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Nonlinear susceptibility of superparamagnets with a general anisotropy energy
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The equilibrium nonlinear response of noninteracting superparamagnets with a general single-spin anisot-
ropy is investigated. Generalizing the results obtained for the simplest uniaxial anisg@ama-Palacios and
Lazaro, Phys. Rev. B5, 1006(1997)], we derive a formula for the nonlinear susceptibility of spin ensembles
with randomly distributed anisotropy axe?s(?), valid for any magnetic anisotropy with inversion symmetry.
The analysis of this expression reveals th'at;“) is always negative(ji) unlike the linear susceptibilit%a)
remains anisotropy dependent after the random axes avesagept for cubic anisotropy, for whicF(?’) is
equal to that of isotropic spihs(iii) the anisotropy always increases the magnitude of the nonlinear response,
and (iv) since this increase depends on temperatyf®, deviates from the commor® e T2 laws. The
general expression fop® is finally particularized to superparamagnets with competing uniaxial and cubic
anisotropies and superparamagnets with biaxial anisot@imtrary “shape” anisotropy for which we study
the crossovers between the different regirtisstropic, discrete orientation, and plane rotatoduced by the
magnetic anisotropy.

[. INTRODUCTION which the heights of the energy barriécseated by the mag-
netic anisotropy are lower than the thermal energy. Let us
The study of classical spin systems has shed much lightriefly show the limitations of this view.

on the properties of their quantum counterparts and consti- In the moderate-to-high barrier range, the characteristic
tutes, in addition, an important field of research in its owntime 7 for the rotation of a classical spim over the energy
right. Besides, there exist certain systems for which a depgrrier AU can be written in the Arrhenius form
scription in terms of classical spins captures the essential
physics in certain ranges, for instance, molecular magnetic =719 eXp(BAU), (1.1

clusters with high spin in their ground stat&+10) and where8=1/kgT and the pre-exponential term is weakly de-

magnetic nanoparticlesS(-10°—1°); both systems will pendent on temperaturerd~10-"~108 s for molecular

here be referred to as,lperparamagneisAlthpugh we use magnetic clusters andry~101°-10"22s for magnetic
the language of magnetism, we could also include here sys- . : .
O : nanoparticles Then, for a given measurement tirhg, the
tems as the so-calleglaxor ferroelectricsin which the net . . . e
o . : spins display their thermal-equilibrium response when the
polarization of small polar regions can reorient due to ther-

mal activation between several equienergetical orientationsCondltlon of superparamagnetismsty, is obeyed, which

leading to asuperparaelectridoehavior. corresponds to the temperature range:

Among the various expe_rimental rea]izations pf super- In(t,,/ 7o)>BAU=0. (1.2
paramagnets, some approximately consist of noninteracting
entities. The understanding of the properties of classicalf-or instance, for “static” measurementt,(~1-100 s) this
noninteracting systems is besides very important for the subrange is extremely wide (268AU=0), showing that the
sequent study of their quantum, interacting counterparts. Fonentioned ascription of superparamagnetism to the range in
example, owing to an insufficient knowledge about somewhich the thermal energy is larger than the anisotropy barri-
properties of independent superparamagnets, it is not alwayss (1= AU=0) is unduly restrictive.
known from which “laws” the associated quantities depart The preceding considerations also entail that, without
as a consequence of interspin interactions. Similar consideteaving the superparamagnetic regime, there are ranges in
ations also apply to the study of quantum phenomena iwvhich BAU<1 (isotropic behavior, BAU~1 (intermediate
these systems; as complete a knowledge as possible of thehavioy, or BAU>1 (discrete-orientation behaviorThus,
classical regime is a prerequisite for the study of, for in-common approaches such as the isotropic or the discrete-

stance, quantum tunneling and coherence. orientation ones have a restricted range of validity for them-
selves, while, even with the combined use of both, the effects
A. Magnetic anisotropy and extent of the equilibrium of the crossoverbetween the different ranges are lost.

