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Nonlinear susceptibility of superparamagnets with a general anisotropy energy

J. L. Garcı´a-Palacios,* P. Jönsson, and P. Svedlindh
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The equilibrium nonlinear response of noninteracting superparamagnets with a general single-spin anisot-
ropy is investigated. Generalizing the results obtained for the simplest uniaxial anisotropy@Garcı́a-Palacios and
Lázaro, Phys. Rev. B55, 1006~1997!#, we derive a formula for the nonlinear susceptibility of spin ensembles

with randomly distributed anisotropy axes,x̄ (3), valid for any magnetic anisotropy with inversion symmetry.

The analysis of this expression reveals that:~i! x̄ (3) is always negative,~ii ! unlike the linear susceptibility,x̄ (3)

remains anisotropy dependent after the random axes average~except for cubic anisotropy, for whichx̄ (3) is
equal to that of isotropic spins!, ~iii ! the anisotropy always increases the magnitude of the nonlinear response,

and ~iv! since this increase depends on temperature,x̄ (3) deviates from the commonx̄ (3)}T23 laws. The

general expression forx̄ (3) is finally particularized to superparamagnets with competing uniaxial and cubic
anisotropies and superparamagnets with biaxial anisotropy~arbitrary ‘‘shape’’ anisotropy!, for which we study
the crossovers between the different regimes~isotropic, discrete orientation, and plane rotator! induced by the
magnetic anisotropy.
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I. INTRODUCTION

The study of classical spin systems has shed much l
on the properties of their quantum counterparts and con
tutes, in addition, an important field of research in its o
right. Besides, there exist certain systems for which a
scription in terms of classical spins captures the esse
physics in certain ranges, for instance, molecular magn
clusters with high spin in their ground state (S;10) and
magnetic nanoparticles (S;102–105); both systems will
here be referred to assuperparamagnets. Although we use
the language of magnetism, we could also include here
tems as the so-calledrelaxor ferroelectrics, in which the net
polarization of small polar regions can reorient due to th
mal activation between several equienergetical orientatio
leading to asuperparaelectricbehavior.

Among the various experimental realizations of sup
paramagnets, some approximately consist of noninterac
entities. The understanding of the properties of classi
noninteracting systems is besides very important for the s
sequent study of their quantum, interacting counterparts.
example, owing to an insufficient knowledge about so
properties of independent superparamagnets, it is not alw
known from which ‘‘laws’’ the associated quantities depa
as a consequence of interspin interactions. Similar consi
ations also apply to the study of quantum phenomena
these systems; as complete a knowledge as possible o
classical regime is a prerequisite for the study of, for
stance, quantum tunneling and coherence.

A. Magnetic anisotropy and extent of the equilibrium
„superparamagnetic… range

The single-spin anisotropy plays a fundamental role in
behavior of superparamagnets. Nevertheless, the effec
the anisotropy on thethermal-equilibriumproperties of these
systems are sometimes overlooked because superpara
netism isrestrictively ascribed to the temperature range
PRB 610163-1829/2000/61~10!/6726~8!/$15.00
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which the heights of the energy barriers~created by the mag
netic anisotropy! are lower than the thermal energy. Let u
briefly show the limitations of this view.

In the moderate-to-high barrier range, the characteri
time t for the rotation of a classical spinmW over the energy
barrierDU can be written in the Arrhenius form

t5t0 exp~bDU !, ~1.1!

whereb51/kBT and the pre-exponential term is weakly d
pendent on temperature (t0;1027–1028 s for molecular
magnetic clusters andt0;10210–10212 s for magnetic
nanoparticles!. Then, for a given measurement timetm, the
spins display their thermal-equilibrium response when
condition of superparamagnetism,t!tm, is obeyed, which
corresponds to the temperature range:

ln~ tm/t0!.bDU>0. ~1.2!

For instance, for ‘‘static’’ measurements (tm;1 –100 s) this
range is extremely wide (25.bDU>0), showing that the
mentioned ascription of superparamagnetism to the rang
which the thermal energy is larger than the anisotropy ba
ers (1*bDU>0) is unduly restrictive.

