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Derivation of the basic system of kinetic equations governing superparamagnetic relaxation
by the use of the adjoint Fokker-Planck operator

J. L. Garcı´a-Palacios and P. Svedlindh
Department of Materials Science, Uppsala University, Box 534, SE-751 21 Uppsala, Sweden

~Received 15 December 2000; published 11 April 2001!

The basic equations governing the kinetics of superparamagnets~and dielectric lattices in the Debye ap-
proximation! are derived by taking advantage of the properties of the adjoint Fokker-Planck operator. The
equations obtained, which duly reduce to those derived by direct averaging of the corresponding stochastic
Landau-Lifshitz-type equations, are expressed in terms of the coefficients determining the action of the angular
momentum operator and the spin variables on the spherical harmonics. The structure of the equations so
obtained directly reflects that of the adjoint Fokker-Planck operator, which permits to trace back easily the
origin of the different contributions~precession and relaxation!. This makes the method specially suitable for
generalization to more elaborate descriptions of rotational relaxation.
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The stochastic Landau-Lifshitz equation for classi
spins and its associated Fokker-Planck equation~as intro-
duced by Brown1 and by Kubo and Hashitsume2! play an
important role in condensed-matter physics, describing a
riety of magnetic and also electric systems. Indeed, in
limit of zero precession these equationsformally reduce to
the equations in the Debye theory of noninertial dielec
relaxation, which has applications in permanent dipole m
ecules, nematic liquid crystals, and relaxor ferroelectrics
magnetism, they describe theTÞ0 spin dynamics of classi
cal XY and Heisenberg models, thin films, and superpa
magnets~nanoscale solids or clusters whose net spinS
;102–105 rotates thermally activated in the anisotropy p
tential!.

In the calculation of the quantities of interest~e.g., dy-
namical susceptibilities or relaxation times! a variety of ana-
lytical and numerical methods are employed. A rigorous a
powerful approach consists of casting the equations into
infinite hierarchy oflinear kinetic equations for the average
of a complete set of appropriate functions~e.g., the spherica
harmonics in rotational relaxation!, which can be tackled by
matrix or continued-fraction methods. Nevertheless,
problem of finding the coefficients of such a system for s
cific Hamiltonians is difficult, and it has not been until r
cently that a general solution has been found in the con
of the Brown-Kubo-Hashitsume model.3

In this paper we present an alternative solution for
more modest problem of determining the kinetic equatio
for reasonably simple Hamiltonians. The method takes
vantage of the properties of the adjoint Fokker-Planck ope
tor. The structure of the equations obtained closely para
the structure of this operator, permitting to trace back rea
the origin of the different contributions~precession and re
laxation! from the generally complex final expressions. Th
makes the method suitable for application to more elabo
descriptions of rotational relaxation, and we outline its app
cation to the interesting generalization of the superparam
netic model that also incorporates anisotropy-type fluct
tions, as those generated by the modulation of the cry
field by the lattice vibrations.4
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Let us begin with some general remarks about the eq
tion for the average of an arbitrary quantity. The Fokke
Planck equation governing the time evolution of the no
equilibrium probability distribution of the system variable
can be written generically as

]P/]t 5LFPP, ~1!

where LFP is the corresponding Fokker-Planck opera
~which is linear but in general not self-adjoint!. The average
of a quantityf is given by ^ f &5*dVP f , wheredV is the
differential element of phase space (dV}d2sW in rotational
relaxation!. When f is not explicitly time dependent, the
equation governing the dynamics of^ f & follows from

d

dt
^ f &5E dG

]P

]t
f 5E dG~LFPP! f 5E dGPLFP

† f ,

where we have passed the action ofLFP from P to f by
introducing the adjoint operatorLFP

† . Therefore, recalling the
definition of average, we can write

d^ f &/dt5^LFP
† f &. ~2!

This result shows that the calculation of the dynamical eq
tion for the average of any quantity can be reduced to
determination of the action of the adjoint Fokker-Planck o
erator on it.

