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Derivation of the basic system of kinetic equations governing superparamagnetic relaxation
by the use of the adjoint Fokker-Planck operator
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The basic equations governing the kinetics of superparama¢pdsdielectric lattices in the Debye ap-
proximatior) are derived by taking advantage of the properties of the adjoint Fokker-Planck operator. The
equations obtained, which duly reduce to those derived by direct averaging of the corresponding stochastic
Landau-Lifshitz-type equations, are expressed in terms of the coefficients determining the action of the angular
momentum operator and the spin variables on the spherical harmonics. The structure of the equations so
obtained directly reflects that of the adjoint Fokker-Planck operator, which permits to trace back easily the
origin of the different contributiongprecession and relaxatiprirhis makes the method specially suitable for
generalization to more elaborate descriptions of rotational relaxation.
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The stochastic Landau-Lifshitz equation for classical Let us begin with some general remarks about the equa-
spins and its associated Fokker-Planck equates intro-  tion for the average of an arbitrary quantity. The Fokker-
duced by Browh and by Kubo and Hashitsuﬁ)eplay an Planck equation governing the time evolution of the non-
important role in condensed-matter physics, describing a vaequilibrium probability distribution of the system variables
riety of magnetic and also electric systems. Indeed, in th€an be written generically as
limit of zero precession these equatidiasmally reduce to It = Lop o
the equations in the Debye theory of noninertial dielectric FRr
relaxation, which has applications in permanent dipole molwhere Lgp is the corresponding Fokker-Planck operator
ecules, nematic liquid crystals, and relaxor ferroelectrics. Ifwhich is linear but in general not self-adjoinThe average
magnetism, they describe tAe£0 spin dynamics of classi- of a quantityf is given by(f)=[dQPf, whered() is the
cal XY and Heisenberg models, thin films, and superparasifferential element of phase spacéqocd2§ in rotational
magnets(nanoscale solids or clusters whose net sfin relaxation. When f is not explicitly time dependent, the
~10°—10 rotates thermally activated in the anisotropy po-equation governing the dynamics (f) follows from
tential). q P

In. the calculqtlt').n' of the quan.tltlesf of mtere(ﬁ.g., dy- _<f>:f dl“—fzf dr(‘CFPP)f:f drPLLf,
namical susceptibilities or relaxation timesvariety of ana- dt ot
lytical and numerical methods are employed. A rigorous anqyhere we have passed the action &fp from P to f by

powerful approach consists of casting the equations into afhtroducing the adjoint operata[f,ip. Therefore, recalling the
infinite hierarchy oflinear kinetic equations for the averages efinjtion of average, we can write

of a complete set of appropriate functiof@sg., the spherical
harmonics in rotational relaxatiprnwhich can be tackled by d(f)/dt={(LLf). (2)

matrix or continued-fraction methods. Nevertheless, therps oqyit shows that the calculation of the dynamical equa-

problem of finding the coefficients of such a system for SP€%ion for the average of any quantity can be reduced to the

cific Hamiltonians is difficult, and it has not been until re- yiormination of the action of the adjoint Fokker-Planck op-
cently that a general solution has been found in the conteXt aior on it

of the Brown-Kubo-Hashitsume mod&l.
In this paper we present an alternative solution for thq11
more modest problem of determining the kinetic equations

The basic Fokker-Planck equation governing superpara-
agnetic relaxation can be written as

for reasonably simple Hamiltonians. The method takes ad- JP o (1. - _ 1. (. o
vantage of the properties of the adjoint Fokker-Planck opera- 2TDE =—— sz B—sX|sX|B—— P,
tor. The structure of the equations obtained closely parallels Js Js

the structure of thig operator, pgrmi_tting to trace back readil3(/vhere N\ is the Landau-Lifshitz relaxation parameteﬁ,
the origin of the different contributiongrecession and re- -, . . o oz
laxation from the generally complex final expressions. This — _(‘QH/‘?S),”fB.T Is the effectn_/e.ﬂelld(m Kg_units; ”S_“
makes the method suitable for application to more elaborate 1), =T s the characteristic time of free rotatLonaI
descriptions of rotational relaxation, and we outline its appli-diffusion  (B=0), and the nabla operator d/Js)
cation to the interesting generalization of the superparamag= X ,x,(d/ds,) acts on everything written on its right.

