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Relaxation in interacting nanoparticle systems
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Abstract

The effect of interparticle dipolar interaction on the magnetic relaxation of nanoparticle systems is discussed. While weak
dipolar interaction can be described by a modified superparamagnetic behavior, experimental studies on strongly interacting
nanoparticle systems give evidence for spin-glass-like dynamics in those systems.
� 2004 Elsevier B.V. All rights reserved.
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1. Introduction

Magnetic relaxation in fine magnetic particle systems
has been an active field of research since Neel predicted
that the magnetization can overcome the energy-barrier
as a result of thermal agitationw1x. The relaxation time
of non-interacting particles can be obtained by solving
the Fokker–Planck equation for the probability distri-
bution of spin orientationsw2x. In the case of particles
with uniaxial anisotropy under the influence of a trans-
verse magnetic field, a strong dependence of the relax-
ation time upon the damping parameter has recently
been revealedw3x. The effective dipolar field in inter-
acting nanoparticle systems will always have a trans-
verse componentw4x, and a strong damping dependence
of some physical properties of interacting nanoparticle
systems has indeed been observed in Langevin dynamic
simulationsw5x. Energy based numerical simulationsw6x
and analytical modelsw7–9x for weakly interacting
nanoparticle systems omit this damping dependence, and
can therefore only be valid in the overdamped limit.
There are many applications of densely packed nan-

oparticle systems, e.g. magnetic storage devices, and it
is therefore of interest to know how interparticle inter-
actions affect the magnetic relaxation. While it is pos-
sible to treat very weak interparticle interactions by
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analytical models, the complexity of the problem makes
it impossible in the general case. Slightly stronger
interactions can be treated by numerical simulations
w6,5x, while strongly interacting nanoparticle systems so
far only have been investigated experimentally. Frozen
ferrofluids are ideal systems for studying the effects of
interparticle dipolar interaction on the magnetic relaxa-
tion, since the strength of the dipolar interaction can be
tuned by the particle concentration. It has been shown
that strongly interacting nanoparticle systems exhibit
non-equilibrium dynamics similar to spin glassesw10–
12x. The relaxation is hence fundamentally different
from the superparamagnetic relaxation in non-interacting
systems.

2. A model for weak dipolar interaction

In this section, we discuss how weak dipolar interac-
tion in nanoparticle systems can be modeled by assum-
ing that the effect of the dipolar interaction can be
described by the local thermodynamic averages of the
dipolar field. The system studied consists of identical
nanoparticles with uniaxial anisotropy. The Hamiltonian
of the system is given by the sum of the anisotropy
energy, the Zeeman energy, and the dipolar energy as,
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Fig. 1. Imaginary component of the dynamical susceptibility vs. tem-
perature(the real component is shown in the inset) obtained by a
Debye-type formulaxsx y(1qivt) The sample shape is sphericaleq

with the spins placed on a simple cubic lattice and the anisotropy axes
are randomly distributed. The dipolar interaction strengthh sd

j y2ss0 (solid lines), 0.002, 0.004 and 0.006(dashed lines).d

whereG is the dipolar energy tensor ands , n and hij i i

are unit vectors along the direction of the magnetic
moment, the anisotropy axis, and the applied field,
respectively.

2KV m mH m m 10 0
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where KV is the uniaxial anisotropy energy,m is the
magnetic moment of a nanoparticle, anda is the char-
acteristic distance between the particles defined from
csVya .3

Due to the inversion symmetry of the uniaxial aniso-
tropy, the relaxation time of an isolated particle can only
contain even powers of the longitudinal and transverse
field components. In the presence of a longitudinal field,
the low temperature relaxation timet is given byw2,13x.
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wherehsjy2s, andt is the relaxation3y2yt st pys0 D D

time of an isotropic spin. At low temperatures and weak
transversal fields,t is given byw3x
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B E1 122 1y 2aŽ . C FF a s1q2 2a e g 1q , , (5)Ž . Ž . 2 2
D G2a 2a

where is the incomplete gamma
z
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function andl is the damping parameter. It can be
noted that due to the transversal field, the relaxation
time will strongly depend on the value of the damping
parameter throughF(ls ).1y2

