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Anisotropy effects on the nonlinear magnetic susceptibilities of superparamagnetic particles

JoseL. Garce-Palacio$ and Francisco J. lzaro
Instituto de Ciencia de Materiales de AragoConsejo Superior de Investigaciones Ciicas,
Universidad de Zaragoza, 50015 Zaragoza, Spain
(Received 26 August 1996

Equilibrium nonlinear susceptibilities of an overdamped three-dimensional rotator in a uniaxial anisotropy
potential <cog 6 (6 is the angle between the rotator axis and the potential symmetry, atigch apply to
independent magnetic particles and other rotationally bistable entities, are derived. In the crossover range from
free-rotator to either two-state or plane-rotator regime induced by that potential, the dependences of the
nonlinear susceptibilities o can be steeper than those of the limit inverse-temperature power laws. The
nonlinear susceptibilities can then resemble the high-temperature ranges of quantities diverging at low tem-
perature, misleadingly suggesting interparticle interactip®8163-182¢07)04002-2

[. INTRODUCTION considering the propriety of these quantities to study collec-
tive phenomena in disordered systems.

Fine magnetic particles are ubiquitous in naturally occur- Despite these interesting issues, it is not available at
ring and manufactured fornsAlong with their technologi- present a satisfactory theoretical description of the NLMS'’s
cal relevance, they can be considered as model systems fof noninteracting particles: merely expressions fof, that
various phenomena in nonequilibrium statistical mechanicsaccount for limit cases of magnetic anisotropy can be used.
to illustrate: rotational Brownian motion and thermally ac- Limit descriptions of anisotropy, however, just hold for the
tivated processes in multistable systémand stochastic equilibrium magnetic properties of liquid dispersions of par-
resonancé; and in condensed-matter physics, e.g., dipolelicles (anisotropy is uncoupled from the magnetization pro-
dipole interaction effect, macroscopic quantum Cessvia particle physical rotatiol?), and solid dispersions in
phenomend,and dependence of the properties of solids orfne limits BAU>1 and BAU<1. For these latter systems
their size. (e.g., the self-sammagnetic fluidsvhen the solvent is fro-

As an important example of how the properties of mag_ze_r), the exponential decrease n&sT increases, yields the
netic particles can differ from those of the bulk material, aW'de range Wt/ 70) (~10735.>'8AU>O as the superpara-
sufficiently fine particle consists of a singttbmain whose magnetic pne(7<tm), turning '”a‘.jeq“'?“e I]m|t descriptions
magnetic momentm, can rotate due to thermal agitation, of magnehc anisotropy. It IS pr'eC|ser'|n this range where the

. : ; . mentioned decrease qf with increasingT occurs. Never-
surmounting the magnetic-anisotropy potential barfieter

| AU (barrier height : trdh " theless, to our knowledge, the NLMS’s have never been de-
argeB_ (barrier leignt over tempera Yrahe mean time rived from the available magnetization vs field formulas that
for this process is given byr=7,exp(BAU), where

C10 413 o _ _ include anisotropy. In fact, these formulas are either not ex-
7o(~10""=10 "~ 9) is rela_tted to m_trav_vell relaxatl_qn._ For pressly suited to derivg,,, @ or would yield the NLMS's
7<tq (the measurement timem maintains the equilibrium 55 series of powers of the anisotropy paramétéPsThe
distribution of orientationgasm-~ 193_ 10'ug this phenom-  |ack of proper formulae foy,, entails that, e.g ) alternate
enon is namedsuperparamagnetism when 7>t.,, m is  features ofy, for noninteracting particles cannot theoreti-
blocked at a potential minimum, and, under intermediateca"y be Compared to those of canonical Spin g|as@9§he
conditions,nonequilibrium phenomenare observed. NLMS'’s of presumedsuperparamagneticlikeystems cannot

