 ~LL !.
~B8!

APPENDIX C: NUMERICAL METHOD

1. Numerical integration scheme

On using the dimensionless quantities introduced in S
III @Eqs. ~3.3! and ~3.4!#, the stochastic Landau-Lifshitz
Gilbert equation~2.1!, can be rewritten in a dimensionles
form suitable for computation, namely,

deW

d t̄
5

1

l
eW`@hW eff1hW fl~ t̄ !#2eW`$eW`@hW eff1hW fl~ t̄ !#%,

~C1!

whereeW5mW /m is a unit vector in the direction of the mag
netic moment and the statistical properties ofhW fl( t̄ ), which
arise directly from those ofbW fl(t) @Eqs.~2.3!#, are

^hfl, i~ t̄ !&50, ~C2!

^hfl, i~ t̄ !hfl, j~ s̄!&52S l2

11l2

kBT

2Kv D d i j d~ t̄ 2 s̄!, ~C3!

where we have used Eq.~2.7! for D and d(t)5d( t̄ )d t̄/dt

5d( t̄ )tK
21 @the factor in the brackets is indeedD/(tKBK

2 )#.
Next, let us cast the dimensionless Eq.~C1! into the form of
the general system of Langevin equations~B1! by setting
Li5hfl, i and introducing@cf. Eqs.~B3! and ~B4!#

Ai5(
k

F 1

l(
j

e i jkej1~d ik2eiek!Gheff,k , ~C4!

Bik5
1

l(
j

e i jkej1~d ik2eiek!. ~C5!

@For the corresponding dimensionless stochastic Land
Lifshitz equation Bik5l21( je i jkej @cf. Eq. ~B7!#, while
(l2/11l2)(kBT/2Kv)→l2(kBT/2Kv) in Eq. ~C3!.#

Concerning the choice of the numerical integrati
scheme, one must keep in mind that the noise terms in
~C1! are multiplicative (Bik depends oneW ). Together with
difficulties at the level of definition, the occurrence of mu
tiplicative white noise in a Langevin equation entails som
technical problems as well. For instance, serious difficult
arise in developing high-order numerical integration schem
for this case.34 In general, the mere translation of a numeric
scheme valid for deterministic differential equations does
necessarily yield a proper scheme in the stochastic case~i!
Depending on the original deterministic scheme chosen
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naı̈ve stochastic translation might converge to an Itoˆ solu-
tion, to a Stratonovich solution, or to none of them.~ii ! Even
if there exists proper convergence of the scheme chose
the context of the stochastic calculus used, the order of c
vergence is usually lower than that of the original determ
istic scheme.

Let us consider the stochastic generalization of the de
ministic Heun scheme, namely,

yi~ t1Dt !5yi~ t !1 1
2 @Ai~ ỹ,t1Dt !1Ai~y,t !#Dt

1 1
2 (

k
@Bik~ ỹ,t1Dt !1Bik~y,t !#DWk ,

~C6!

whereDt is the discretization time interval,y5y(t), the ỹi
are Euler-type supporting values,

ỹi5yi~ t !1Ai~y,t !Dt1(
k

Bik~y,t !DWk , ~C7!

and theDWk5* t
t1DtdsLk(s) are Gaussian random numbe

the first two moments of which are

^DWk&50, ^DWkDWl &5~2DDt !dkl . ~C8!

The stochastic Heun scheme~C6! convergesin quadratic
meanto the solution of the general system of stochastic d
ferential equations~B1! when interpreted in the sense
Stratonovich.35 On the other hand, if one uses the Euler-ty
Eq. ~C7! as the numerical integration scheme@by identifying
yi(t1Dt)5 ỹi#, the constructed trajectoryconverges to the
Itô solutionof the same system of equations~B1! ~see, e.g.,
Ref. 35!. A proper Euler-type scheme in the context of t
Stratonovich stochastic calculus is obtained when the de
ministic drift in Eq. ~C7!, Ai , is augmented by the noise
induced drift, namely,

yi~ t1Dt !5yi~ t !1FAi1D(
jk

Bjk

]Bik

]yj
G

~y,t !