(superparamagnetio range

The single-spin anisotropy plays a fundamental role in the B. Linear and nonlinear responses

behavior of superparamagnets. Nevertheless, the effects of One of the most informative tools to investigate the prop-
the anisotropy on ththermal-equilibriumproperties of these erties of spin systems is the analysis of its linear response.
systems are sometimes overlooked because superparamddps analysis could give, for instance, important information
netism isrestrictively ascribed to the temperature range in about the symmetry and strength of the magnetic anisotropy
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in superparamagnets. A simple calculation shows, however, Xi(13i<)| = %33[<mimj MMy — (mym; y{m,m;)
that the linear susceptibility of an ensemble of noninteracting
classical dipole moments with a general anisotropy energy —(mim(mym;) —(mm{mm;)], (2.2

[simply obeying(m)="H(—~m)], is completely indepen- \pie X2 vanishes.

dent of th_e anisotropy if the orientations of the anisotropy  as the condition of inversion symmetry breaks down in

axes aredistributed at random the presence of hias field, this case is excluded from our
The analysis of the nonlinear response can then be afynsiderationgcf. Ref. 9. It should be remarked, however,

alternative. The nonlinear susceptibilig®) of superpara- that H(ﬁ)=H(—rﬁ) is obeyed by any single-spin anisot-

Tagnets with t? e simplest axially symmetric anisotropy, ropy as a direct consequence of the time-reversal symmetry

=—AU(m,/m)“, has recently been theoretically studfed. of the Hamiltoniant

For anisotropy axes distributed at randog® can be writ- '

ten in the following two equivalent forms ) — )
B. Effective susceptibilities of spin systems

with randomly distributed anisotropy axes
XG)= =% B3mY1-2(22) +3(2)?) ondomy fETR > |
L s ) The effective susceptibilities are defined as the coeffi-
=—ipm(1+2S), (1.3 cients in the expansion in powers of the probing fiblabf

where the overbar denotes average over axes orientaionsh€ projection of the spin response onto the directiorb of
=m,/m, and S,=(3(z%)—1)/2 is thethermal-equilibrium  [S€e Eq.(A.S)].. For an .ensemble aﬁen_ucal spins with a
average of the second Legendre polynomil. Ref. 1 the  9IVEN Q|§tr|but|on of anlsqtropy axes orlen'gatlons, these sus-
notationG=(z%) was used, whiley® was expressed com- ceptibilities can be obtained by considering one spin and
pactly in terms ofS, by the authors of Ref. 2It was found ~ @veraging over the corresponding orientations of the probing
that, since the magnetic anisotropy rende?® temperature field b/b=(ay,a,,a;). For anisotropy axes distributed at
dependent,|x®®)| increases with decreasing temperaturerandom, this averaginglenoted by a barcan be performed
fasterthan the commonhy(®| = 8% law. That temperature de- by means of the following formulagsee, for example, Ref.
pendence might mix with other ng82 behaviors, such as 11, p. 64

those associated with interspin interactions, so masking the N

effect of the latter. aja;=38;, 2.9
We finally mention that, due to both the challenges raised
by the recent experiments on individual magnetic ajajagen = 15(8ij S+ Sy + 8 Sjk), (2.9

nanoparticle$and by its intrinsic theoretical interest, the pio-
neering studies of the 1970s on classical spin systems wit

Feonndaex(;(ﬂges’}g:miigﬁczagggnf;_n; ?;?s itérrcfen;'lyitbv(\a/g]l?l dex'subsets of identical spins with help from these expressions,
’ ! o ' and then summing the results obtained over the different

be interesting to gener_ahze the previous work on the nonlln'subsets{for instance, integrating over the size and shape dis-
ear response of uniaxial spirfsto other forms of the mag-

. . i . . ributions in nanoparticle ensem
netic anisotropy. In this article we shall give a step towardt butions anoparticle ensembles

this objective, by investigating thequilibrium nonlinear re-
sponse of superparamagnets witlyeneral single-spin an-

here g;; is the Kronecker delta. Ensembles of nonidentical
pins can be handled analogously, by first averaging over

1. Effective linear susceptibility

isotropy. The effective linear susceptibilitfEq. (A4)] of an en-
semble of spins with randomly distributed anisotropy axes is
given by

II. LINEAR AND NONLINEAR SUSCEPTIBILITIES
OF SPINS WITH INVERSION SYMMETRY

= 1
. | . . . X=2 Xijeiaj=52 Xi,
In this section we derive the susceptibilities of spins TSR

whose aHam|Iton|ans haveinversion symmetry[H(m)  \yhich is essentially the trace of the susceptibility tensor.
=H(—m)]. To this end, we particularize the expressionsThen, on using the expressi¢a.1) for spins with inversion
given in Appendix A for the linear ) and first nonlinear symmetry and taking advantage of the commutative charac-
(x® and x®) susceptibilities in terms of thermal- ter of the summation and the averaging, one finds
equilibrium averages of the unperturbed spins. =(BI3)={(m?)=(BI3)(Z;m?). However, the quantity in-
side the last average symbol is a constant equai’toso one
A. Tensor elements finally obtains the simple result