The preceding considerations also entail that, with
leaving the superparamagnetic regime, there are range
which bDU!1 ~isotropic behavior!, bDU;1 ~intermediate
behavior!, or bDU@1 ~discrete-orientation behavior!. Thus,
common approaches such as the isotropic or the discr
orientation ones have a restricted range of validity for the
selves, while, even with the combined use of both, the effe
of the crossoverbetween the different ranges are lost.

B. Linear and nonlinear responses

One of the most informative tools to investigate the pro
erties of spin systems is the analysis of its linear respon
This analysis could give, for instance, important informati
about the symmetry and strength of the magnetic anisotr
6726 ©2000 The American Physical Society
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in superparamagnets. A simple calculation shows, howe
that the linear susceptibility of an ensemble of noninteract
classical dipole moments with a general anisotropy ene
@simply obeyingH(mW )5H(2mW )#, is completely indepen
dent of the anisotropy if the orientations of the anisotro
axes aredistributed at random.

The analysis of the nonlinear response can then be
alternative. The nonlinear susceptibilityx (3) of superpara-
magnets with the simplest axially symmetric anisotropy,H
52DU(mz /m)2, has recently been theoretically studied.1,2

For anisotropy axes distributed at random,x (3) can be writ-
ten in the following two equivalent forms

x̄uni
(3)52 1

30 b3m4@122^z2&13^z2&2#

52 1
45 b3m4~112S2

2!, ~1.3!

where the overbar denotes average over axes orientatioz
5mz /m, and S25(3^z2&21)/2 is the thermal-equilibrium
average of the second Legendre polynomial.~In Ref. 1 the
notationG[^z2& was used, whilex (3) was expressed com
pactly in terms ofS2 by the authors of Ref. 2.! It was found
that, since the magnetic anisotropy renders^z2& temperature
dependent,ux (3)u increases with decreasing temperatu
fasterthan the commonux (3)u}b3 law. That temperature de
pendence might mix with other non-b3 behaviors, such as
those associated with interspin interactions, so masking
effect of the latter.1

We finally mention that, due to both the challenges rais
by the recent experiments on individual magne
nanoparticles3 and by its intrinsic theoretical interest, the pi
neering studies of the 1970s on classical spin systems
nonaxially symmetric Hamiltonians are currently being e
tended~see, for instance, Refs. 4–8!. In this context, it would
be interesting to generalize the previous work on the non
ear response of uniaxial spins1,2 to other forms of the mag
netic anisotropy. In this article we shall give a step towa
this objective, by investigating theequilibrium nonlinear re-
sponse of superparamagnets with ageneralsingle-spin an-
isotropy.

II. LINEAR AND NONLINEAR SUSCEPTIBILITIES
OF SPINS WITH INVERSION SYMMETRY

In this section we derive the susceptibilities of spi
whose Hamiltonians haveinversion symmetry@H(mW )
5H(2mW )#. To this end, we particularize the expressio
given in Appendix A for the linear (x) and first nonlinear
(x (2) and x (3)) susceptibilities in terms of therma
equilibrium averages of the unperturbed spins.

A. Tensor elements

The general formulas of Appendix A simplify notab
when the Hamiltonian of the spin has inversion symme
since the thermal-equilibrium average of products of anodd
number of spin components vanishes (^mi 1

•••mi 2n11
&50).

Accordingly, the expressions for the tensor elements of
susceptibilities reduce in this case to

x i j 5b^mimj&, ~2.1!
r,
g
y

an

,

he

d
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-

-

d

,

e

x i jkl
(3) 5 1

6 b3@^mimjmkml&2^mimj&^mkml&

2^mimk&^mjml&2^mjmk&^miml&#, ~2.2!

while x i jk
(2) vanishes.