The basic Fokker-Planck equation governing superpa
magnetic relaxation can be written as

2tD

]P

]t
52

]

]sW
•H 1

l
sW3BW 2sW3FsW3S BW 2

]

]sW
D G J P,

where l is the Landau-Lifshitz relaxation parameter,BW

52(]H/]sW)/kBT is the effective field~in kB units; uusWuu
51), tD}T21 is the characteristic time of free rotation
diffusion (BW 50W ), and the nabla operator (]/]sW)
5(kx̂k(]/]sk) acts on everything written on its right.

Note that taking formally the limitl→` one gets the
Fokker-Planck equation describing noninertial Debye rel
ation ~without translational degrees of freedom!. Therefore,
©2001 The American Physical Society17-1
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BRIEF REPORTS PHYSICAL REVIEW B 63 172417
although we shall use the language of magnetism, all
considerations that follow will also be applicable to the co
generic dielectric problem.

Let us now write the Fokker-Planck equation in terms
the angular momentum operator

JW 52 isW3~]/]sW ! , ~3!

which is self-adjoint and directly related with the genera
of infinitesimal rotations~Ref. 5, Sec. 26!. Specifically, in a
rotation ofsW arounddcW a function f (sW) is transformed into
f (sW1dsW).@11 idcW •JW # f (sW). Besides, taking into accoun
the permutability of the mixed productaW •(bW 3cW ) ~with some
care, as operators are involved!, using 2sW5](sW2)/]sW and
since the curl of a gradient is zero, the action of the div
gence operator on any vector of the formsW3aW can be written
as (]/]sW)•(sW3aW )52 iJW •aW . Consequently, we can cast th
Fokker-Planck equation in the form

2tD]P/]t 5 iJW •@~1/l!BW 2~sW3BW !1 iJW #P, ~4!

where the term acting onP on the right-hand side gives th
Fokker-Planck operator in terms ofJW @cf. Eq.~1!#. To get the
adjoint operator we simply use (MN)†5N †M †, and since
JW is self-adjoint, we get

LFP
† 52 ~ i /l! @BW 2l~sW3BW !#•JW 2JW 2.

This result permits a transparent interpretation:~i! the term
}JW 2 is the only term left whenBW 50W , so it governs the free
diffusion of the spins.~ii ! As JW is the generator of infinitesi
mal rotations, the termBW •JW accounts for the precession ofsW

around the fieldBW , while ~iii ! 2l(sW3BW )•JW generates the
relaxational rotation ofsW towardsBW .

A final manipulation will castLFP
† into a form more con-

venient for the subsequent calculation. Using again the
mutation properties of the mixed product we have2(sW

3BW )•JW 5BW •(sW3JW ), whence we get the key result

LFP
† 52 ~ i /l!BW •@JW 1l~sW3JW !#2JW 2, ~5!

where all the fields are gathered on the left, and the rem
ing spin variables and the operators on the right. Then,
can apply standard results for the action ofJW andsW to get the
basic equations for the averages.

An important fact in rotational relaxation~and one of the
major sources of mathematical difficulties! is that the equa-
tions for the averages arenot closed. The reason is that th
underlying Landau-Lifshitz-type relaxation term2sW3(sW

3BW ) is nonlinear in the spin variables and hence contribu
terms of the form^sisj& to the equation for̂ si&. Then, an
additional equation for̂sisj& is required to close the system
but that equation involveŝsisjsk&, and so on.

To handle such an infinite hierarchy of equations a v
convenient approach is to introduce the equations for
averages of the spherical harmonics~recall thatuusWuu51),
17241
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Xl
m5eimwPl

m~sz!, umu< l , ~6!

wherew is the azimuth ofsW and thePl
m are the associated

Legendre functions. TheXl
m are related with the normalize

spherical harmonicsYl
m ~Condon-Shortley phase! by

Yl
m5nl ,mXl

m , nl ,m5~21!mA2l 11

4p

~ l 2m!!

~ l 1m!!
. ~7!