The general formulas of Appendix A simplify notably — 1 5
when the Hamiltonian of the spin has inversion symmetry, X=3pm-. (2.9
since the thermal-equilibrium average of products obdd  Note that, after the random axes average, all vestiges of the
number of spin components vanishésn( ---m;,  )=0).  magnetic anisotropy disappear from the linear susceptibility,
Accordingly, the expressions for the tensor elements of thérespective of thesymmetryor magnitudeof the anisotropy
susceptibilities reduce in this case to terms. Our next goal is to determine to which extent a result
with this generality can be established for the nonlinear re-
Xij=B{mim;), (2.)  sponse.
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2. Effective nonlinear susceptibility The quantitiesS, andA provide a measure of the devia-
Proceeding analogously from EGA5) for x and using tions of thg Bpltz_ma_nn distribution of spin orientations from
Eq. (2.3 we first obtain an isotropic distribution. On the one hand, the average of the

second Legendre polynomiat,, measures the degree of
—3) @———_ 1 @ polarization of the magnetic moment along tAeaxis: fpr
XO=2 xRy =513 X (z%)=1 one hasS,=1, S, vanishes wherz?)=1/3, while
K b S, takes negative values fofz?)<1/3 (spin orientations
where we have taken into accowf”) :Xi(ﬁj :X.(J?].) [see the more concentrated close to th&' plang. On the other hand,
definition (A2)]. From Eq.(2.2) for systems with inversion A is a measure of the asymmetry of the equilibrium prob-
symmetry, we get for the tensor element required the follow-ability distribution against the transformation—y. Note,
ing expression: however, that Eq2.8) is independent of the signs of bath
andA.
X3 =382 (mPm?) —(mZ)(m?) — 2(m;m;)?]. _
. . . _ 4. Corollaries of the general result fox®
Then, interchanging again summations and averages, one can
see that the first two terms on the right-hand side of this As the nonlinear susceptibility can be considered as a
formula cancel each other upon summing ovéor j). Con- ~ Measure of the initial departure from the linear regime of the
sequently, one is left with the following expression for the Magnetization vs field curve, and this departure usually con-
effective nonlinear susceptibility of an ensemble of spinssists of a bending downwards of that curve, one is tempted to
with randomly distributed anisotropy axes conclude thaty®® is always a negative quantity. This result
is however not gene(rs?l anghiaxial spins indeed exhibit a
positive equilibriumy*'>’ at low temperatures in a transverse
©) 115:83% <mimj>2- (2.6) probing field as a consequence of the anisotrSpyeverthe-
less, Eq.(2.8) implies that the equilibrium nonlinear suscep-
tibility of ensembles with randomly distributed anisotropy
axes isnegativeat all temperatures foany symmetry of the
single-spin anisotropyso generalizing the result of Refs. 1
Let us now cast Eq(2.6) into a form that proves to and 2 in the uniaxial case
be particularly convenient for both its interpretation and  For isotropic spingor at sufficiently high temperatures so
computation. First, if we choose the coordinate systemhat the anisotropy plays no role in determining the averages
in which (mm;) is diagonal(the same system that diago- one has(x?)=(y?)=(z?)=1/3. Then,S,=A=0, and the
nalizes the susceptibility tensog;;), we have Y= nonlinear susceptibility(2.8) reduces to the isotropi¢or
—(1/15)8%2(m?)2. Then, if we introduce the components Langevin result:
of the normalized magnetic moment, namety; m,/m, y
=m,/m, andz=m,/m, as well as the quantities X&) =—&p°m*. (2.9

3. Alternative expression for the effective
nonlinear susceptibility

=1(3(z2)—1), A=1((y)—(x?)), 2 However, for magneto-anisotropic spife outside the high-
$=203(z)~1) 2 (Y9 =6 @7 temperature rangethe quantitiesS, andA depart from zero

the second-order moments required can be written as yielding |x®|=|x&)| [cf. Egs.(2.8) and(2.9)], so that the
1-s, 1-s, 1425, anisotropyalwaysincreases the magnitude of the nonlinear
(x?)= T_A’ (y?)= 3 +A, (D)= T response. Besides, as the thermal-equilibrium aver&ges

andA are temperature dependent, this increasg/@#| with

Finally, on squaring and adding the right-hand sides of theséespect to the isotropic value is different for the different
expressions and introducing the result obtainedy!®= temperatures, so the overall dependence of the nonlinear sus-

_(1/15)ﬁ32i<mi2>2v we arrive at the formula ceptibility on temperaturéeviates from g3~ law.