As the condition of inversion symmetry breaks down
the presence of abias field, this case is excluded from ou
considerations~cf. Ref. 9!. It should be remarked, howeve
that H(mW )5H(2mW ) is obeyed by any single-spin aniso
ropy as a direct consequence of the time-reversal symm
of the Hamiltonian.10

B. Effective susceptibilities of spin systems
with randomly distributed anisotropy axes

The effective susceptibilities are defined as the coe
cients in the expansion in powers of the probing fieldbW of
the projection of the spin response onto the direction obW
@see Eq.~A3!#. For an ensemble ofidentical spins with a
given distribution of anisotropy axes orientations, these s
ceptibilities can be obtained by considering one spin a
averaging over the corresponding orientations of the prob
field bW /b5(ax ,ay ,az). For anisotropy axes distributed a
random, this averaging~denoted by a bar! can be performed
by means of the following formulas~see, for example, Ref
11, p. 64!

a ia j5
1
3 d i j , ~2.3!

a ia jaka l5
1

15 ~d i j dkl1d ikd j l 1d i l d jk!, ~2.4!

whered i j is the Kronecker delta. Ensembles of nonidentic
spins can be handled analogously, by first averaging o
subsets of identical spins with help from these expressio
and then summing the results obtained over the differ
subsets~for instance, integrating over the size and shape d
tributions in nanoparticle ensembles!.

1. Effective linear susceptibility

The effective linear susceptibility@Eq. ~A4!# of an en-
semble of spins with randomly distributed anisotropy axe
given by

x̄[(
i j

x i j a ia j5
1
3 (

i
x i i ,

which is essentially the trace of the susceptibility tens
Then, on using the expression~2.1! for spins with inversion
symmetry and taking advantage of the commutative cha
ter of the summation and the averaging, one findsx̄
5(b/3)( i^mi

2&5(b/3)^( imi
2&. However, the quantity in-

side the last average symbol is a constant equal tom2, so one
finally obtains the simple result

x̄5 1
3 bm2. ~2.5!

Note that, after the random axes average, all vestiges of
magnetic anisotropy disappear from the linear susceptibi
irrespective of thesymmetryor magnitudeof the anisotropy
terms. Our next goal is to determine to which extent a res
with this generality can be established for the nonlinear
sponse.
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2. Effective nonlinear susceptibility

Proceeding analogously from Eq.~A5! for x (3) and using
Eq. ~2.3! we first obtain

x̄ (3)[(
i jkl

x i jkl
(3) a ia jaka l5

1
5 (

i j
x i i j j

(3) ,

where we have taken into accountx i i j j
(3) 5x i j i j

(3) 5x i j j i
(3) @see the

definition ~A2!#. From Eq.~2.2! for systems with inversion
symmetry, we get for the tensor element required the follo
ing expression:

x i i j j
(3) 5 1

6 b3@^mi
2mj

2&2^mi
2&^mj

2&22^mimj&
2#.

Then, interchanging again summations and averages, one
see that the first two terms on the right-hand side of t
formula cancel each other upon summing overi ~or j ). Con-
sequently, one is left with the following expression for t
effective nonlinear susceptibility of an ensemble of sp
with randomly distributed anisotropy axes

x̄ (3)52 1
15 b3(

i j
^mimj&

2. ~2.6!

3. Alternative expression for the effective
nonlinear susceptibility

Let us now cast Eq.~2.6! into a form that proves to
be particularly convenient for both its interpretation a
computation. First, if we choose the coordinate syst
in which ^mimj& is diagonal~the same system that diago
nalizes the susceptibility tensorx i j ), we have x̄ (3)5
2(1/15)b3( i^mi

2&2. Then, if we introduce the componen
of the normalized magnetic moment, namely,x5mx /m, y
5my /m, andz5mz /m, as well as the quantities

S25 1
2 ~3^z2&21!, D5 1

2 ~^y2&2^x2&!, ~2.7!

the second-order moments required can be written as

^x2&5
12S2

3
2D, ^y2&5

12S2

3
1D, ^z2&5

112S2

3
.

Finally, on squaring and adding the right-hand sides of th
expressions and introducing the result obtained inx̄ (3)5
2(1/15)b3( i^mi

2&2, we arrive at the formula

x̄ (3)52 1
45 b3m4~112S2

216D2!, ~2.8!

for the effective nonlinear susceptibility of an ensemble
spins with a general single-spin anisotropy and rando
distributed anisotropy axes@cf. Eq. ~1.3!#.