By combining Eqs.(3) and(4), an expression for the
relaxation rate in a weak arbitrary field can be derived
w4x,

w z1 1y1 ys 2 21y21yt,t e 1q j q F ls j (6)x |Ž .0 I H2 4y ~

For weakly interacting nanoparticle systems, the dipo-
lar interaction energy can be treated as a perturbation to
the anisotropy energy. Thermodynamic perturbation the-
ory can then be used in order to study the effect of
dipolar interaction in various thermodynamic quantities
w14x. The components of the dipolar field were calcu-
lated in w4x to second order inj . In the case of randomd

anisotropy they read

2 2j jd d2 2
N M N Mj s R, j s 2R, (7)I H3 3

with Rs16.8 for a simple cubic lattice structure. It was
argued that these formulae are valid not only in the
superparamagnetic state but also below the blocking
temperature if the system is demagnetized. The relaxa-
tion time for weakly interacting nanoparticles can be
obtained by inserting the dipolar field components in
Eq. (6). Combining the relaxation time of weakly
interacting nanoparticles with the equilibrium linear
susceptibility calculated for a system with random ani-
sotropy and a spherical sample shapew14x,

2B Em m 10 2C Fx s 1y j R , (8)eq d
D G3k T 18B

in a Debye-type formula, we can obtain the dynamic
susceptibility around the paramagnetic blocking as
shown in Fig. 1. It can be seen that the blocking
temperature decreases with increasing interaction
strength. It should be noted that the thermodynamic
perturbation theory is valid only ifj <1. The modeld

described here can therefore only be used to investigate
the paramagnetic blocking at very weak interaction
strengths.

3. Experimental results on strongly interacting
systems

In this section, we discuss some results on a ferrofluid
of single-domain particles of the amorphous alloy
Fe C (xf0.2–0.3). The particles are coated with a1yx x
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Fig. 2. AC susceptibility vs. temperature at frequenciesvy2ps125 Hz(filled symbols) andvy2ps1000 Hz(open symbols) for the 0.06 vol.%
sample(squares), the 5 vol.% sample(circles), and the 17 vol.% sample(triangles).

Fig. 3. Relaxation timet s1yv vs. T obtained from AC-suscepti-c f

bility data. For the 5 and 17 vol.% samples the lines are fits to the
critical slowing down relationwEq. (9)x.

Table 1
Parameters obtained from a critical slowing down analysis according
to Eq. (9) of t(T ) data obtained from AC-susceptibilityf

measurements

Sample(vol.%) KVyk (K)B zv T (K)g t (s)0

17 0 11.4 48.8 2=10y8

17 500 8.8 49.9 5=10y11

5 0 10.3 36.0 2=10y5

5 500 6.4 37.9 1=10y8

surfactant in order to prevent direct contact between the
particles. The particle shape is nearly spherical and the
average particle diameterds5.3"0.3 nm. The satura-
tion magnetization was estimated toM s1=10 A6

s

m , and the uniaxial anisotropy constant toKsy1

0.9=10 J m w15x. These parameters yield the dipolar5 y3

interaction strengthh f0.56c, where c is the volumed

concentration of nanoparticles. The interparticle inter-
action strength can hence be varied by changing the
particle concentration of the ferrofluid.
The AC-susceptibility vs. temperature is shown in

Fig. 2 for three different particle concentrations of the
Fe–C sample:cs0.06, 5, and 17 vol.%. With increasing
concentration, the peak in the AC-susceptibility is shift-
ed to higher temperatures and the curve is at the same
time suppressed. This behavior is opposite to that shown
in Fig. 1. The dipolar interaction strength(j s0.56 ford

the 5 vol.% sample andj s1.9 for the 17 vol.% sampled

at Ts50 K) is, however, too strong for the model
described in the previous section to be valid.
We have obtained the temperature dependence of the

relaxation time from AC-susceptibility data measured
for a large set of frequencies; the relaxation timets1y
v and a possible criterion for the freezing is the
temperature wherex0(T,v) attains 15% of its maximum
value. The relaxation time as a function of temperature
is shown in Fig. 3(the AC data used to extractT canf

be found in Ref.w15x). In the two concentrated samples,
we expect the slow relaxation to arise from spin-glass
correlations and not from thermal blocking as in the
weakly interacting case. If the system, in addition,
exhibits a spin-glass phase transition, the relaxation time
is expected to diverge at the transition temperatureTg

according to conventional critical slowing down

yzvt ;t ±1yTyT ± (9)c m g

with t being a microscopic time scale. For nanoparti-m

cles, t can be assigned to the superparamagneticm

relaxation time of a single particle of average size. A

dynamic scaling analysis according to critical slowing
down was performed fort(T ) extracted from AC dataf

for the two concentrated samples. Two different assump-
tions concerning the anisotropy energy were compared:
(i) KVs0, which corresponds to a temperature-inde-
pendent microscopic flip time; and(ii) KVyk s500 K,B

which is an estimate of the anisotropy barrier energy for
a particle of average size. The values obtained forzv,
T , and t in each case are given in Table 1(theg 0
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Fig. 4. h dM(t)ydlog(t) vs. time on a logarithmic scale for the 5y1

vol.% sample obtained from zero-field-cooled relaxation experiments
waiting a timet atT before applying the probing field and recordingw m

the magnetization as a function of time.t s300 s (open symbols)w

and 3000 s(filled symbols).