@) _ 1 3.4 2 2 IIl. NONLINEAR RESPONSE IN SOME
X9= =35 pomi(1+25;+64%), 28 IMPORTANT CASES
for the effective nonlinear susceptibility of an ensemble of After th ding di . th . | i
spins with a general single-spin anisotropy and randomly er the preceding |s<7‘u55|on.on the main genera} con
distributed anisotropy axdsf. Eq. (1.3)]. sequences of the expression d(?:-nved.)fé}) [Eq. (2.8)], in
Equation(2.8) is the desired counterpart for the nonlinear this section we shall particularize this formula to various
response of the simple EG2.5) for x. The random axes cases that can be relevant in experimental systems, and study

average has again reduced by two the maximum order of thtge corresponding temperature dependences of the nonlinear

moments entering in the expression for the effective susceps—uscept'b'“ty'

tibility. This yielded a linear susceptibility independent of

the anisotropy, since the highest-order moments in the ex- A. Spins with uniaxial or cubic anisotropy

pression fory were of second order. In contrast, although no  \whenever two of the second-order moments are equal, we
fourth-order moments remain ig®), the anisotropy enters can choose the coordinate axes so that those aktheand

in principle in this quantity via the combinatio®s andA of  (y2) moments, to geh =0 and reduce Eq2.8) to [cf. Eq.
second-order moments. (1.3)]
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X®=— & B3mi(1+2SD). (3.2) — BH=0{2*= 5 [(Cy*+X°Z°+y?Z°) + e(><2y222)]}(,3 ”
As the condition(x?)=(y?) is naturally obeyed by spins
with uniaxial anisotropy, we find that Eq1.3) does not hold whereo=8D,,6=D,/D,, ande=D,/D,, with D, Dy,
only for Ho— 272, but it is valid for any axially symmetric ~ andD, being the uniaxial, first cubic, and second cubic an-
anisotropy. However, this is not the whole range of validityisotropy constants, respectively. Concerning the relative ori-
of Eq. (3.1, asA =0 is also satisfied in other cases, e.g., inentation of the axes considered, we mention that because of

spin systems witlcubicanisotropy. Here® simplifies even  the mechanism of formation of certain magnetic particles,
further, since for cubic symmetrg,=0 follows from (x?)  there often exists a relation between the long axis of these

_ <yz> _ <22> =1/3, and hence particles(the symmetry axis of the shgpe anisotrpppd the
crystallographic axes; the former axis has been found to be
El=—Lgmt (V7). (3.2  coincident with 001] or[111] type directions in ellipsoidal

iron oxide particlegsee Ref. 13 and references thejein
Notice that this result is identical with the nonlinear suscep-

tibility in the absence of single-spin anisotrof#.9). 2. Temperature dependence of the nonlinear susceptibility

In contrast(z?)=1/3 is only obeyed at high temperatures
by a uniaxial spin. At low temperature$z®)—1 in the
uniaxial easy-axicase, sincen then behaves as an effective
Ising spin S,—1), while (z)—0 in the uniaxial easy-
plane case, asm is then equivalent to an effective plane
rotator (S,— —1/2), so that

Figure Xa) displays the nonlinear susceptibility of an en-
semble of superparamagnets with both uniaxial and cubic
anisotropy and anisotropy axes distributed at rand@rhe
details of the calculation for this case of the quantiSgesnd
A entering iny® are given in Appendix B.The tempera-
ture is given in units of the approximate energy bardes
i =D, +D,/4, ie., askgT/AU=1[o(1+ 6/4)]. (The exact

xin=—pm* (high T), forrr;JuIas1 for the bar?ier are&UzIZ()u for 35<1 and AU
—a ) _ =D [1+(68/4)(1—1/8)?] for 5>1, so the single expression
Xol=—3p°m*  (low T, easy-axis, (3.3  AU=D(1+ 8/4) conveniently interpolates between thgm.
From Eq.(1.2), the superparamagnetic temperature window
;Eji)iz—;—oﬁm“ (low T, easy-plang (in which the spins display their equilibrium response
limited from below byBAU=In(t,,/ 7o), which corresponds
Thus, unIike;gi{), the nonlinear susceptibility of uniaxial to the same temperature, if measured in unitA bf, for the
spins must exhibit ecrossoverfrom the high-temperature different cases considered. Fgy~100 s(ordinary “static”
isotropic regime to the low-temperature Ising-type or planemeasurementsand 7o~ 10 ° s (somewhere in between the
rotator regimes, accompanied by a significant net increase afalues for molecular magnetic clusters and magnetic nano-
the coefficient of3® by a factor of 3 or 3/2, respectively. In particles, the mentioned limit is located at ky(/ 7o) ~ 25,
the intermediate temperature rang& necessarily deviates Which is shown in the plot by the vertical dashed line. Fi-
from a 8% law and the maximum deviation is reflected by anally, the nonlinear susceptibility has been divided by the
maximum in the derivativel(T3y{®)/dT [or equivalently in ~ x'® of isotropic spins[Eq. (2.9, so the graph actually
the logarithmic slope-dIn(—x®)/dInT: see Ref. 1. The shows theanisotropy-inducectontribution to x(® (the g°
specific form of the crossover is governed by the form inlaws are then represented by horizontal lines
which S, evolves from its high-temperature to low-  The nonlinear susceptibility curves exhibit the linge
temperature values, and it will be faster, the more rapidly thélependences at both high temperatufiestropic regimg
probability distribution concentrates close to the energyand low temperature@sing regime, as well as the interme-
minima[for easy-axis anisotropy, this occurs when a positivediate crossover between these regimes induced by the mag-
quartic correction is presefi{«—(z2+\ z4]. netic anisotropy. It is seen that for cubic constants as large as