All the averages can be written in terms of these quantit
^sz&5^X1

0&, ^sx&1 i ^sy&5^X1
1&, ^3sz

221&/25^X2
0&, etc. Be-

sides, the use of the recurrence relations satisfied by thePl
m

simplifies considerably the manipulation of the formulas.
In order to get the equations for the averages of

spherical harmonics, one needs to determine the action o
angular momentum operators and the spin variables on th
The action ofJW can be written compactly as

JzXl
m5a l ,m

z Xl
m , J6Xl

m5a l ,m
6 Xl

m61 , ~8!

where theJ65Jx6 iJy are the corresponding circular com
ponents~ladder operators!. When theYl

m are used, one ha
a l ,m

z 5m and a l ,m
6 5A( l 7m)( l 6m11), while for the Xl

m

they can be obtained directly from these and the relation~7!,
and reada l ,m

1 521, a l ,m
z 5m, a l ,m

2 52( l 1m)( l 2m11).

Concerning the ‘‘action’’ ofsW, recall that the product of
the spin variables with theXl

m can in turn be expanded in
spherical harmonics by using the recurrence relations for
Pl

m . This yields expressions linear in the spherical harm
ics, which is essential for the eventual application of sta
dard numerical techniques. Thus, the spin variables can
mally be considered as ‘‘operators’’ on theXl

m and their
action be expressed as (s65sx6 isy)

szXl
m5b l 21,m

z Xl 21
m 1b l 11,m

z Xl 11
m , ~9!

s6Xl
m5b l 21,m

6 Xl 21
m611b l 11,m

6 Xl 11
m61 . ~10!

When theYl
m are used, the coefficientsb are readily ob-

tained, for instance, from the corresponding expression
Ref. 3. The coefficients for theXl

m can be extracted from the
known explicit versions of Eqs.~9! and ~10! ~see, for ex-
ample, Ref. 6, Appendix A!, and can be written as

b l 61,m
1 56

1

~2l 11!
, b l 61,m

z 5
~ l 1 1

2 !7~m2 1
2 !

~2l 11!
,

b l 61,m
2 57

@~ l 1 1
2 !7~m2 1

2 !#@~ l 1 1
2 !7~m2 3

2 !#

~2l 11!
.

Nevertheless, leaving the coefficientsa and b unspecified
has, as we shall see below, a number of advantages.

Finally, let us write the action ofsW3JW on the spherical
harmonics in terms of the coefficientsa andb. This is easily
done by expressing the vector product in terms of circu
components (sW3JW )z5 i /2(s1J22s2J1) and (sW3JW )6

56 i (szJ62s6Jz),
7-2
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2 i ~sW3JW !zXl
m5 1

2 ~a l ,m
2 b l 21,m21

1 2a l ,m
1 b l 21,m11

2 !Xl 21
m

1 1
2 ~a l ,m

2 b l 11,m21
1 2a l ,m

1 b l 11,m11
2 !Xl 11

m ,

2 i ~sW3JW !6Xl
m56~a l ,m

6 b l 21,m61
z 2a l ,m

z b l 21,m
6 !Xl 21

m61

6~a l ,m
6 b l 11,m61

z 2a l ,m
z b l 11,m

6 !Xl 11
m61 .

From these results we can readily derive the required
tion of the adjoint Fokker-Planck operatorLFP

† on the spheri-

cal harmonics. Let us passJW 2 to the left-hand side of Eq.~5!
l-
ul
co
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c-

and write explicitly the scalar product on the right-hand s
in terms of circular components asaW •bW 5azbz1

1
2 (a1b2

1a2b1); this yields

~LFP
† 1JW 2!Xl

m52 1
2 B1@~ i /l!J21 i ~sW3JW !2#Xl

m

2Bz@~ i /l!Jz1 i ~sW3JW !z#Xl
m

2 1
2 B2@~ i /l!J11 i ~sW3JW !1#Xl

m .