Equation~2.8! is the desired counterpart for the nonline
response of the simple Eq.~2.5! for x̄. The random axes
average has again reduced by two the maximum order o
moments entering in the expression for the effective susc
tibility. This yielded a linear susceptibility independent
the anisotropy, since the highest-order moments in the
pression forx were of second order. In contrast, although
fourth-order moments remain inx̄ (3), the anisotropy enters
in principle in this quantity via the combinationsS2 andD of
second-order moments.
-

can
s

s

e

f
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p-

x-

The quantitiesS2 andD provide a measure of the devia
tions of the Boltzmann distribution of spin orientations fro
an isotropic distribution. On the one hand, the average of
second Legendre polynomial,S2, measures the degree o
polarization of the magnetic moment along theZ axis: for
^z2&.1 one hasS2.1, S2 vanishes when̂z2&51/3, while
S2 takes negative values for̂z2&,1/3 ~spin orientations
more concentrated close to theXY plane!. On the other hand
D is a measure of the asymmetry of the equilibrium pro
ability distribution against the transformationx↔y. Note,
however, that Eq.~2.8! is independent of the signs of bothS2
andD.

4. Corollaries of the general result forx̄ „3…

As the nonlinear susceptibility can be considered a
measure of the initial departure from the linear regime of
magnetization vs field curve, and this departure usually c
sists of a bending downwards of that curve, one is tempte
conclude thatx (3) is always a negative quantity. This resu
is however not general anduniaxial spins indeed exhibit a
positive equilibriumx (3) at low temperatures in a transvers
probing field as a consequence of the anisotropy.12 Neverthe-
less, Eq.~2.8! implies that the equilibrium nonlinear susce
tibility of ensembles with randomly distributed anisotrop
axes isnegativeat all temperatures forany symmetry of the
single-spin anisotropy~so generalizing the result of Refs.
and 2 in the uniaxial case!.

For isotropic spins~or at sufficiently high temperatures s
that the anisotropy plays no role in determining the averag!
one has^x2&5^y2&5^z2&51/3. Then,S25D50, and the
nonlinear susceptibility~2.8! reduces to the isotropic~or
Langevin! result:

x̄ iso
(3)52 1

45 b3m4. ~2.9!

However, for magneto-anisotropic spins~or outside the high-
temperature range!, the quantitiesS2 andD depart from zero
yielding ux̄ (3)u>ux̄ iso

(3)u @cf. Eqs.~2.8! and ~2.9!#, so that the
anisotropyalways increases the magnitude of the nonline
response. Besides, as the thermal-equilibrium averageS2

andD are temperature dependent, this increase ofux̄ (3)u with
respect to the isotropic value is different for the differe
temperatures, so the overall dependence of the nonlinear
ceptibility on temperaturedeviates from ab3 law.

III. NONLINEAR RESPONSE IN SOME
IMPORTANT CASES

After the preceding discussion on the main general c
sequences of the expression derived forx̄ (3) @Eq. ~2.8!#, in
this section we shall particularize this formula to vario
cases that can be relevant in experimental systems, and s
the corresponding temperature dependences of the nonl
susceptibility.

A. Spins with uniaxial or cubic anisotropy

Whenever two of the second-order moments are equal
can choose the coordinate axes so that those are the^x2& and
^y2& moments, to getD50 and reduce Eq.~2.8! to @cf. Eq.
~1.3!#
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x̄ (3)52 1
45 b3m4~112S2

2!. ~3.1!

As the condition^x2&5^y2& is naturally obeyed by spin
with uniaxial anisotropy, we find that Eq.~1.3! does not hold
only for H}2z2, but it is valid for any axially symmetric
anisotropy. However, this is not the whole range of valid
of Eq. ~3.1!, asD50 is also satisfied in other cases, e.g.,
spin systems withcubicanisotropy. Herex̄ (3) simplifies even
further, since for cubic symmetryS250 follows from ^x2&
5^y2&5^z2&51/3, and hence

x̄cub
(3)52 1

45 b3m4 ~; T!. ~3.2!

Notice that this result is identical with the nonlinear susc
tibility in the absence of single-spin anisotropy~2.9!.