Dt

1(
k

Bik~y,t !DWk . ~C9!

We note in passing that the noise-induced drift for Eq.~C1!
is (l2/11l2)(kBT/2Kv)( jkBjk]Bik /]ej52(kBT/Kv)ei5

2(tK /tN)ei @which corresponds to the term2^mW &/tN in the
averaged dynamical equation~2.9!#.

For commutative noise, defined by

(
j

Bjk

]Bi l

]yj
5(

j
Bj l

]Bik

]yj
, ; i ~C10!

~i.e., symmetry with respect to the subscriptsk and l ), the
stochastic Heun scheme has an order of convergence h
than that of the Euler scheme~C9!.35 The condition of com-
mutative noise is rather general and includes additive no
]Bi l /]yj[0, diagonal multiplicative noise, Bi j (y,t)
5d i j Bii (yi), and linear multiplicative noise,Bi j (y,t)
5Bi j (t)yi ~see, e.g., Ref. 34, p. 348!. Although the multipli-
cative noise in the stochastic Landau-Lifshitz-Gilbert eq
tion is noncommutative~the same holds for the stochast
in
n-
-

r-

-

r-

her

e,

-

Landau-Lifshitz equation; we omit the correspondi
proofs!, we shall employ the stochastic Heun method~C6! to
integrate Eq.~C1! numerically. This is done because:~i! The
Heun scheme yields Stratonovich solutions of the stocha
differential equations naturally, without alterations to t
drift term and~ii ! the deterministic part of the differentia
equations is treated with a second order accuracy inDt,
which renders the Heun scheme numerically more sta
than the Euler-type schemes.

Previous approaches.In order to integrate the stochast
Landau-Lifshitz-Gilbert equation numerically, Lyberatos a
Chantrell13 unfortunately used a bare Euler scheme ana
gous to Eq.~C7!, which omits the noise-induced drift, in
stead of using the Stratonovich Euler scheme~C9!. Inasmuch
as Eq.~C7! yields Itô solutions of the stochastic differentia
equations and, in contrast, they employed a relation betw
the amplitude of the thermal-agitation field andT equivalent
to Eq. ~2.7! ~which pertains to the Stratonovich stochas
calculus!, their approach is not consistent. Even the stati
ary properties that could be derived by means of such
approach would not coincide with the proper therm
equilibrium properties~recall the discussion in Sec. II!. Simi-
lar considerations hold for the numerical approach of R
36, where a deterministic backward Euler method was s
ply used to deal with the stochastic Landau-Lifshitz-Gilb
equation. In contrast, a rigorous numerical treatment of
multiplicative noise terms of the stochastic Landau-Lifsh
equation has recently been effected by Antropov, Tretyak
and Harmon,37 by means of a Runge-Kutta method suitab
for systems withweaknoise.

2. Implementation

The integration of the stochastic Landau-Lifshitz-Gilbe
equation is performed by starting from a given initial co
figuration, and updating recursively the state of the syst
mW (t)→mW (t1Dt), by means of the set of finite-differenc
equations~C6!. This generates stochastic trajectories fro
which, when required, averages are directly computed. W
one extrapolates the results obtained to zero discretiza
time intervalDt, the only error in theaveragedquantities is
a statistical error bar that can, in principle, be made a
trarily small by averaging over a sufficiently large number
stochastic trajectories. We do not carry out such aDt→0
limiting procedure but we employ a discretization time inte
val small enough. We useDt50.01tK throughout @that
is D t̄ 50.01; see Eq.~3.4!#, except for damping coefficient
l*0.5, where we employDt50.0025tK .

