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Anisotropy effects on the nonlinear magnetic susceptibilities of superparamagnetic particles

JoséL. Garcı́a-Palacios* and Francisco J. La´zaro
Instituto de Ciencia de Materiales de Arago´n, Consejo Superior de Investigaciones Cientı´ficas,

Universidad de Zaragoza, 50015 Zaragoza, Spain
~Received 26 August 1996!

Equilibrium nonlinear susceptibilities of an overdamped three-dimensional rotator in a uniaxial anisotropy
potential}cos2 u ~u is the angle between the rotator axis and the potential symmetry axis!, which apply to
independent magnetic particles and other rotationally bistable entities, are derived. In the crossover range from
free-rotator to either two-state or plane-rotator regime induced by that potential, the dependences of the
nonlinear susceptibilities onT can be steeper than those of the limit inverse-temperature power laws. The
nonlinear susceptibilities can then resemble the high-temperature ranges of quantities diverging at low tem-
perature, misleadingly suggesting interparticle interactions.@S0163-1829~97!04002-2#
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I. INTRODUCTION

Fine magnetic particles are ubiquitous in naturally occ
ring and manufactured forms.1 Along with their technologi-
cal relevance, they can be considered as model system
various phenomena in nonequilibrium statistical mechan
to illustrate: rotational Brownian motion and thermally a
tivated processes in multistable systems,2 and stochastic
resonance;3 and in condensed-matter physics, e.g., dipo
dipole interaction effects,4 macroscopic quantum
phenomena,5 and dependence of the properties of solids
their size.

As an important example of how the properties of ma
netic particles can differ from those of the bulk material
sufficiently fine particle consists of a singledomain, whose
magnetic moment,m, can rotate due to thermal agitatio
surmounting the magnetic-anisotropy potential barriers.6 For
largebDU ~barrier height over temperature!, the mean time
for this process is given byt5t0 exp(bDU), where
t0~;10210–10213 s! is related to intrawell relaxation. Fo
t!tm ~the measurement time!, m maintains the equilibrium
distribution of orientations~asm;103–104mB this phenom-
enon is namedsuperparamagnetism!, when t@tm , m is
blocked at a potential minimum, and, under intermedia
conditions,nonequilibrium phenomenaare observed.

The extent to which the properties of certain spin glas
can be explained in terms of a progressive blocking of
perparamagnetic clusters of spins, has deserved conside
attention.7 In this frame, the nonlinear magnetic susceptib
ties ~NLMS’s! play a significant role. Thus Bitohet al.have
shownx2~v,T! @x2n being thenth order NLMS# as a suitable
experimental tool todistinguishcanonical spin glasses from
solid dispersions of noninteracting particles.8~a! The marking
feature is not the width nor the roundness of the peak
x2~v,T!, which could just reflect barrier distribution, but th
way x2 decreases asT increases above the peak temperatu
abruptly for the former but slowly for the latter. Besides, f
amorphous Fe93Zr7, considered as a superparamagneticl
spin glass, x2 resembles that of the particles studied by Bit
et al.9 Finally, the glassy dynamics exhibited by interacti
particles4~c! suggests an extensive use ofx2n in their study,
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considering the propriety of these quantities to study coll
tive phenomena in disordered systems.

Despite these interesting issues, it is not available
present a satisfactory theoretical description of the NLM
of noninteracting particles: merely expressions forx2n that
account for limit cases of magnetic anisotropy can be us
Limit descriptions of anisotropy, however, just hold for th
equilibrium magnetic properties of liquid dispersions of pa
ticles ~anisotropy is uncoupled from the magnetization p
cessvia particle physical rotation10!, and solid dispersions in
the limits bDU@1 andbDU!1. For these latter system
~e.g., the self-samemagnetic fluidswhen the solvent is fro-
zen!, the exponential decrease oft asT increases, yields the
wide range ln~tm/t0! ~;10–35!.bDU>0 as the superpara
magnetic one~t!tm!, turning inadequate limit description
of magnetic anisotropy. It is precisely in this range where
mentioned decrease ofx2 with increasingT occurs. Never-
theless, to our knowledge, the NLMS’s have never been
rived from the available magnetization vs field formulas th
include anisotropy. In fact, these formulas are either not
pressly suited to derivex2n,

11~a! or would yield the NLMS’s
as series of powers of the anisotropy parameters.11~b! The
lack of proper formulae forx2n entails that, e.g.,~i! alternate
features ofx2 for noninteracting particles cannot theore
cally be compared to those of canonical spin glasses,~ii ! the
NLMS’s of presumedsuperparamagneticlikesystems canno
be checked against the superparamagnetic model, and~iii ! as
it is not known the result from whichx2 would depart due to
interparticle interactions,x2 does not inform about them.