netic model that also incorporates anisotropy-type fluctua- Note that taking formally the limit—c one gets the
tions, as those generated by the modulation of the crystdokker-Planck equation describing noninertial Debye relax-

field by the lattice vibration8. ation (without translational degrees of freedpriTherefore,
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although we shall use the language of magnetism, all the
considerations that follow will also be applicable to the con-

generic dielectric problem.
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X"=eMP(s,), |m[<l,

(6)

where ¢ is the azimuth ofs and theP™ are the associated

Let us now write the Fokker-Planck equation in terms of| egendre functions. ThX" are related with the normalized

the angular momentum operator

J=—isx(dlds), (3)

which is self-adjoint and directly related with the generator

of infinitesimal rotationgRef. 5, Sec. 26 Specifically, in a
rotation ofs arounddy a functionf(s) is transformed into
f(s+8s)=[1+i8¢- 7]f(s). Besides, taking into account
the permutability of the mixed produat (bx ¢) (with some
care, as operators are involyedising %= d(s?)/ds and

spherical harmonic¥|" (Condon-Shortley phagéy

21+1 (I—m)!

47 (I+m)

Yi'=n o X" npp=(=1" )
All the averages can be written in terms of these quantities:
(s)=(X]), (s)+i(s,)=(X1), (3s7—1)/2=(X3), etc. Be-
sides, the use of the recurrence relations satisfied bythe
simplifies considerably the manipulation of the formulas.

In order to get the equations for the averages of the

gence operator on any vector of the fosida can be written

as (9/9s)-(sxa)=—iJ-a. Consequently, we can cast the
Fokker-Planck equation in the form

27p0Plot =i J-[(1I\)B—(SXB)+iJ]P, (4)

where the term acting oR on the right-hand side gives the
Fokker-Planck operator in terms gf[cf. Eq.(1)]. To get the
adjoint operator we simply useM{A)T=ATM T, and since
Jis self-adjoint, we get

Lig=— (i) [B-\(sXB)]-J- T2

This result permits a transparent interpretatigh:the term
« 72 is the only term left wheiB=0, so it governs the free
diffusion of the spins(ii) As Jis the generator of infinitesi-
mal rotations, the terrB- 7 accounts for the precession ®f
around the fieldB, while (i) —\(SxB)-7 generates the
relaxational rotation of towardsB.

A final manipulation will cast} into a form more con-

venient for the subsequent calculation. Using again the per-

mutation properties of the mixed product we have(§
X B)- J=B-(sX ), whence we get the key result
EEP:

— (iN)B-[J+N(SEXD]- T2, (5

angular momentum operators and the spin variables on them.
The action of.7 can be written compactly as

TXM=af X", T X"=a XM

®

where theJ. = J,*iJ, are the corresponding circular com-
ponents(ladder operatojs When theY|" are used, one has
af n=m and a; = (ITm)(I=m+1), while for the X"
they can be obtained directly from these and the relaffon
and reade,’ )= —1, of ,=m, a; ,=—(1+m)(I-m+1).
Concerning the “action” ofs, recall that the product of
the spin variables with th&[" can in turn be expanded in
spherical harmonics by using the recurrence relations for the
P". This yields expressions linear in the spherical harmon-
ics, which is essential for the eventual application of stan-
dard numerical techniques. Thus, the spin variables can for-
mally be considered as “operators” on thg" and their
action be expressed as.(=s,*is,)

SXI"= Bl X1 Bl 1 m X1

9

s X"= B~ 1,mX|m—t11+BF+ 1,mxlnli11- (10

When theY[" are used, the coefficientg are readily ob-
tained, for instance, from the corresponding expressions of
Ref. 3. The coefficients for th¥" can be extracted from the
known explicit versions of Eqs9) and (10) (see, for ex-

where all the fields are gathered on the left, and the remairﬁmple’ Ref. 6, Appendix A and can be written as
ing spin variables and the operators on the right. Then, one

can apply standard results for the action/oénds to get the
basic equations for the averages.

An important fact in rotational relaxatiofand one of the
major sources of mathematical difficultjeis that the equa-
tions for the averages aret closed. The reason is that the

underlying Landau-Lifshitz-type relaxation term§><(§

1

. (I+Hm=1)
Bltl,m_—(ZI_,r_l)a

(2l+1)

Itl,m:

[(1+)F(m=2)][(+3)F(m—3)]
(21+1) '

Bieim=+

% B) is nonlinear in the spin variables and hence contributefNevertheless, leaving the coefficientsand g unspecified

terms of the form(s;s;) to the equation foKs;). Then, an
additional equation fofs;s;) is required to close the system,
but that equation involvess;s;sy), and so on.

has, as we shall see below, a number of advantages.