The Gaussianrandom numbers required to simulate t
DWk occurring in Eq.~C6!, are constructed fromuniformly
distributed ones by means of the Box-Muller algorithm~Ref.
38, p. 280!. As a large amount of uniform random numbe
is used, we have chosen the subroutineRAN2 of Ref. 38, p.
272, to generate them. This subroutine has period;1018, so
artifacts associated with period exhaustion are sa
avoided. On the other hand, since the generation of the
dom numbers is the slowest step in the recursive sche
when computing a quantity at various temperatures we g
erate all the trajectories at once, by using the same sequ
of random numbers for the different temperatures.
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When computing average quantities, in order to minim
effects that are not caused by the application of the prob
field DBW (t), the following method is used. Starting from th
same initial configuration, the equations of motion are solv
for two identical systems, one in the presence ofDBW (t) and
the other subjected to2DBW (t), and the time evolution ana
lyzed is that ofmW (t)5 1

2 $mW @DBW (t)#2mW @2DBW (t)#%. More-
over, we have found that thissubtraction techniquesignifi-
cantly diminishes the number of stochastic trajector
required to achieve convergence in the computed results
the other hand, as long as one applies afinite probing field
when computing the linear dynamic response of the
semble of spins, the possibility of encountering nonline
effects in the response arises. Along with the precauti
described below, the subtraction procedure automatic
eliminates the nonlinear termsquadratic in the probing field
that occur when a bias field is applied.

3. Statistical errors and optimization

When computing the dynamic response of the ensem
the system of spins is subjected to a probing fieldDBW (t)
5DBW 0cos(vt). Statistical errors occur in the computed qua
tities because one makes a finite numberNm of statistically
independent ‘‘measurements’’ on the system. By the o
come of one such measurement is meant a quantity c
puted during, e.g., a cycle of the oscillating field,

Qn5E
n
dt f@mW 1~ t !, . . . ,mW N~ t !#g~ t !, ~C11!

where the indexn denotes integration over thenth cycle,N is
the number of spins in the system, andg(t) is a function of
the time, typically a sinusoidal function ofvt. The same
notation can be maintained when considering the comp
tion of thermal-equilibrium quantities; in this case the in
gral is carried over a ‘‘measurement’’ time intervaltm and
g(t)51/tm.

An estimation of the exact result is given by

q5
1

Nm
(
n51

Nm

Qn . ~C12!

The quantitiesq andQ are characterized by probability dis
tributions whosel th-order cumulantsk l are related by
k l (q)5Nm

2(l 21)k l (Q) ~see, e.g., Ref. 39!. Therefore, the

moments required to evaluate these cumulants areQl̄

5Nm
21(n51

Nm (Qn) l , which can be computed at the same tim

with q5Q̄. For large Nm, because theq distribution is
Gaussian to a good approximation, theresult of the simula-
tion is taken as the interval (q2@k2(q)#1/2,q1@k2(q)#1/2),
in the sense that the exact value lies within this interval w
probability 0.68, with 2@k2(q)#1/2 being the corresponding
statistical error. Accordingly, a relevant parameter for th
computed quantity is itsrelative fluctuation, defined as
dq/q[@k2(q)#1/2/q ~standard deviation over mean value!.
From the above relation betweenk l (q) andk l (Q) one gets
dq/q5Nm

21/2dQ/Q, wheredQ/Q5@k2(Q)#1/2/Q̄ is the rela-
tive fluctuation ofQ. The following considerations on th
e
g

d

s
n

-
r
s

ly

le,

-

t-
-

a-
-

h

computation of the thermal-equilibrium response will su
gest a way to decreasedq/q more efficiently than to further
increase the number of measurements, which is not very
ficient because of the occurrence of the square rootNm

21/2 in
the denominator of the above expression fordq/q.