In contrast,̂ z2&51/3 is only obeyed at high temperatur
by a uniaxial spin. At low temperatures,^z2&→1 in the
uniaxialeasy-axiscase, sincemW then behaves as an effectiv
Ising spin (S2→1), while ^z2&→0 in the uniaxialeasy-

plane case, asmW is then equivalent to an effective plan
rotator (S2→21/2), so that

x̄uni
(3).2 1

45 b3m4 ~high T!,

x̄uni
(3).2 1

15 b3m4 ~ low T, easy-axis!, ~3.3!

x̄uni
(3).2 1

30 b3m4 ~ low T, easy-plane!.

Thus, unlike x̄cub
(3) , the nonlinear susceptibility of uniaxia

spins must exhibit acrossoverfrom the high-temperature
isotropic regime to the low-temperature Ising-type or pla
rotator regimes, accompanied by a significant net increas
the coefficient ofb3 by a factor of 3 or 3/2, respectively. I
the intermediate temperature range,x̄ (3) necessarily deviate
from a b3 law and the maximum deviation is reflected by
maximum in the derivatived(T3x̄ (3))/dT @or equivalently in
the logarithmic slope2d ln(2x̄(3))/d ln T; see Ref. 1#. The
specific form of the crossover is governed by the form
which S2 evolves from its high-temperature to low
temperature values, and it will be faster, the more rapidly
probability distribution concentrates close to the ene
minima@for easy-axis anisotropy, this occurs when a posit
quartic correction is presentH}2(z21l z4)#.

Note finally that in none of the cases considered~uniaxial
or cubic! have we assumed a specificform for the single-spin
anisotropy, but just itssymmetry.

B. Spins with competing uniaxial and cubic anisotropies

We now consider the case in which the magnetic anis
ropy of the spin includesbothuniaxial and cubic terms. This
could be an approximate description of certain magn
nanoparticles in which the ‘‘shape’’ anisotropy~internal
magnetostatic energy! does not completely dominate th
magnetocrystalline anisotropy.

1. Hamiltonian

When the uniaxial axis is parallel to one of the cubic ax
~the @001# type directions!, the Hamiltonian of the spin can
be written as
-

-
of

e
y
e

t-

ic

s

2bH5s$z22d @~x2y21x2z21y2z2!1e~x2y2z2!#%,
~3.4!

wheres5bDu ,d5D1 /Du , ande5D2 /D1, with Du , D1,
andD2 being the uniaxial, first cubic, and second cubic a
isotropy constants, respectively. Concerning the relative
entation of the axes considered, we mention that becaus
the mechanism of formation of certain magnetic particl
there often exists a relation between the long axis of th
particles~the symmetry axis of the shape anisotropy! and the
crystallographic axes; the former axis has been found to
coincident with@001# or @111# type directions in ellipsoidal
iron oxide particles~see Ref. 13 and references therein!.

2. Temperature dependence of the nonlinear susceptibility

Figure 1~a! displays the nonlinear susceptibility of an e
semble of superparamagnets with both uniaxial and cu
anisotropy and anisotropy axes distributed at random.~The
details of the calculation for this case of the quantitiesS2 and
D entering inx̄ (3) are given in Appendix B.! The tempera-
ture is given in units of the approximate energy barrierDU
.Du1D1/4, i.e., askBT/DU.1/@s(11d/4)#. ~The exact
formulas for the barrier areDU5Du for d,1 and DU
5Du@11(d/4)(121/d)2# for d.1, so the single expressio
DU.Du(11d/4) conveniently interpolates between them!
From Eq.~1.2!, the superparamagnetic temperature wind
~in which the spins display their equilibrium response! is
limited from below bybDU5 ln(tm/t0), which corresponds
to the same temperature, if measured in units ofDU, for the
different cases considered. Fortm;100 s~ordinary ‘‘static’’
measurements! and t0;1029 s ~somewhere in between th
values for molecular magnetic clusters and magnetic na
particles!, the mentioned limit is located at ln(tm/t0);25,
which is shown in the plot by the vertical dashed line. F
nally, the nonlinear susceptibility has been divided by t
x̄ (3) of isotropic spins@Eq. ~2.9!#, so the graph actually
shows theanisotropy-inducedcontribution to x̄ (3) ~the b3