Note finally that in none of the cases considefediaxial D1~D, (for many nanoparticle systemd,|<D,), the

or cubig have we assumed a specifiicm for the single-spin ~ coarse features of the nonlinear susceptibility are reasonably

anisotropy, but just itsymmetry described by those of uniaxial spins. Nevertheless,5as
=D, /D, increases, the onset of the anisotropy-induced con-
B. Spins with competing uniaxial and cubic anisotropies tribution to x‘® moves to lower reduced temperatures and,

We now consider the case in which the magnetic anisotfor sufficiently large values o8, this contribution disappears

L S . .~ from the observable temperature window, since the system
ropy of the spin includeboth uniaxial and cubic terms. This , : - —3)_(3)
could be an approximate description of certain magnetidVith pure cubic anisotropy fulfilly ™= xisg [see Eq/(3.2)].
nanoparticles in which the *“shape” anisotropynternal

magnetostatic energydoes not completely dominate the C. Spins with biaxial anisotropy (arbitrary shape anisotropy)

magnetocrystalline anisotropy. 1. Hamiltoni
. Hamiltonian

1. Hamiltonian The final case that we consider is that of spins with biax-

When the uniaxial axis is parallel to one of the cubic axed@l anisotropy
(the[001] type directiong the Hamiltonian of the spin can
be written as —BH=0X*+ oy’ +0,2%, O<oy<oy<o,,
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7 - and Ose<1, and omitting constant additive terms, we can

e tote cast the Hamiltonian into the foritmow explicitly biaxia)
is0 @ | —BH=0(Z*+ey?). (3.9
In the case of general shape anisotropy we would have
eas.y-a.xis [ :B(UM§/2)(NZ_ NX)! while 8:(Ny_NX)/(NZ_ NX) is a
.~ uniaxial geometrical factor only. Notice that there are two equivalent

energy minima atX,y,z)=(0,0,=1), whereas (@; 1,0) are
L saddle points, so the relevant energy barrier is given by
i BAU=0c(1—¢). Note also that for=—0 we recover the
simplest uniaxial anisotropy, while—1 also leads to
uniaxial anisotropy;- 8H| -1 =o(1—x?), but with aplane
T+ ] of easy magnetizatiofthe Y Z plane. Therefore, a$y(®)| is
smaller for easy-plane anisotropgf., for instance, the low-
T results of Eq.(3.3)] we can expect that the magnitude of
the nonlinear response will decrease with increagingVe
shall confirm this below and see the specific form in which

: this takes place.
‘ () | P
€asy-axis . o
uniaxial [ 2. Temperature dependence of the nonlinear susceptibility
02 Figure 1b) shows the nonlinear susceptibility of an en-

semble of superparamagnets with biaxial anisotropy and ran-
plane-rotator | domly distributed anisotropy axe§lhe details of the calcu-

asymptote . lation of the quantities entering in the expression 6P are

i given in Appendix B). The temperature has been represented
by 1/o, and the temperature window that can be observed
, i with a measurement timig,~ 100 s, forry~10"° s, is lim-

0.01 0.1 L T% ited from below by BAU=0¢(1—-¢)~25 in each case
(shown by the vertical dashed lines fo=0, 1/2, and 3/4).