Thermal-equilibrium response.If the field-dependent par
of the energy depends onBW via 2(mW •BW , on assumingBW i ẑ

and definingmz,tot5(mW • ẑ, where the sums are taken ov
the spins of the system, we know from statistical mechan
that the relation

]

]B
^mz,tot&05

1

kBT
@^mz,tot

2 &02^mz,tot&0
2#, ~C13!

where ^&0 denotes thermal-equilibrium average, holds irr
spective of the magnitude ofBW . Therefore, on defining the
magnetization in the field direction,Mz , as the time average
of the magnetic momentper spin, Mz,n5*ndtmz,tot(t)/
(tmN)(Mz plays the role of theQ above!, and identifying the
statistical distribution ofMz,n with the statistical-mechanica
distribution, one can write

dMz

Mz
5

1

~ tmN!1/2

AkBT]Mz /]B

Mz
. ~C14!

Note that, concerning the computation of averages,
factor (tmN)21/2 in Eq. ~C14! plays a role akin to that of
Nm

21/2 above. Thus, to further enlargetm or N is as effective
as to enlargeNm to optimize the simulation. Nevertheles
for rather general functional dependences ofMz on B, the
quantity AkBT]BMz/Mz ~and hencedMz /Mz) decreases
with increasingB. Consequently, if one is interested in th
computation of, e.g., the equilibrium linear susceptibil
x(T), one can apply the largest probing field without leavi
the linear response range (Mz}xDB0) and then compute
Mz . This procedure significantly reducesdMz /Mz and, thus,
the statistical errors of the quantities computed, so that
calculations are optimized.

Let us finally estimate the temperature-dependent ra
whereMz}DB0 holds when the system has the simplest a
ally symmetric anisotropy potential@see Eq.~3.1!#. On as-
suming a zero bias field and a staticprobing field, one has
Mz5Mz(s,Dj0 ;a), wherea is the angle between the an
isotropy axis and the probing field,s5Kv/kBT, and Dj0
5mDB0 /kBT. The magnetic anisotropy causes the cro
over from thes!1, free-rotator~Langevin! regime, where
Mz.m@coth(Dj0)2(Dj0)

21#, to the discrete-orientation
~Ising! regime, where Mz.(m cosa)tanh(Dj0cosa), for
larges ~low temperatures!. The narrower linear range occur
for the last functional dependence when cosa51, sinceMz
.m cos2aDj0 holds up to (Dj0cosa).0.3. Hence, we can
scale the probing field withT according to mDB0
50.3kBT (Dj0.0.3), which ensures that at higher tem
peratures, where the linear range is somewhat wider~for s
!1, Mz.

1
3mDj0 up to Dj0.0.5), the response still lies in

the linear response range.
These considerations, which apply to the computation

thermal-equilibrium quantities, suggest that the same pro
dure could be tried in the calculation of the dynamical qua
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tities. In the averages computed in this work, this meth
dramatically improves the efficiency of the simulations.

APPENDIX D: MODELS FOR THE LINEAR
DYNAMIC RESPONSE

In this appendix we shall review, and in some cases g
eralize, various expressions that have been proposed to
scribe thex(v) of independent magnetic nanoparticles.

1. Equilibrium quantities

In order to write down the equilibrium quantities that o
cur in the expressions discussed below, it is convenien
introduce the dimensionless anisotropy-barrier and field
rameters

s5
Kv
kBT

, j5
mB

kBT
. ~D1!

Thus, when the bias field is applied along the anisotropy a
(BW i n̂), the equilibrium probability distribution forz

5(mW /m)•n̂, associated with the Hamiltonian~3.1! ~in the
absence of the probing field!, reads

P0~z!5
1

Ze2bH~z!, 2bH~z!5sz21jz, ~D2!

whereZ5*21
1 dzexp(sz21jz) is the partition function. This

can be written in terms of the Dawson integralD(x) ~Ref.
40, p. 298!, s65s(16h)2, andh5B/BK5j/2s, as

Z~s,j!5
es

As
@ejD~As1!1e2jD~As2!# ~D3!

@in order to computeD(x) we employ the subroutineDAW-

SON of Ref. 38, p. 252#. The equilibrium averages with re
spect toP0(z) will be denoted bŷ &0 .