The extent to which the properties of certain spin glassepe checked against the superparamagnetic modeljianes
can be explained in terms of a progressive blocking of suit is not known the result from whicly, would depart due to
perparamagnetic clusters of spins, has deserved consideraldhterparticle interactionsy, does not inform about them.
attention’ In this frame, the nonlinear magnetic susceptibili-  In this paper, rigorous expressions for the NLMS’s of a
ties (NLMS’s) play a significant role. Thus Bitoét al. have  solid dispersion of noninteracting superparamagnetic par-
showny,(w,T) [x2, being thenth order NLMY as a suitable ticles are derived. Particle magnetic moment is described as
experimental tool talistinguishcanonical spin glasses from an overdamped classical 3D rotator in a uniaxial anisotropy
solid dispersions of noninteracting partic® The marking  potentialU(6) = —a cos 6 (6 is the angle between the ro-
feature is not the width nor the roundness of the peak omator axis and the potential symmetry axi€onsequently,
x2(0,T), which could just reflect barrier distribution, but the the results apply to the equilibrium nonlinear response of any
way x, decreases @b increases above the peak temperaturesystem made up by independent such entiiesationally
abruptly for the former but slowly for the latter. Besides, for bistable ones foa>0). Along with independent fine mag-
amorphous FgZr,, considered as a superparamagneticlikenetic particles, a variety of other systems can approximately
spin glass y, resembles that of the particles studied by Bitohbe described as assemblies of such rotators, among them:
et al® Finally, the glassy dynamics exhibited by interacting superparamagneticlike spin glas$®8, magnetic molecular
particle4© suggests an extensive use gf, in their study, materials as those named MAc,*® certain high-spin
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dilutely doped glassefrandom-axial-anisotropy model for © i k (m+i—k)

magnetic glasse€® and nematic liquid crystals with Z=F, g”[ > bk (—1)’“( ) —]

uniaxial physical propertie€'? =0~ (k=0 = "'m=0 m F
Developing the superparamagnetic model, the derived ex- | 1 | o S

pressions overcome the aforementioned hurdles and shoO EE?TI;:&{%)T C{)O% sze?()a(gftae); é.'?;hce,)l;?f?,&ﬂeégﬁgt\éa:ﬁ/:

that (i) thle crossover from high-temper:(::reo;‘ree-roltator re'expressi_on into the above ct’JrIIy brackets. In passing, we

gime to low-temperature either two-statg>0) or plane- | - : ’ ’

rotator(a<<0) ones induced by the potential entails a sizeable'(a/lUOte .tha.t F(h)(g) _f'IVI(l +r1]/2’| +3/2,0)/(2111), vahere

departure of x,,(T) from the power law dependences . (a,c;0) is the confluent hypergeometriKummey func-

[T~ @"*1)] of the limit regimesLangevin(Heisenberyand 1O (Ref. 14, p. 758 3 .

either Ising orXY, respectively. (i) Within the crossover By dint of the relationM,=md In(Z)/d¢, we obtain

range, the rate of change g§,(T) can be steeper than that - ) - ,

of T-@"" 1 hence x,,(T) can resemble the high- Mo—mS P ¢/ 5_2' c 3

temperature range of a quantity with a low-temperature di- p—mi:1 I =1

vergence, misleadingly suggesting interparticle interactions.

(i) Unlike the linear one, the first nonlinear susceptibilitiesOn substituting into this equatiod;"/F|,_,=(21+1)7*,

retain these properties when the anisotrépymmetry axes ~ we recover the Langevin resulM ,=m[coth(&)—& 'T},

are oriented at random. FO/F|, ..=1, M for Ising spin M ,= mcosx tant(§)], and
FO/F|,._.=0 (>0, M for the plane rotator
Il. EXPANSION OF THE PARTITION FUNCTION [Mp=msinal(§,)/1o(£,)]. Thus Eq.(3) generalizes these
IN A SERIES OF POWERS OF THE MAGNETIC FIELD: results as a quotient of two series of powerséofvhose
THE EIRST NONLINEAR SUSCEPTIBILITIES coefficients and, hence, the NLMS's, are expressible in terms

of Kummer functions. Note that whem is temperature in-

The statistical independence of noninteracting particles aldependentl\/l depends oB andT via B/T in the three limit
lows one to expresdl, the magnetization along the external models[B/T superposition oM and y,,c T~ @+ 1],

magnetic fieldB, as M=(Z») '(m)-b, where » denotes On taking the¢ derivative of the cumulantlike expansion

particle volumeb=B/B, and(-) stands for thermal average. of In(Z), we get forM
The expansion of the one-particle contributighy=(m)-b,
M,=m{2C,¢+2[C,— CE]¢3+[C3—3C,Cy+2CF]E°
M= x§H + xBH3+ xZH+ xBH+ - - D)

11~ a2 2 pmA1sTo .
where H=B/u,), defines the one-particle lineary5, T 3[C4=4C5C, = 8C5+12C,C, —6C J&7 -},

and nonlinear, x5, susceptibilites, n=1,2,3... (4)
[x2n=(Zv) 1=xB.]. For equally oriented, identical par- ) ) _ )
ticlesM=»"*M, and x,,= v~ x5,; hence the indep will ~ Which embodies,, x4, and xs.  (xzq is obtained through
usually be dropped. the insertion of the appropria®;’s into the expression for