In this paper, rigorous expressions for the NLMS’s of
solid dispersion of noninteracting superparamagnetic p
ticles are derived. Particle magnetic moment is described
an overdamped classical 3D rotator in a uniaxial anisotro
potentialUA(u)52a cos2 u ~u is the angle between the ro
tator axis and the potential symmetry axis!. Consequently,
the results apply to the equilibrium nonlinear response of
system made up by independent such entities~rotationally
bistable ones fora.0!. Along with independent fine mag
netic particles, a variety of other systems can approxima
be described as assemblies of such rotators, among th
superparamagneticlike spin glasses,12~a! magnetic molecular
materials as those named Mn12Ac,

12~b! certain high-spin
1006 © 1997 The American Physical Society
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dilutely doped glasses~random-axial-anisotropy model fo
magnetic glasses,12~c! and nematic liquid crystals with
uniaxial physical properties.12~d!

Developing the superparamagnetic model, the derived
pressions overcome the aforementioned hurdles and s
that ~i! the crossover from high-temperature free-rotator
gime to low-temperature either two-state~a.0! or plane-
rotator~a,0! ones induced by the potential entails a sizea
departure of x2n(T) from the power law dependence
[T2(2n11)] of the limit regimes@Langevin~Heisenberg! and
either Ising orXY, respectively#. ~ii ! Within the crossover
range, the rate of change ofx2n(T) can be steeper than tha
of T2(2n11), hence x2n(T) can resemble the high
temperature range of a quantity with a low-temperature
vergence, misleadingly suggesting interparticle interactio
~iii ! Unlike the linear one, the first nonlinear susceptibiliti
retain these properties when the anisotropy~symmetry! axes
are oriented at random.

II. EXPANSION OF THE PARTITION FUNCTION
IN A SERIES OF POWERS OF THE MAGNETIC FIELD;

THE FIRST NONLINEAR SUSCEPTIBILITIES

The statistical independence of noninteracting particles
lows one to expressM , the magnetization along the extern
magnetic fieldB, as M5~(n!21(^m&•b̂, where n denotes
particle volume,b̂5B/B, and^•& stands for thermal average
The expansion of the one-particle contributionMp[^m&•b̂,

Mp5x0
pH1x2

pH31x4
pH51x6

pH71••• ~1!

where (H5B/m0), defines the one-particle linear,x 0
p,

and nonlinear, x 2n
p , susceptibilities, n51,2,3, . . .

[x2n5((n)21(x 2n
p ]. For equally oriented, identical par

ticlesM5n21Mp andx2n5n21x 2n
p ; hence the indexp will

usually be dropped.
On introducing unit vectors,n̂ along the anisotropy axis

and ê5m/m, particle total magnetic potential~anisotropy
plus Zeeman terms! is given by

2bU5s~ ê•n̂!21j~ ê•b̂!, ~2!

wherej5bmB ands5bKn ~K5a/n, being the anisotropy
energy constant!. Easy-axis and easy-plane anisotropy cor
spond, respectively, toK.0 andK,0. The relevance for
magnetic particles of the taken form for the anisotropy te
has been discussed in, e.g., Ref. 13. We choosen̂ as the polar
axis of the coordinate system;~u,f! and ~a,0! denote the
angular coordinates ofê and b̂, respectively. On introducing
ji5j cosa andj'5j sina, the integral overf in the partition
function, Z5* 0

2pdf* 0
pdu sinu exp~2bU!/4p, give us a

factor I 0~j' sinu!, whereI n~•! is the modified Bessel func
tion of the first kind of ordern ~Ref. 14, p. 610!. Insertion of
the expansions ofI 0~j'sinu! and exp~jicosu! into Z, and the
substitutionx5cosu, yield

Z5 (
i ,k50

`

bikj
2~ i1k!E

0

1

dx x2i~12x2!kesx2,

where bik5[(2 i )!22k(k!) 2]21cos2ia sin2k a. On gathering
the terms with the same power ofj and expanding (12x2)k,
we get
x-
ow
-

e

i-
s.

l-

-

Z5F(
i50

`

j2i H (
k50

i

bi2k,k (
m50

k

~21!mS kmD F ~m1 i2k!

F J ,
whereF ( l )(s)[* 0

1dx x2lexp~sx2! is thel th-order derivative
of F(s)[F (0)(s).2~c! Hereafter,Ci(s,a)/ i ! will denote the
expression into the above curly brackets. In passing,
quote that F ( l )(s)5M ( l11/2,l13/2;s)/(2l11), where
M (a,c;s) is the confluent hypergeometric~Kummer! func-
tion ~Ref. 14, p. 753!.