On introducing the equilibrium average of thenth Leg-
endre polynomial pn(z) @p1(z)5z, p2(z)5 1

2 (3z2

21), . . .#, namely, Sn(s,j)5*21
1 dzpn(z)P0(z), and ac-

counting for the expression for the equilibrium susceptibil
tensor @cf. Eq. ~C13!# x i j 5(m0 /kBT)@^mimj&0
2^mi&0^mj&0#, the longitudinal,x i5xzz, and transverse
x'5xxx5xyy , susceptibilities for a spin with a general ax
ally symmetric HamiltonianH(z) can be written as

x i5
m0m2

kBT S 112S2

3
2S1

2D , x'5
m0m2

kBT

12S2

3
, ~D4!

where we have used̂mz&05mS1 , ^mz
2&05m2 1

3 (112S2),
^mx,y&050, and ^mx,y

2 &05 1
2 (m22^mz

2&0). For 2bH(z)
5sz21jz, S1 and S2 are explicitly given by~see Refs.
41,31!:

S15
es

sZ sinhj2h, ~D5!

S25
3

2F es

sZ ~coshj2h sinhj!1h22
1

2s G2
1

2
. ~D6!
d

n-
de-

to
a-

is

On the other hand, on applyingS15Z21]Z/]j and (1
12S2)/35Z21]Z/]s to the approximateZ obtained by in-
troducing in Eq.~D3! the leading term in the asymptoti
expansion of the Dawson integral,D(x).1/2x, one gets the
following high-barrier (s@1, h5j/2s!1) approximations
of Eqs.~D4!

x i.
m0m2

kBT

1

~coshj2h sinhj!2H ~12h2!2
1

s

1
1

8s2F12
116h21h4

~12h2!2
cosh~2j!

1
4h~11h2!

~12h2!2
sinh~2j!G J , ~D7!

x'.
m0m2

kBT

1

2s

~11h2!coshj22h sinhj

~12h2!~coshj2h sinhj!
. ~D8!

Furthermore, on taking formally theK→` limit in these
formulas~i.e.,s→` andh5j/2s→0), one gets the ‘‘Ising-
type’’ equilibrium susceptibilities

x i.
m0m2

kBT

1

cosh2j
, x'.0. ~D9!

2. Linear dynamic susceptibility

When the probing field points along an arbitrary directi
a with respect to the anisotropy axis, the effective susce
bility is given by x5x icos2a1x'sin2a. Shliomis and
Stepanov23 ~see also Ref. 42! proposed a simple two Deby
form for x(v), which can be generalized in order to descri
the effect of a longitudinal bias field by writing

xShS5
x i~T,B!

11 ivt i
cos2a1

x'~T,B!

11 ivt'

sin2a, ~D10!

wheret i andt' are appropriate longitudinal and transver
relaxation times~see below!.

In the main text Eq.~D10! @with the exact equilibrium
susceptibilities~D4!# is referred to as the Shliomis an
Stepanov equation. On the other hand, the formula obta
when in Eq.~D10! one putst'50 ~instantaneous transvers
response! and uses the high-barrier approximations~D7! and
~D8!, is called the Gittleman, Abeles, and Bozowski equ
tion, since it properly generalizes their formula43 to BÞ0
and an arbitrary anisotropy-axis orientation. In fact, on int
ducing Eqs.~D7! and ~D8! evaluated atB50 in Eq. ~D10!
and settingt'50, one first gets

xGAB.Fm0m2

kBT
cos2a1

m0m2

Kv
~ 3

2 sin2a21!

1 ivt i
m0m2

2Kv
sin2aG 1

11 ivt i
, ~D11!

which, when averaged over an ensemble with randomly
tributed anisotropy axes, reduces to the equation propose
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Ref. 43. Finally, the expression obtained when one int
duces the Ising-type Eqs.~D9! into Eq. ~D10!, namely

x Ising5
m0m2

kBT

1

cosh2j

cos2a

11 ivt i
, ~D12!

is called the discrete-orientation dynamic susceptibility.