Finally, let us write the action ofx 7 on the spherical
harmonics in terms of the coefficiemtsand 3. This is easily

To handle such an infinite hierarchy of equations a verydone by expressing the vector product in terms of circular
convenient approach is to introduce the equations for thgomponents €xJ),=i/2(s.J.—s_J,) and EXJ).

averages of the spherical harmoniescall that||s||=1),

= ii(szji_sijz)’
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—j (ng)lem: %(afmﬁff— 1 afmﬂf- L )X famd write expl|.C|tIy the scalar produc} on the rlghlt-hand side
L . in terms of circular components a&s b=a,b,+5(a,b_
+2( Bl m-1~ A mBie1ms X1 +a_b,); this yields
. > b + + + T 72 m_ _ 1 H s p m
—I(SX@iXP=i(ar‘mﬂf_lvmtl—af’m,Br_l’m)X{n_—ll (LeptT)X| sBL[(I/N)T_+i(sXT)_1X
+ + + . . - > m
*(amBls 1,m¢1—a|z,mﬁr+1,m)x|”l‘1l- BA(/N) T 1 (X DX,
From these results we can readily derive the required ac- —3B_[(i/N) T +i(sX DX

tion of the adjoint Fokker-»PIanck operatf, on the spheri- Introducing the calculated actions on the spherical harmon-
cal harmonics. Let us pagg to the left-hand side of E45) ics, we finally obtain

[:IJLPXIm_l_ I(1+ 1)X|m: %B+[(alz,m:8|_— im- al_,mﬁlz— 1,m—1)X|m—_11_ (i/N) al_,mxlm_1+ (alz,m/3|_+ im~ al_,mﬁlz+ 1,m—l)xm_ll

+ Bz[%(al_,mlgltl,m—l_ aﬁmﬁl_—l,mﬂ)xlm—l_ (i/N) alz,mxlm+ %(al_,mﬂlt 1m-1" atmﬁl_+1,m+1)xlnll]

+ %B—[(aﬁ:mlglz— 1m+1" alz,mﬁr— 1,m)xlm—+ll_ (i/N) a’l-t—mxlm-#l—’_ (al-‘,—mIBIZ-# 1m+1— alz,mﬂlt l,m)x[T—ll :

11

When the effective field e« (7H/ds) does depend ogone Suggests that the adjoint operator method could also be used
can again use Eqg¢9) and (10) to derive via Eq.(2) an i cases in which the underlying Langevin equation might be

. m . . mh more complex but one can still derive a reasonably simple
expression ford(X")/dt linear in the(X, ) with constant

. N o . expression for’l, in terms ofs and 7.
(independent of) coefficients. In the general case this, al- ¢ jlustrate, let us briefly consider the important gener-

though straightforward, can be very laborious and it wouldgjization of the Brown-Kubo-Hashitsume model developed
be advantageous to use the general expression for the cogfy Garaninet al* to incorporate fluctuations of the magnetic
ficients derived by Kalmykov and TitoVHowever, for rea- anisotropy of the spin, such as those created by the phonon
sonably simple Hamiltonianésay uniaxial and biaxiglthe  modulation of the spin-orbit coupling. In this case the Lange-
effective field is linear irs and only one further application Vin equation is much more involved as it includes fluctuating
of S on theX™ is required. fields and fluctuating anisotropy constaffisictuations that

Since for negativenthe P{" in X" [Eq. (6)] are implicitly ZZ:z;?ioiddrgt(l)?/\?esgrc?sz:ﬁl)allitggr:g associated Fokker-Planck

defined through a Rodriges formula, the recurrence relations
on which Egs.(9) and (10) are based, and in turn E¢L1),

are valid for allm (Ref. 7, Sec. 12)6 Therefore, in our 9P g (1 d. (. 4
derivation we have not needed to examine the case® 27p——=— 1-‘—sx B—sXI'|sx| B— 1) }P,
and m<0 separately. Anyway, we can directly verify Eq. at gs (M Js

(12) by introducing the explicit expressions for the coeffi-

cientsa and B. This yields(see the appendixan equation h h i oA , he eff f th
for X" in complete agreement with the result obtained byW ergt esymmetncmgtrlxl“ summarizes the effect of the
mentioned mechanisms \['j;= 7+ Z( 7 jk + 7;,ik) Sk

direct averaging of the stochastic Landau—Lifshitz-type+2 h th lati fficients of
equation8 and the corresponding equation féf° .2 kI 77ik ji kS, WNErez are the correlation coetficients o
the fluctuating terms