By dint of the relationMp5m] ln(Z)/]j, we obtain

Mp5m(
i51

`
2j2i21

~ i21!!
CiY (

i50

`
j2i

i !
Ci . ~3!

On substituting into this equation,F ( l )/Fus505(2l11)21,
we recover the Langevin result$Mp5m@coth~j!2j21#%,
F ( l )/F us→`51,M for Ising spins@Mp5mcosa tanh~ji!#, and
F ( l )/F us→2`50 ~l.0!, M for the plane rotator
@Mp5m sinaI 1(j')/I 0(j')#. Thus Eq.~3! generalizes these
results as a quotient of two series of powers ofj whose
coefficients and, hence, the NLMS’s, are expressible in te
of Kummer functions. Note that whenm is temperature in-
dependent,M depends onB andT via B/T in the three limit
models@B/T superposition ofM andx2n}T

2(2n11)#.
On taking thej derivative of the cumulantlike expansio

of ln(Z), we get forMp

Mp5m$2C1j12@C22C1
2#j31@C323C2C112C1

3#j5

1 1
3 @C424C3C123C2

2112C2C1
226C1

4#j71•••%,

~4!

which embodiesx2, x4, andx6. ~x2n is obtained through
the insertion of the appropriateCi ’s into the expression for
thenth-order cumulant.! Due to the temperature dependen
of Ci~s,a! throughs, x2n(T) no longer fulfills aT2(2n11)

law. Moreover, ass5bKn, the actual dependence ofx2n on
T is determined by the distributions inK andn occurring in
the system.

III. THE NONLINEAR SUSCEPTIBILITY x2

Henceforth some of the parallel properties of the NLMS
will be illustrated onx2. On definingG[F8/F[( •)8[d(•)/
ds], using the relationF9/F5G81G2, and then inserting
C1 andC2 into Eq. ~4!, we get forx 2

p

x2
p5m0

3m4@ 1
6 ~G822G2!cos4a2 1

2G8cos2asin2a

1 1
16 ~G82G212G21!sin4a#b3. ~5!

The part of x 2
p embodying nonelementary function

x 2
p/(m 0

3m4b3), can be computed, e.g., through the numeri
integration15 of the differential equation

G85~2s!21~123G!1G~12G!, ~6!

which is derived from the recurrence relation
F ( l )5[es22sF ( l11)]/(2 l11). The limit cases ofx2 are
x2uLangevin

52(m0
3m4/45)b3, x2uIsing

52(m0
3m4 cos4 a/3)b3,
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andx2uplane rotator
52(m0

3m4sin4a/16)b3. For an assembly o
identical particles with randomly oriented anisotropy ax
x2 is given by

^x2& ran5n21m0
3m4@ 1

30 ~2G23G221!#b3, ~7!

which, unlike ^x0&ran that is given by the Curie law, stil
depends onK. For a fixed T, x2 can largely deviate
from those of the limit models: forkBT5Kn/5 and
randomly oriented axes, (x22x2uLangevin

)/x2'45% and

(x2uIsing
2x2)/x2'60%, whereas, for axes collinear withB,

these values shift to 90% and 80%, respectively.
To assess the effect of the magnetic anisotropy onx2(T),

the spontaneous magnetizationMs(m5nMs) will be as-
sumed independent onT. This condition, fulfilled far below
the ordering temperature of the magnetic material const
ing the particles, yields also temperature independentK ’s.
Facing the subsequent computation ofx2(T) for various ex-
perimental systems, we consider here the occurrence of
tribution in n @with densityf ~n!# but fixedK.0 andMs ~i.e.,
neither distribution in shape, nor size effects onMs will be
accounted!. Besides, when the axes of particles with t
same n are randomly oriented,x25*0

`^x2&ranf (n)dn. The
computed quantity will bex̃25x2[K

3/(m 0
3M s

4)] ~dimen-
sionlessx2! and we shall employ a log-normal distributio
for f ~n! with nm as median andr as standard deviation o
ln~n!.