FIG. 1. Nonlinear susceptibility of an ensemble of superpara-pgain, the nonlinear susceptibility has been divided by that
magnets with randomly distributed anisotropy axes @diniaxial of isotropic spins[Eq. (2.9], in order to isolate the
plus cubic anisotropjfor different values ofs/4 shown in the plot

and e=0; see Hamiltonian3.4)] and (b) biaxial anisotropy]for L.
different values ot shown in the plot; see HamiltonigB.5)]. The The graph shows that, for values of the blaXIaI.parameter
temperature is represented in the dimensionless for@sT* as large ag ~1/2, the overall features of the nonlinear sus-

=1[o(1+ 8/4)] and (b) T* =1/o. The temperature window that Ceptibility curves are not too different from those of the easy-
can be observed experimenta”y with a measurement tjme aX'S UnIaXIa| case. We a|SO see that, as antICIpated above, the
~100 s for 7o~10"°s is limited by the vertical dashed lines anisotropy-induced contribution t¢®> decreases monotoni-
[shown only fore=0, 1/2, and 3/4 ir(b)]. The nonlinear suscep- cally with increasings and, ass—1, it tends to the values
tibility has been divided byy) [the nonlinear susceptibility of corresponding to easy-plane anisotropy. However, this does
isotropic sping2.9)], in order to isolate the anisotropy-induced con- not take place uniformly inT and, for e=0.9, a second
tribution to 3. crossover to the Ising regime at lower temperatures can be
observed|if we analyzedd(Tx(®)/dT, we would find a

whose significance stems from the following considerationsS€cond maximum in this derivatiyeThis crossover is best
On the one hand, Brown and Morriétshowed that, as far as understood by 2rewr|t|ng zthe biaxial Hamiltonian as
the energy is concerned, a uniformly magnetized partic:le_I BHIo=e(1—x )’_Lﬁ]l_s)z , which _corLesp(I)nds tor?asy%
with arbitrary shape is equivalent to a partidief the same P/ané anisotropy with an easy axis in the plane. Then, for

volume with the shape of a suitably chosen general eIIipsoiolarge values ok, thezpreferred direction introdgqed in the
(see also Ref. 15, p. 1280n the other hand, the shape easy plane by (1 ¢£)z° becomes relevant at sufficiently low

anisotropy of one such general ellipsoid is given by thetemperature§1/0~(l—s)<l], causing the final crossover

above expression withi=,8(vM§/2)Ni , wherev is the vol- to the Ising regime.
ume of the particleM its spontaneous magnetization, and
the N; are the(ellipsoid) demagnetization factors. Accord-
ingly, the biaxial Hamiltonian is the most general expression \We have studied the equilibrium nonlinear response of
for single-domain nanoparticles in which the shape anisotnoninteracting superparamagnets with a general single-spin
ropy largely dominates the other contributions to the anisotanisotropy. We have obtained a general expression for the
ropy (magnetocrystalline, surface, tc. nonlinear susceptibility in the experimentally important case
On usingx?=1-y?—7?, introducing the parameters  of anisotropy axes distributed at randdfq. (2.8)], which
=o0,~ 0y and e=(oy—0,)/(c,— 0y), which satisfyc=0  can be considered as the generalization for the nonlinear re-

1.5

[
|
! uniaxial
|
4

anisotropy-induced contribution tp®.

IV. SUMMARY AND CONCLUSIONS
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sponse of the simple formula for the averaged linear suscep- The response to stronger perturbations can be character-

tibility x=8m?/3. The expression derived has allowed us toized by higher-order derivatives and, for moderate fields, it is
demonstrate some simple but rather general results for spiHfficient to introduce theuadraticand cubic susceptibility

ensembles with random anisotrogy; ;(3) is always nega- tensors, namely,
tive, (i) unIike; the nonlinear susceptibility remains an-
isotropy dep_en@ent after the random axes_ a\/Efageept for Xijk =% b aby| .’ Xijk = § b9l
systems satisfyingx?) = (y?)=(z?), for which x(*) is equal 7 b=0 : b=0 (A2)
to that of isotropic spins (iii ) the single-spin anisotropy al-

ways increases the magnitude of the nonlinear response, atsing these definitions, the Taylor expansion{of,) with
(iv) since this increase depends on temperatyt®,departs ~ respect to the probing field can simply be written as

from the commony® e 83 laws.

The g_energl formula .derlved has begn parupularlzed to <Ami>=2 Xijbj+2 Xi(jzk)bjbk+_z Xi(j3k)| bibyby,
various situations that might be relevant in experimental sys- j ik ikl
tgms. For spins with ccinspetmg l_JnlaX|aI gnd cublc_ anlsotro—WhereAmi stands fom; —(m;)po.
pies we have found that®) exhibits an anisotropy-induced
crossover from the isotropic to the Ising-type behavior, but
this crossover is displaced out of the equilibrium temperature
window as the cubic contribution dominates. For spins with Let us now consider the projection of the thermal-
biaxial anisotropy, the crossover never disappears from thequilibrium average ofm on the probing-field direction.

superparamagnetic window, though its effects on the nonling;j, e <Arﬁ- 5)=E-(Am->b- we get from the preceding
ear response are reduced as the parameter measuring the ko expansion:l v

axial character increases. Nevertheless, for large values of
this parameter, following the crossover to the easy-plane re- L
gime, it appears a second crossover at lower temperatures to  (Am-b)=
the Ising regime.