It Ifq not evident, however, how those equations X Manipulations analogous to those leading to &).yield
andY;" can be extended to more general descriptions of ro;, his case

tational relaxation. The forr(iL1), on the other hand, directly
reflects the structure of the adjoint Fokker-Planck operator
(5). Indeed, the gyromagnetic ternighose proportional to
i/\) simply reflect the action qff, while the relaxation terms
explicitly preserve the form of the Landau-Lifshitz “damp- A
ing term” sx 7 through the coefficienta (angular momen-  where the symmetry of has been taken into account when
tum action and 3 (spin-variables action Thus,B. is ac- taking the adjoint. Therefore, we see that the key re@)it
companied by &*8 —a~ 5%, the componentB, by for £ls, which permitted to perform readily the derivation of
(a B —a™B7), andB_ by (a™B*—a?*B"), which re- the dynamical Eq(11), is also attainable in this more elabo-
flect the vector-product structure of the relaxation term. Thigate model.

Llo=— (iN)B-[THN(SXTH]-JTT, (12
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While the precession term remains unalteied;replaces ~ plainly substitutinge/ ,, for « ) in the relaxation terms, to
Jin both the relaxation and free-diffusion terms, which areget contributions of the form &8~ —a 8%, i(a g*
in general anisotropic. However, the matfixis symmetric  —a*87), and @ B>~ a?8").
and can be diagonalized by choosing an appropriate refer- In summary, we have presented a method for the deriva-
ence systentindicated by the symmetry of the problgnfet  tion of the basic kinetic equations governing the dynamics of
us assume then thdt,,=I'y,, as it holds for uniaxial or rotational relaxation, based on a suitable representation of
cubic anisotropies. Then, rewriting the action})ﬁasjvx{“ the adjoint Fokker-Planck operator in terms of the angular
— aly,mx[npv we have I:j)yx{n:(%afm)xrn”, with y. mom_entL_Jm opergtor. It h_as been shovyn that the structure of

the kinetic equations derivddEq. (11)] directly reflects that

z L _ o~ of the adjoint Fokker-Planck operatfEq. (5)], which per-
of 7 by I'J implies that the effective coefficienta,,  mjts the derivation of the basic system of kinetic equations in
=7, NOW play the role of they , in the original model.  more elaborate descriptions of rotational relaxation once the
Consequently, we can writat oncethe basic kinetic equa- adjoint Fokker-Planck operator is constructed.
tion accounting for anisotropy-type fluctuations by just re-  Financial support from the Swedish Natural Science Re-
placing in Eq.(11) the diffusion term byX ijaﬁmx[‘“v and  search Counci(NFR) is gratefully acknowledged.

=1y (=Tyy) andy,=TI,,. This shows that the replacement

APPENDIX: EXPLICIT EQUATIONS FOR X" AND Y[

Introducing the expressions for the coefficient@and 8 in Eq. (11), we get the explicit result

d_. B[+ D+m(+m=1) o lemE2)(-m+1)
27 XM+ (D)X= —- 2+1) X|,11+X(I+m)(l—m+1)x| 1+ FE mot
A+Dd+my_ i 1(-m+1)
2wy N N T S
B (|+1) m+1 i m+1 m+1
7{_(2|+1)X'-+1 X _(2|+1)X'++1 :

where we have formally replacetf, by 2 (d/dt) [cf. Eq.(2)]. Since the order of magnitude of the coefficients can be very
different for largel, and this can produce numerical instability, it will be in some cases convenient to use the equation for the
Y. This can be obtained by multiplying across the above equatiom Ry Eq. (7)], and calculating quotients of the form
Ni.m/Nyr m to get

I+ [+m—-1 i
—(1+1) \/((ZIT)ZE)(ZT]-!- 1))Y,m_11— ;\—\/(I +m)(I-m+1)YPt

[“—m "
HON G-+

(I=m({-m-1) .,
(21-1)(21+1) 't

d B
ZTD&YF’+I(I+1)Y[“=7+

+B,

21+1)(21+3) '+t
i (I+1)=m=
™I G
Fm+2)(1+m+1)

i m+ (I m+
—V(I=m)(I+m+1)Y 1+|\/ 211 (215 3) vy

(I=m+2)(l-m+1)
N ( )

B_
+ —

> (1+1)
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