Figure 1 displays in a log-log plot2x̃2 and the corre-
sponding Ising and Langevin results vs the dimension
temperature 1/sm5(bKnm)

21 for a number of values ofr.
As the influence of the anisotropy decreases with increa
T, 2x̃2 undergoes a smooth crossover from the lo
temperature Ising regime to the high-temperature Lange
one. Logarithmic slopes,S5d ln(2x̃2)/d ln~1/sm!, 23 oc-
cur in the asymptotic ranges~T23 dependence!, but values
lesser than23 emerge in the transitional one, where t

FIG. 1. Log-log plot of the nonlinear susceptibility2x̃2 vs 1/sm

~dimensionlessT! for a system with randomly oriented anisotrop
axes~thick solid lines!. Straight lines correspond to Langevin~thin
solid! and Ising~dashed! results. The numbers mark the widthr of
the barrier distribution. Within the arrows, the mean slope of
r50.72 curve is compared with the experiment of Bitohet al. @Ref.
8~a!#. Bottom inset: logarithmic slopesS vs 1/sm . Top inset: effect
of the alignment of the axes towardsB on2x̃2 vs 1/sm for r50.25.
,

t-

is-

s

g
-
in

departure ofx̃2 from a T23 law is sizeable. Asr increases,
the crossover region widens and shifts to higher temperat
owing to the functionn3f ~n!, which determines the particle
making the most substantial contribution tox2, broadens and
moves to larger volumes, whose contribution is Ising li
over a wider temperature range. It is pertinent to empha
here that, henceforth, arguments discarding superparam
netism based on the departure ofx2(T) from a T23 law, as
those of Ref. 16, should be carefully scrutinized.

As Fig. 1 shows, the increase of2x2(T) with decreasing
T, can be steeper than that ofT23. Hence, when observe
over limited temperature windows~e.g., imposed by finite
measurement time,tm!, x2(T) can resemble the high
temperature range of a quantity with a low-temperature
vergence. This misleadingly suggests presence of inter
ticle interactions and then, one could fit, e.g
x2(T)}(T2Tc)

23 ~mean-field critical behavior!, obtaining
false ordering temperatures. The rate of change ofx2(T),
moreover, enlarges as the axes are aligned towardsB ~see the
top inset of Fig. 1!: for r50.25, the maximumS shifts from
23.53 for axes oriented at random to23.98 for axes collin-
ear withB. ~Mn12Ac and textured frozen magnetic fluids a
systems with parallel axes.! The mentioned fit of thex2 com-
puted for the most diluted sample of Ref. 4~c! over 100
K<T<180 K ~x2 was not measured in that work! yields
Tc'17.3 K ~regression 0.99992!, whereas experimentally
e.g., forv/2p5125 Hz, tm effects begin atT'100 K. Fi-
nally, although less dramatic, those effects also occur w
K,0, being magnified now as the axes lay perpendicula
B.

IV. COMPARISON WITH AVAILABLE EXPERIMENTAL
DATA AND PROPOSED EXPERIMENTS

Bitoh et al.8 measuredx2~v,T! for cobalt particles pre-
cipitated in a Cu97Co3 alloy, obtaining from the equilibrium
part of thex2 vsT curve a mean logarithmic slope23.17,8~a!

whose departure from23 @subsequently unnoticed in Re
8~b!# remains unexplained. Their sample appears suitabl
check the predicted deviation fromx2}T

23 since~i! the high
Curie temperature of the particles~'1400 K! yieldsMs fee-
bly dependent onT in the range of the experiment~<280 K!
and~ii ! the Curie law fits the equilibriumx0 ~mean logarith-
mic slope21.01!, suggesting absence of dipole-dipole inte
action effects.@The ascription of the extraT20.17 factor inx2
to M s

4(T) implies the occurrence of its square root in t
Curie law ~x0}M s

2!, yielding an incongruent total exponen
21.085 forx0.# However, the high amplitude of the ac fiel
~B0! employed in their experiment~nmMsB0/kB'17 K!
might have induced saturation effects on the measuredx2
andx0 at low temperatures, moving thef ~n! derived8~b! from
x0 from the actual volume distribution. Even so, on speci
izing the above calculation ofx2(T) to such af ~n! ~see Fig.
1!, we get a mean slope23.25 ~within 2.6% of 23.17!,
whose size makes mandatory the inclusion of anisotropy
fects to achieve a complete understanding of their exp
ment.

In addition to search for deviations fromT2(2n11) laws,
the angular dependence ofx2n could be measured in system
with oriented axes. Into a polar plot,x2 will undergo an
increasing deformation asT decreases from a circle at hig

e



f

th
e

.

e

he

ef
r
-

-
n
op

he
-

d
ar
, i
a
-
ed

A

E

in

e-
less

at

s

-

f
oint
-
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temperature~isotropicx2! towards the two-looped shape o
@the Ising regime~x2uIsing}cos

4a!. In a magnetic fluid, more-
over, x2(T) must undergo a discontinuous change at
freezing point~T* ! of the solvent, albeit, if the axes becom
randomly immobilized atT* , x0 will be continuous there.
~For liquid suspensionsx25x2uLangevin irrespective ofK.
Hence, asT decreases,x2 evolves by a Langevin line of Fig
1 and, owing to the onset of anisotropy effects atT* , it
abruptly rises to the corresponding anisotropy-depend
curve.! This jump could be smeared out aroundT* due to
effects related to the immediacy of the critical point of t
carrier. The relative size of the discontinuity,Dx2/x2, de-
pends onT* , K ’s, and f ~n!. Hence,Dx2/x2 would be small
for the most diluted sample of Ref. 4~a! ~T* is close to the
Langevin regime! whereas, for the corresponding one of R
4~c!, it would be about 90%. Once more, if the axes a
frozen collinear withB, the effect will be even more dra
matic.