On introducing unit vectorsy along the anisotropy axis thenth-order cumulant.Due to the temperature dg;()grﬂ()ence
and @&=m/m, particle total magnetic potentighnisotropy  Of Ci(c.a) througha, x2q(T) no longer fulfills aT

plus Zeeman termss given by law. Moreover, asr=BKv, the actual dependence gf, on
T is determined by the distributions K and v occurring in
—BU=0(&Nn)%+&(e-b), (2)  the system.

whereé=BmB and o=BKv (K=a/v, being the anisotropy
energy constaitEasy-axis and easy-plane anisotropy corre-
spond, respectively, t&K>0 and K<0. The relevance for  Henceforth some of the parallel properties of the NLMS's
magnetic particles of the taken form for the anisotropy termyij| pe illustrated ony,. On definingG=F'/F[(-)’=d(-)/
has been discussed in, e.g., Ref. 13. We chaas®the polar {4, using the relationF”/F=G’ +G?, and then inserting
axis of the coordinate systent,#) and (a,0) denote the c, andC, into Eq.(4), we get fory5

angular coordinates @& andb, respectively. On introducing
§=¢ cosy and¢, =¢ sina, the integral ovegp in the partition
function, Z=[3"d¢ [ 7d6 sind exp(—BU)/4m, give us a
factor | o(¢, sin ), wherel (-) is the modified Bessel func- +&(G'—G2+2G—1)sinta]B°. (5)
tion of the first kind of orden (Ref. 14, p. 610 Insertion of

the expansions afy(&, sind) and expécosd) into Z, and the  The part of x5 embodying nonelementary functions,

Ill. THE NONLINEAR SUSCEPTIBILITY x>

x5=udm [ $(G’'—2G?cosa— 3G’ coasirta

substitutionx=cos ¥, yield x5/(u3m*B2), can be computed, e.g., through the numerical
integratiort® of the differential equation
* 1
— 2(i+k) i1 _ 2 kpox?
7= 3 ot [ aotiofert G'=(20)"(1-3G)+ G(1-G), ®)

where by, =[(2i)!12%(k!)?] "‘co'a sirt a. On gathering which is derived from the recurrence relations
the terms with the same power ¢ind expanding (:x3)%, FU'=[e"—20F(*D]/(21+1). The limit cases ofy, are

we get Xl gngour= ~ (HOM14B)B%,  xz|, . = = (ugm” cos' al3)5%,
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Ll Ll . Ll L departure ofy, from aT 3 law is sizeable. A9 increases,

-X2 —— Ising -% axes Il 1o B the crossover region widens and shifts to higher temperatures
102 - randomly - owing to the function*f (v), which determines the particles
N oriented axes making the most substantial contributionytg, broadens and
- . Langevin |1~ moves to larger volumes, whose contribution is Ising like
100 ] Vo || over a wider temperature range. It is pertinent to emphasize
0.25 here that, henceforth, arguments discarding superparamag-
. = netism based on the departureo{T) from aT 2 law, as
R N Langevin those of Ref. 16, should be carefully scrutinized.
10724 N . regime = As Fig. 1 shows, the increase ofy,(T) with decreasing
4., < S~ L T, can be steeper than that of 3. Hence, when observed
B 02" e | 072 \ over limited temperature window®.g., imposed by f|n|te
104 s L o : O\ - measurement timet,,), x»(T) can resemble the high-
'(;'1 ' * T i T ""1'0 f/(‘, temperature range of a quantity with a low-temperature di-
. m