Introducing the calculated actions on the spherical harm
ics, we finally obtain
LFP
† Xl

m1 l ~ l 11!Xl
m5 1

2 B1@~a l ,m
z b l 21,m

2 2a l ,m
2 b l 21,m21

z !Xl 21
m212 ~ i /l! a l ,m

2 Xl
m211~a l ,m

z b l 11,m
2 2a l ,m

2 b l 11,m21
z !Xl 11

m21#

1Bz@
1
2 ~a l ,m

2 b l 21,m21
1 2a l ,m

1 b l 21,m11
2 !Xl 21

m 2 ~ i /l! a l ,m
z Xl

m1 1
2 ~a l ,m

2 b l 11,m21
1 2a l ,m

1 b l 11,m11
2 !Xl 11

m #

1 1
2 B2@~a l ,m

1 b l 21,m11
z 2a l ,m

z b l 21,m
1 !Xl 21

m112 ~ i /l! a l ,m
1 Xl

m111~a l ,m
1 b l 11,m11

z 2a l ,m
z b l 11,m

1 !Xl 11
m11#.
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When the effective fieldBW }(]H/]sW) does depend onsW one
can again use Eqs.~9! and ~10! to derive via Eq.~2! an

expression ford^Xl
m&/dt linear in the^Xl 8

m8& with constant

~independent ofsW) coefficients. In the general case this, a
though straightforward, can be very laborious and it wo
be advantageous to use the general expression for the
ficients derived by Kalmykov and Titov.3 However, for rea-
sonably simple Hamiltonians~say uniaxial and biaxial! the

effective field is linear insW and only one further application

of sW on theXl
m is required.

Since for negativem thePl
m in Xl

m @Eq. ~6!# are implicitly
defined through a Rodriges formula, the recurrence relat
on which Eqs.~9! and ~10! are based, and in turn Eq.~11!,
are valid for all m ~Ref. 7, Sec. 12.6!. Therefore, in our
derivation we have not needed to examine the casesm.0
and m,0 separately. Anyway, we can directly verify E
~11! by introducing the explicit expressions for the coef
cientsa and b. This yields~see the appendix! an equation
for Xl

m in complete agreement with the result obtained
direct averaging of the stochastic Landau-Lifshitz-ty
equations8 and the corresponding equation forYl

m .3

It is not evident, however, how those equations forXl
m

andYl
m can be extended to more general descriptions of

tational relaxation. The form~11!, on the other hand, directly
reflects the structure of the adjoint Fokker-Planck opera
~5!. Indeed, the gyromagnetic terms~those proportional to
i /l) simply reflect the action ofJW , while the relaxation terms
explicitly preserve the form of the Landau-Lifshitz ‘‘damp
ing term’’ sW3JW through the coefficientsa ~angular momen-
tum action! and b ~spin-variables action!. Thus,B1 is ac-
companied by (azb22a2bz), the componentBz by
1
2 (a2b12a1b2), and B2 by (a1bz2azb1), which re-
flect the vector-product structure of the relaxation term. T
d
ef-

ns

y

-

r

s

suggests that the adjoint operator method could also be
in cases in which the underlying Langevin equation might
more complex but one can still derive a reasonably sim
expression forLFP

† in terms ofsW andJW .
To illustrate, let us briefly consider the important gene

alization of the Brown-Kubo-Hashitsume model develop
by Garaninet al.4 to incorporate fluctuations of the magnet
anisotropy of the spin, such as those created by the pho
modulation of the spin-orbit coupling. In this case the Lang
vin equation is much more involved as it includes fluctuati
fields and fluctuating anisotropy constants~fluctuations that
can in addition be correlated!. The associated Fokker-Planc
equation, however, simplifies to

2tD

]P

]t
52

]

]sW
•H 1

l
sW3BW 2sW3ĜFsW3S BW 2

]

]sW
D G J P,

where thesymmetricmatrix Ĝ summarizes the effect of th
mentioned mechanisms (lG i j 5h i j 1(k(h i , jk1h j ,ik)sk
1(klh ik, j l sksl , whereh are the correlation coefficients o
the fluctuating terms!.