V. CONCLUSIONS

In summary,~i! applying to a number of systems, formu
las for the equilibrium nonlinear susceptibilities of indepe
dent overdamped three-dimensional rotators with anisotr
potentialUA(u)52a cos2u, have been derived.~ii ! This po-
tential entails crossover from free-rotator regime to eit
two-state~a.0! or plane-rotator~a,0! ones, with the depar
ture of the non-linear susceptibilities from theT2(2n11) laws
of these limit models.~iii ! The consequent effects, not rule
out by the random average of the anisotropy axes, are l
enough to be observable in standard experiments. Hence
mandatory to take the presented results into account in
analysis ofx2n(T) to avoid misinterpretations about the im
prints of interparticle interactions in quantities widely us
to study collective phenomena in disordered systems.
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APPENDIX: APPROXIMATE FORMULAS FOR x2

1. Small-anisotropy range

In order to derive an approximate formula forx2 valid in
the small-anisotropy range, we shall seek a solution of
~6! in the form of a power seriesG5( n50

` ans
n (G[F8/F).

For the coefficientsan , we obtain from Eq.~6!, a051/3 and,
for n>1, (n13/2)an5an212( k50

n21akan212k. On comput-
ing the first fewan’s, G takes the form

G'
1

3 S 11
4

15
s1

8

315
s22

16

4725
s32

32

31185
s4D ,

~A1!

where the expansion has been carried out through termss4

sincex2 will be obtained up to terms of orders
3 and Eq.~5!
e

nt

.
e

-
y

r

ge
t is
ny

q.

also involvesG8. From the power series forF and its
derivatives,2~c! Eq. ~A1! can also be established. Neverth
less, we consider that the procedure employed here is
laborious to obtain further terms in the expansion.

By means of Eqs.~5! and ~A1!, we obtain

x2'2m0
3m4

1

45 F11
8

21
~3 cos2a21!s

1
8

105
~4 cos4a2cos2a!s2

1
32

10395
~21 cos4a218 cos2a14!s3Gb3, ~A2!

which yields a good approximation for the exactx2 when
usu<2. Note that, when the anisotropy axes are oriented
random, the first correction to thes50 ~Langevin! result
vanishes.

2. Large-anisotropy ranges

To obtain approximate formulas forx2 in the usu@1
ranges, we make in Eq.~6! the substitutionl51/s, getting
2l2dG/dl5[(l/2)(123G)]1G(12G). On seeking so-
lutions of this equation in the form of a serie
G5( n50

` bnl
n, we get for the coefficients:b0(12b0)50,

b15(1/2)(3b021)/(122b0), and, for n>2, (122b0)bn
5(5/22n)bn211( k51

n21bkbn2k . @The same method was em
ployed in Ref. 2~c! to derive an asymptotic series forF~s!.#
Depending on the choice ofb0 we obtain two different solu-
tions

G1521/~2s! ~b050!, ~A3a!

G2'121/s21/~2s2!25/~4s3! ~b051!. ~A3b!

Owing toF8/F us→2`50 andF8/F us→`51, we conclude that
G1 and G2 correspond, respectively, tos!21 and s@1.
@Note thatG1 is an exact solution of Eq.~6! although, as it
diverges ats50, it is not the self-sameF8/F.#

On introducing Eqs.~A3! into Eq. ~5!, we obtain the ap-
proximate results

x2'2m0
3m4 1

16sin
4a@111/s

1~16 cot2a21!/~4s2!#b3 ~s!21!, ~A4a!

x2'2m0
3m4 1

3 cos
4a@122/s1~3 tan2a21!/~2s2!

1~3 tan2a24!/~2s3!#b3 ~s@1!, ~A4b!

which fit the corresponding exact ones forusu>5.
Finally, we point out that the results~A2! and ~A4! to-

gether almost cover the entires range. Besides, the use o
the small-anisotropy approximation, swapped at some p
between usu52 and usu54 by the corresponding large
anisotropy one, would lead to rather acceptable results.
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