vergence. This misleadingly suggests presence of interpar-
ticle interactions and then, one could fit, e.g.,
FIG. 1. Log-log plot of the nonlinear susceptibilityx, vs 1iry,  xo(T)o<(T—T,) "3 (mean-field critical behavigy obtaining
(dimensionlesd) for a system with randomly oriented anisotropy false ordering temperatures. The rate of change$T),
axes(thick solid lineg. Straight lines correspond to Langevithin - moreover, enlarges as the axes are aligned towBidse the
solid) and Ising(dashed results. The numbers mark the widitof top inset of Fig. 1 for p=0.25, the maximun® shifts from
the barrier distribution. Within the arrows, the mean slope of the—3 53 for axes oriented at random +8.98 for axes collin-
p=0.72 curve is compared with the experiment of Bigfal. [Ref. g4y withB. (Mny,Ac and textured frozen magnetic fluids are
8(a)]. Bottom inset: logarithmic slopeSvs}/om. Top inset: effect systems with parallel axesThe mentioned fit of they, com-
of the alignment of the axes towarBson — y, vs 1/, for p=0.25. puted for the most diluted sample of Ref(ctover 100
K<T=<180 K (x, was not measured in that worlyields
and = — (udm?sin*a/16)B°. For an assembly of T ~ i '
X2| ane rotator” (K0 )B y of T.~17.3 K (regression 0.99992 whereas experimentally,
identical particles with randomly oriented anisotropy axesg.g., for w/2w=125 Hz, t,, effects begin aff~100 K. Fi-
X> IS given by nally, although less dramatic, those effects also occur when
K <0, being magnified now as the axes lay perpendicular to

(X2)ran= v~ tugm*[55(2G—-3G?-1)]5°, (7 B

which, unlike (xg)an that is given by the Curie law, still
depends onK. For a fixed T, X> can largely deviate IV. COMPARISON WITH AVAILABLE EXPERIMENTAL

from those of the limit models: forkgT=Kwv/5 and DATA AND PROPOSED EXPERIMENTS

randomly - oriented  axes, xe— X2, ,geud! X2~ 45% gnd Bitoh et al® measuredy,(w,T) for cobalt particles pre-
(X2] 4y~ X2)/ X2~=60%, whereas, for axes collinear wiBy cipitated in a Cy,Co, alloy, obtaining from the equilibrium
these values shift to 90% and 80%, respectively. part of they, vs T curve a mean logarithmic slope3.178@

To assess the effect of the magnetic anisotropy4ii), = whose departure from-3 [subsequently unnoticed in Ref.
the spontaneous magnetizatidh(m=w»M,) will be as- 8(b)] remains unexplained. Their sample appears suitable to
sumed independent oR. This condition, fulfilled far below check the predicted deviation froge<T 2 since(i) the high
the ordering temperature of the magnetic material constitutCurie temperature of the particlés 1400 K) yields M fee-
ing the particles, yields also temperature independ€st  bly dependent off in the range of the experimef#280 K)
Facing the subsequent computationygfT) for various ex- and(ii) the Curie law fits the equilibriuny, (mean logarith-
perimental systems, we consider here the occurrence of disaic slope—1.01), suggesting absence of dipole-dipole inter-
tribution in » [with densityf (1)] but fixedk >0 andM (i.e.,  action effects[The ascription of the extra %! factor in y,
neither distribution in shape, nor size effectsMp will be  to M #(T) implies the occurrence of its square root in the
accounteyl Besides, when the axes of particles with theCurie law (oM 2), yielding an incongruent total exponent
same v are randomly orientedy,=J5{x2)f (v)dv. The  —1.085 fory,.] However, the high amplitude of the ac field
computed quantity will béx,=x,[K3/(uiM2)] (dimen- (B employed in their experimenty,,MBo/kg~17 K)
sionlessy,) and we shall employ a log-normal distribution might have induced saturation effects on the measyed
for f(») with »,, as median ang as standard deviation of andy, at low temperatures, moving tH¢v) derived® from
In(v). Xo from the actual volume distribution. Even so, on special-

Figure 1 displays in a log-log plot-y, and the corre- izing the above calculation of,(T) to such af (v) (see Fig.
sponding Ising and Langevin results vs the dimensionlesg), we get a mean slope-3.25 (within 2.6% of —3.17),
temperature I#,,=(BKv,,) ! for a number of values .  whose size makes mandatory the inclusion of anisotropy ef-
As the influence of the anisotropy decreases with increasinfgcts to achieve a complete understanding of their experi-
T, —x, undergoes a smooth crossover from the low-ment.
temperature Ising regime to the high-temperature Langevin In addition to search for deviations froffi 2"*%) Jaws,
one. Logarithmic slopesS=d In(—,)/d In(1/o,,), —3 oc-  the angular dependence pf, could be measured in systems
cur in the asymptotic ranged 3 dependende but values with oriented axes. Into a polar plok, will undergo an
lesser than—3 emerge in the transitional one, where theincreasing deformation ab decreases from a circle at high
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temperaturegisotropic y,) towards the two-looped shape of also involvesG’. From the power series foF and its
[the Ising reg|me()(2||s,ngocco§a) In a magnetic fluid, more- derivative® Eq. (A1) can also be established. Neverthe-
over, x»(T) must undergo a discontinuous change at thdess, we consider that the procedure employed here is less
freezing point(T*) of the solvent, albeit, if the axes become laborious to obtain further terms in the expansion.
randomly immobilized aff*, x, will be continuous there. By means of Eqs(5) and (A1), we obtain

(For liquid suspension3(2=X2|Langevin irrespective ofK.