We finally remark that the monitoring of the different
anisotropy regimes provided by the nonlinear susceptibility +
(which has no counterpart in the averaged linear susceptibil-

ity), could in principle be reversed to extract information where we have introduced the unit vectoe=b/b and the
about the magnetic anisotropy of superparamagnets frorstociated direction cosines=Db;/b. The quantities in the

simple nonlinear susceptibility measurements. brackets define the scalaffectivesusceptibilities

@_ L m) @ _ 1 _o%m)

2. Effective susceptibilities

b+

%:, X|(]2k) aja; ak) b2

Z Xij &i@j
1)

ij§|:'| Xi(jak)l a;a; aka|)b3, (A3)
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xP=2 Xi(jzk) ajajoy (A5)

APPENDIX A: GENERAL DEFINITIONS ijk

AND EXPRESSIONS FOR THE SUSCEPTIBILITIES

In this appendix various definitiongensorial and effec- X(3)=i% Xi(fk)| ajajaa;, (AB6)

tive) of the linear and nonlinear susceptibilities are given, as
well as the expressions for these quantities in terms ofyhich are the quantities commonly obtained in experiments.
thermal-equilibrium averages of the unperturbed spins.

3. Susceptibilities in terms of averages in the absence
1. Tensor definitions of the probing field

Let us consider a classical spim with (unperturbedl Let us finally express the susceptibilities in terms of av-
Hamiltonian(m) and subjected to a probing fielil The  erages ofm taken in the zero-probing-field limit. The corre-
response of the spin to the perturbation can be characterizespponding calculations can be carried out by starting from the
by the thermal-equilibrium averagen), taken with respect total HamiltonianHy=7—m-b, where the actual form of
to the Boltzmann distribution of spin orientations associatedhe unperturbed Hamiltoniak is not required, and setting
with the total Hamiltoniar;="—m-b. When the pertur- b=0 at the end(Together with magnetic anisotropy terms,

bation is SUfﬁCiently weak, a suitable quantity deSCfibing the}( could include the Coup”ng with an external bias f|é@

spin response is tHeear susceptibility, which is defined as The thermal-equilibrium average of any quantiym)
the second-rank tensor can be written as

_a(my)

Xi=h | (A1) (A)= % f dQ A(cosd,¢)e FHr, (A7)
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where we have introduced the notationfdQ 1. Competing uniaxial and cubic anisotropies

=/ 1d(cos®)[57(de/2m), the spherical coordinates are de-  Note first that in the coordinate system in which the

fined by m;=mcosd and m,+imy=msindexp(¢), and  Hamiltonian (3.4) has been written, the cross correlations
Z=[ dQ) exp(-BHy) is the partition function. The general (mm;) vanish fori#j, so one can use E.8) to calculate
derivative d(A)/db; can easily be taken by using the nonlinear susceptibility. On expressing the Hamiltonian

—dH+/dbj=m;, and reads in terms of the(canonical variablesz and ¢, we have
< ) —BH=072— 08 [Z2(1- %)+ :(1- D)1+ e2?)]
—B[<Am,> (AX(M;)]. (A8) ’
+308(1—2%)?(1+ ez®)cos 4p, (B1)
The application of this result th=m; gives where only the last term breaks the axial symmetry. In order
o < > to calculate averages of functions oélone(or the partition
i = BL(mmy) —(my)(m;)], (A9) function), we can deal with this term by using the identity
1 (2= ne=¢' 1 (2= ,
which when evaluated d1=0 and introduced in EqAL), 2—J de et coste) = Z_J de'efcose =1 (&),
yields the familiar expression foy;; in terms of averages mJo mJo
taken with respect to the Boltzmann distribution associated (B2)
to the unperturbed HamiltonigH. wherely(¢) is the modified Bessel function of the first kind
The nonlinear susceptibilities can be expressed analaf order 0, and to get the first equality we have used the
gously. For instance, if we use EGA8) also forA=mim;,  periodicity of the integrand and thatis an integer.
we can readily differentiate E¢A9), to obtain The application of Eq(B2) [with n=4 and ¢é=cd(1
2 —27%)2(1+ €z?)/8] to integrals of the type mentioned,
a°(m; 2
= m;m;m,) — {m;m; }{my) — {(m;m ) {m; -
&bjo"bk B [< i k) < i J>< k) < i k>< J> f dzfz d—f(ZG BH(Z<P) B3)