temperature dependence oft was neglected). The0

quality of the fit of Eq.(9) to the experimental data is
equally good for assumptions(i) and (ii). In fact, the
lines in Fig. 3 correspond to any of the assumptions. In
addition, the values ofT and the critical exponentsg

depend strongly on the criterion used when determining
T . Also by introducingt(T ) extracted from zero-field-f f

cooled relaxation data in the critical slowing down
analysis and performing a full dynamic scaling analysis,
it was shown in Ref.w15x that the 5 vol.% sample does,
in fact, not exhibit a spin-glass-like phase transition.
Although the 5 vol.% sample does not exhibit a spin

glass phase transition it does exhibit glassy dynamics
w16x. Glassy dynamics can be evidenced by measuring
the zero-field-cooled relaxation at a low temperature
after a fast cooling from a temperature in the paramag-
netic phase using different waiting times before applying
the magnetic probing field and recording the magneti-
zation as a function of time. In spin glasses, the magnetic
relaxation depends on the waiting time in zero field, a
phenomenon known as magnetic ageingw17x. In a non-
interacting nanoparticle system, the zero-field-cooled
relaxation is a function of the temperature due to the
distribution of relaxation times. It does not depend on
the waiting time atT before applying the probing field,m

as was shown experimentally in Ref.w10x. The relaxa-
tion rateS(t)sh dM(t)ydlogt at different temperaturesy1

between 20 and 40 K are shown in Fig. 4 for the 5
vol.% sample. The zero-field-cooled relaxation measure-
ments are repeated for two different waiting times, 300
and 3000 s. A clear difference between theS(t,t )w

curves for t s300 and 3000 s can be seen for allw

temperatures-40 K, presenting evidence for glassy
dynamics at those temperatures.

4. Discussion

The model for how the relaxation time is affected by
weak dipolar interaction presented in Section 2 is most
useful when comparing to high frequency measurements.
There are two reasons:(i) the thermodynamic pertur-
bation theory is valid only at high enough temperatures
satisfying j <1, and since the blocking temperatured

increases with increasing frequency, the model will have
a larger range of validity when studying the blocking
behavior at high frequencies.(ii) The factorF(ls )1y2

is larger at high temperatures. The dependence of the
transverse dipolar field component on the relaxation
time is therefore stronger at high temperatures. A block-
ing temperature that decreases with increasing interac-
tion strength has indeed been observed in Mossbauer¨
spectroscopyw8x, a method that probes the high fre-
quency behavior.
In Section 3, the slow relaxation in strongly interact-

ing nanoparticle systems is discussed in terms of spin-
glass-like dynamics arising due to the interparticle
interactions. We expect that the relaxation time will
always increase with the interaction strength if energy
barriers are created due to strong interparticle interac-
tions. However, whether the dipolar interaction will give
rise to glassy dynamics or not will be determined by
two parameters: the randomness(in particle positions
and direction of the anisotropy axes) and the width of
the anisotropy energy-barrier distribution. Randomness
is crucial in order to observe glassy dynamics, while it
has been shown experimentally that glassy dynamics is
more easily observed in a sample with a comparatively
narrow anisotropy energy-barrier distribution than in a
sample with a wide distribution. An explanation was
given in Ref. w11x; if the energy-barrier distribution is
wide, a fraction of particles will be blocked on the
experimental time scales and hence act as random
magnets instead of taking active part in the dynamics.
To conclude, by treating the dipolar interaction as a

perturbation, the relaxation time decreases with increas-
ing interaction strength. Such a picture can by definition
only be valid for very weak interaction strengths. In the
case of strong interparticle interactions, energy-barriers
will be created by the interparticle interaction and the
relaxation time will hence increase with increasing
interaction strength. It has been shown experimentally
that strongly interacting particle systems with random-
ness and a comparatively narrow anistropy energy-
barrier distribution exhibit spin-glass-like dynamics. The
slow relaxation of such systems originates from spin-
glass correlations and the relaxation is hence fundamen-
tally different from the simple superparamagnetic
blocking in non-interacting and weakly interacting nan-
oparticle systems.
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