Hence, ad decreasesy, evolves by a Langevin line of Fig. 1 8

1 and, owing to the onset of anisotropy effectsTat, it X2~ —Mom 1+ — (3 cofa—1)o

abruptly rises to the corresponding anisotropy-dependent 45

curve) This jump could be smeared out aroufd due to 8

effects related to the immediacy of the critical point of the (4 coda—cofa)o?

carrier. The relative size of the discontinuitfy,/y,, de- 105
pends onT*, K’s, and f(»). Hence,Ax./x, would be small 32
for the most diluted sample of Ref(a (T* is close to the 10395(21 coda—18 coda+4)cd|B3, (A2)

Langevin regimgwhereas, for the corresponding one of Ref.
4(c), it would be about 90%. Once more, if the axes are

frozen collinear withB, the effect will be even more dra- Which yields a good approximation for the exagt when
matic. |o]<2. Note that, when the anisotropy axes are oriented at

random, the first correction to the=0 (Langevin result
vanishes.

V. CONCLUSIONS

In summary,(i) applying to a number of systems, formu- 2. Large-anisotropy ranges

las for the equilibrium nonlinear susceptibilities of indepen- To obtain approximate formulas fog, in the |o|>1
dent overdamped three-dimensional rotators with anisotropyanges, we make in Eq6) the substitutiorn=1/c, getting
potentialU ,(6) = —a cos6, have been derivedii) This po-  —\?dG/d\=[(\/2)(1—3G)]+G(1—G). On seeking so-
tential entails crossover from free-rotator regime to eithedutions of this equation in the form of a series
two-state(a>0) or plane-rotatofa<0) ones, with the depar- G=3,_,b,\", we get for the coefficientshy(1—by) =0,
ture of the non-linear susceptibilities from thie @Y laws b, =(1/2)(3bo—1)/(1—2b,), and, for n=2, (1—2by)b,
of these limit models(iii) The consequent effects, not ruled =(5/2—n)b,_;+ 3 -1b,b,_,. [The same method was em-
out by the random average of the anisotropy axes, are largaoyed in Ref. Zc) to derive an asymptotic series fB0).]
enough to be observable in standard experiments. Hence, it Bepending on the choice &if, we obtain two different solu-
mandatory to take the presented results into account in artyjons
analysis ofy,,(T) to avoid misinterpretations about the im-
prints of interparticle interactions in quantities widely used _ _
to study collective phenomena in disordered systems. G1=~120) (0=0), (A3a)
G,~1—1lo—1/(20%) —5/(40°) (by=1). (A3b)
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On introducing Eqs(A3) into Eq. (5), we obtain the ap-
proximate results

APPENDIX: APPROXIMATE FORMULAS FOR x»

~— 1, 3m4 L airf
1. Small-anisotropy range X2~~~ poM ggsita[ 1+ 1o

In order to derive an approximate formula fey valid in +(16 cota—1)/(40?)1B8% (o<—1), (Ada)
the small-anisotropy range, we shall seek a solution of Eq.
(6) in the form of a power serie&=3;_qa,0" (G=F'/F). 3 a1
For the coefficients,, , we obtain from Eq(6), a,=1/3 and, X2~ — pom* 3cos'a[1- 2/ + (3 tarfa—1)/(207)
for n=1, (n+3/2)a,=a,_;— =i sa.a,_;_x. On comput-

_ 3\1 23 s
ing the first fewa,’s, G takes the form +(Btarfa=4)/(20%)]5° (o>1), (A4b)
1 4 8 , 16 S 2 which fit the corresponding exact ones fot=5.
G~ 3 1+ 1—50 3157 2725° 311857 | Finally, we point out that the resuli®\2) and (A4) to-

(A1) gether almost cover the entire range. Besides, the use of
the small-anisotropy approximation, swapped at some point
where the expansion has been carried out through termi in between |o|=2 and |o|=4 by the corresponding large-
since , will be obtained up to terms of order and Eq.(5) anisotropy one, would lead to rather acceptable results.
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