Manipulations analogous to those leading to Eq.~5! yield
in this case

LFP
† 52 ~ i /l!BW •@JW 1l~sW3ĜJW !#2JW ĜJW , ~12!

where the symmetry ofĜ has been taken into account whe
taking the adjoint. Therefore, we see that the key result~5!
for LFP

† , which permitted to perform readily the derivation o
the dynamical Eq.~11!, is also attainable in this more elabo
rate model.
7-3
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BRIEF REPORTS PHYSICAL REVIEW B 63 172417
While the precession term remains unaltered,ĜJW replaces
JW in both the relaxation and free-diffusion terms, which a

in general anisotropic. However, the matrixĜ is symmetric
and can be diagonalized by choosing an appropriate re
ence system~indicated by the symmetry of the problem!; let
us assume then thatGxx5Gyy , as it holds for uniaxial or
cubic anisotropies. Then, rewriting the action ofJW asJnXl

m

5a l ,m
n Xl

mn , we have (ĜJW )nXl
m5(gna l ,m

n )Xl
mn , with g6

5Gxx (5Gyy) andgz5Gzz. This shows that the replaceme

of JW by ĜJW implies that the effective coefficientsã l ,m
n

5gna l ,m
n now play the role of thea l ,m

n in the original model.
Consequently, we can writeat oncethe basic kinetic equa
tion accounting for anisotropy-type fluctuations by just
placing in Eq.~11! the diffusion term by(nJnã l ,m

n Xl
mn and
iz

17241
r-

-

plainly substitutingã l ,m
n for a l ,m

n in the relaxation terms, to

get contributions of the form (ãzb22ã2bz), 1
2 (ã2b1

2ã1b2), and (ã1bz2ãzb1).
In summary, we have presented a method for the der

tion of the basic kinetic equations governing the dynamics
rotational relaxation, based on a suitable representation
the adjoint Fokker-Planck operator in terms of the angu
momentum operator. It has been shown that the structur
the kinetic equations derived@Eq. ~11!# directly reflects that
of the adjoint Fokker-Planck operator@Eq. ~5!#, which per-
mits the derivation of the basic system of kinetic equations
more elaborate descriptions of rotational relaxation once
adjoint Fokker-Planck operator is constructed.

Financial support from the Swedish Natural Science R
search Council~NFR! is gratefully acknowledged.
ery
for the
APPENDIX: EXPLICIT EQUATIONS FOR Xl
m AND Yl

m

Introducing the expressions for the coefficientsa andb in Eq. ~11!, we get the explicit result

2tD

d

dt
Xl

m1 l ~ l 11!Xl
m5

B1

2 F ~ l 11!~ l 1m!~ l 1m21!

~2l 11!
Xl 21

m211
i

l
~ l 1m!~ l 2m11!Xl

m211
l ~ l 2m12!~ l 2m11!

~2l 11!
Xl 11

m21G
1BzF ~ l 11!~ l 1m!

~2l 11!
Xl 21

m 2
i

l
mXl

m2
l ~ l 2m11!

~2l 11!
Xl 11

m G
1

B2

2 F2
~ l 11!

~2l 11!
Xl 21

m111
i

l
Xl

m112
l

~2l 11!
Xl 11

m11G ,
where we have formally replacedLFP

† by 2tD(d/dt) @cf. Eq. ~2!#. Since the order of magnitude of the coefficients can be v
different for largel, and this can produce numerical instability, it will be in some cases convenient to use the equation
Yl

m . This can be obtained by multiplying across the above equation bynl ,m @Eq. ~7!#, and calculating quotients of the form
nl ,m /nl 8,m8 to get

2tD

d

dt
Yl

m1 l ~ l 11!Yl
m5

B1

2 F2~ l 11!A~ l 1m!~ l 1m21!

~2l 21!~2l 11!
Yl 21

m212
i

l
A~ l 1m!~ l 2m11!Yl

m21

2 lA~ l 2m12!~ l 2m11!

~2l 11!~2l 13!
Yl 11

m21G1BzF ~ l 11!A l 22m2

~2l 21!~2l 11!
Yl 21

m

2
i

l
mYl

m2 lA ~ l 11!22m2

~2l 11!~2l 13!
Yl 11

m G1
B2

2 F ~ l 11!A~ l 2m!~ l 2m21!

~2l 21!~2l 11!
Yl 21

m11

2
i

l
A~ l 2m!~ l 1m11!Yl

m111 lA~ l 1m12!~ l 1m11!

~2l 11!~2l 13!
Yl 11

m11G .
.
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