= (MM (M) + 2(mi)(m;)(myg ],

from which we can get the quadratic susceptibimﬁ). Fi-
nally, we can similarly differentiate this result to obtain the
third-order derivatives, getting

gives

F= fl dz f(2)lo[308(1—2%)%(1+ €z?)]
-1

a3(m;) s xexploz?— a8 [22(1—- %)+ 5(1—-22)%(1+ €2%)]}.
bbb, B (mym;mymy ) — (m;m;my(my) , , ,
k Th_en,_ on mtr_odu_cmg an effectiveemperature-dependent
— (mym;m;)(m) — (m;m,m;)(m;) uniaxial Hamiltonian
_<mjmkm|><mi>_<mimj><mkm|> _IBHeﬁ(Z):O’ZZ_Ué [22(1_22)+%(1_22)2(1+EZZ)]
— (MM (mymy) — (my My (m;my ) +Inl[508(1-2%)*(1+€e2%)], (B4)
+ 2[(mym; (M (my) + (mymy ) (my(my;) we can compactly write
+{mim) (my)(my) + (m;my(m;{my) Jl 42 (D exi] — BHA(D)] &5
= z f(z)exd — BHew(2)].

o (M () () () (my (i) -1 !
—6(m;)(m;){m){my)}. For instance, the average of the second Legendre polynomial

[casef(z)=2Z (32— 1)/2] reads

On evaluating this formula d@=0 and multiplying by 1/6

one getsX,(f'k)I These results illustrate the general rule: the Lo

nth-order derivatives of the first-order momefits., the sus- SZ:foldzf(e’z —l)exfl - BHeil(2)],

ceptibilities can be expressed in terms of moments of the

unperturbed probability distribution of order not higher thanwhere the partition functioff(z)=1] is given by the natu-

n+1. ral expressionZ:fl,ldzexr[—ﬁHeﬁ(z)]. Finally, as the
starting Hamiltonian(3.4) is invariant against the transfor-

APPENDIX B: CALCULATION OF S, AND A mation X<y, we find A=0 in this case, so the simplified

form (3.1) for x® holds agairn(the same would occur if the

In this appendix we derivésingle-integral formulas for | hiavial axis pointed along EL11] type direction.

the quantitiesS,=(3(z?)—1)/2 and A=({y?)—(x?))/2,
which enter in the general expressi¢h8) for the effective
nonlinear susceptibility, in the cases of spins with competing
uniaxial and cubic anisotropid$iamiltonian(3.4)] and bi- Let us first rewrite the Hamiltonia3.5) for the biaxial
axial anisotropyHamiltonian(3.5)]. spin in terms of the variablesand ¢,

2. Biaxial anisotropy
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—BH=%ce+0a(1-3e)Z%—Loe(1—27%)cos 2p. one can obtair(y?) (and henceA) from the derivative
. . _ _ O§y2>=(0'2)_1((92/r98). On this doing with the partition
This form is very convenient b_ecause to cal(_:ulate mtegral_s unction written asZ= [ ;dzexy — BHen(2)], we get
the type(B3), we can deal with the nonaxially symmetric
term in a manner analogous to that used in the uniaxial plus , , 1 (! . N
cubic case. Thus, by means of EB2) [now withn=2 and o= }fﬁldz 2(1=2%) To
é=—oe(1—2%)/2] we find o

expl — BHesl(2)]

oe(l—22)/2

L ) _
F=fl dz f(z)exd boe+o(1—Le)22)lo[ Loe(1—27)], +Z’ﬁld”(1 2)expl = AHeal2)]
-1

-

where lo(— &) =1¢(£) has been taken into account. There- (1=

fore, if we introduce the following effective uniaxial Hamil- wherel,(&)=dl,/d¢ is the modified Bessel function of the
tonian[cf. Eq. (B4)] first kind of order 1. By comparing witky?)=(1—(z?))/2

+ A, one realizes that the first integral in the preceding equa-

—BHe(2) =308+ 0(1-3e)2*+Inl[306(1-2)], tion is actuallyA, so we finally obtain for the quantities

we can again writé= as in Eq.(B5). entering in the expression for®):
The average of the second Legendre polynomial can be 1 (1
obtained by inserting(z) = Z ~1(3z°—1)/2 in Eq.(B5). Be- sz=—f dz3(32%2—1) exf — BHei(2)],
sides, since the partition function is defined as 2]
1 27d g , , lfl L 5 (Il>
= A=—=| dzz(1-z9)|—= exf — BHew(2)].
Z fﬁldzfo 27TeX|C[(r(z +ey9)], z] 9% (/o120 A~ BHer(2)]
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