3. Relaxation times

For the relaxation times in the above formulas a num
of expressions can be used.

a. Longitudinal relaxation time

The response to a longitudinal static probing field is giv
by the time-domain counterpart of Eq.~4.1!, namely,
x i(k51

` akexp(2Lkt), whereak ((k>1ak51) is the ampli-
tude corresponding to the eigenvalueLk of the Sturm-
Liouville equation associated with the Fokker-Planck eq
tion (05L0,L1<L2•••). The first nonvanishing
eigenvalueL1 is related with inter-potential-well dynamics
while the information about the intra-potential-well rela
ation appears in the higher-order eigenvaluesLk , k>2. In
some cases, however,L1 corresponds to a ‘‘long-lived’’
mode and characterizes reasonably well the relaxation~ex-
cept for the earliest stages!. The approximate expressions fo
L1

21 derived by Brown2 are

t i.5 tNF12
2

5
s1

48

875
s2S 11

175

24
h2D G21

, s!1,

tN

Ap

2
s23/2

exp@s~11h2!#

~12h2!~coshj2h sinhj!
, s@1,

where we have writtent i5L1
21 andtN is given by Eq.~2.6!.

Nevertheless, when the relaxation comprises different
cay modes, a more useful definition of the thermoactivat
rate is that ofintegral relaxation timet int,i , which is the area
enclosed by the relaxation curve~normalized att50) after a
sudden infinitesimal change att50 of the external field. On
employing this definition, Garanin, Ishchenko, and Panin21

obtained the following formula forany axially symmetric
HamiltonianH(z) ~see also Refs. 44,45!

t int,i5
2tN

]^z&0 /]jE21

1 dz

12z2
@F~z!#2@P0~z!#21, ~D13!

whereF(z), for which explicit expressions can be derive
for special forms ofH(z), is in general given byF(z)
5*21

z dz1P0(z1)@^z&02z1#. In the unbiased case, the int
gral relaxation time yields the results forL1

21 of Brown in
the appropriate limiting cases.21,44However,t int,i depends on
the whole set of eigenvalues,t int,i5(k>1akLk

21 , and hence
is more informative thanL1

21 .
-

r

-

-

b. Transverse relaxation time

The expression usually considered for the transverse
laxation time is that yielded by the effective eigenvalue~mo-
ment! method~see, e.g., Ref. 46!,

t'
od52tN

12S2~s,j!

21S2~s,j!
. ~D14!

Nevertheless, this formula does not account for gyrom
netic effects and holds in the overdamped (l@1) case only.

Ra�kher and Shliomis29,30 studied effects of the gyromag
netic terms on the transverse response by a decoupling a
for the infinite system of differential equations for the av
ages of the magnetic moment@recall the remarks after Eqs
~2.9! and~2.10!#. An expression forx'(v)uB50 was derived,
which can be written as

x'~v,T!5x'~T!

11 iv2tN

la

lalb1lc

124v2tN
2 1

lalb1lc
1 iv2tN

la1lb

lalb1lc

,

wherex'(T) is the equilibrium transverse susceptibility a
@S2

05S2(s,j)uj50#

la5
21S2

0

12S2
0

, lb5
2s

3

21S2
0S 12

6

s D
S2

0
, lc5

1

l2

6sS2
0

12S2
0

.

In the low-frequency range, the abovex'(v) can be ex-
panded in powers ofvtN ~to first order!, and then cast into
the form of a Debye-type formula by using 12ex.(1
1x)2e, namely,

x'~v,T!.x'~T!
1

11 iv2tN

lb

lalb1lc

.

Accordingly, the quantity multiplyingiv defines an effective
relaxation time that can be written as

t'uj5052tN

12S2
0

21S2
0

1

11p~s!/l2
, ~D15!

where

p~s!5
~3S2

0!2

~21S2
0!@21S2

0~126/s!#
. ~D16!

Note that, in the absence of the gyromagnetic termsl
→`), Eq. ~D15! reduces to the unbiased case of the ov
damped result~D14!.
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