laws are then represented by horizontal lines!.
The nonlinear susceptibility curves exhibit the limitb3

dependences at both high temperatures~isotropic regime!
and low temperatures~Ising regime!, as well as the interme
diate crossover between these regimes induced by the m
netic anisotropy. It is seen that for cubic constants as larg
D1;Du ~for many nanoparticle systemsuD1u!Du), the
coarse features of the nonlinear susceptibility are reason
described by those of uniaxial spins. Nevertheless, ad
5D1 /Du increases, the onset of the anisotropy-induced c
tribution to x̄ (3) moves to lower reduced temperatures an
for sufficiently large values ofd, this contribution disappear
from the observable temperature window, since the sys
with pure cubic anisotropy fulfillsx̄ (3)5x̄ iso

(3) @see Eq.~3.2!#.

C. Spins with biaxial anisotropy „arbitrary shape anisotropy…

1. Hamiltonian

The final case that we consider is that of spins with bia
ial anisotropy

2bH5sxx
21syy

21szz
2, 0<sx<sy<sz ,
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whose significance stems from the following consideratio
On the one hand, Brown and Morrish14 showed that, as far a
the energy is concerned, a uniformly magnetized part
with arbitrary shape is equivalent to a particle~of the same
volume! with the shape of a suitably chosen general ellips
~see also Ref. 15, p. 128!. On the other hand, the shap
anisotropy of one such general ellipsoid is given by
above expression withs i5b(vM s

2/2)Ni , wherev is the vol-
ume of the particle,M s its spontaneous magnetization, a
the Ni are the~ellipsoid! demagnetization factors. Accord
ingly, the biaxial Hamiltonian is the most general express
for single-domain nanoparticles in which the shape anis
ropy largely dominates the other contributions to the anis
ropy ~magnetocrystalline, surface, etc.!.

On usingx2512y22z2, introducing the parameterss
[sz2sx and «[(sy2sx)/(sz2sx), which satisfys>0

FIG. 1. Nonlinear susceptibility of an ensemble of superpa
magnets with randomly distributed anisotropy axes and~a! uniaxial
plus cubic anisotropy@for different values ofd/4 shown in the plot
and e50; see Hamiltonian~3.4!# and ~b! biaxial anisotropy@for
different values of« shown in the plot; see Hamiltonian~3.5!#. The
temperature is represented in the dimensionless forms:~a! T*
51/@s(11d/4)# and ~b! T* 51/s. The temperature window tha
can be observed experimentally with a measurement timetm

;100 s for t0;1029 s is limited by the vertical dashed line
@shown only for«50, 1/2, and 3/4 in~b!#. The nonlinear suscep

tibility has been divided byx̄ iso
(3) @the nonlinear susceptibility o

isotropic spins~2.9!#, in order to isolate the anisotropy-induced co

tribution to x̄ (3).
s.

le

d

e

n
t-
t-

and 0<«<1, and omitting constant additive terms, we c
cast the Hamiltonian into the form~now explicitly biaxial!

2bH5s~z21«y2!. ~3.5!

In the case of general shape anisotropy we would havs
5b(vM s

2/2)(Nz2Nx), while «5(Ny2Nx)/(Nz2Nx) is a
geometrical factor only. Notice that there are two equival
energy minima at (x,y,z)5(0,0,61), whereas (0,61,0) are
saddle points, so the relevant energy barrier is given
bDU5s(12«). Note also that for«→0 we recover the
simplest uniaxial anisotropy, while«→1 also leads to
uniaxial anisotropy,2bHu«515s(12x2), but with aplane

of easy magnetization~the YZ plane!. Therefore, asux̄ (3)u is
smaller for easy-plane anisotropy@cf., for instance, the low-
T results of Eq.~3.3!# we can expect that the magnitude
the nonlinear response will decrease with increasing«. We
shall confirm this below and see the specific form in whi
this takes place.

2. Temperature dependence of the nonlinear susceptibility

Figure 1~b! shows the nonlinear susceptibility of an e
semble of superparamagnets with biaxial anisotropy and
domly distributed anisotropy axes.~The details of the calcu-
lation of the quantities entering in the expression forx̄ (3) are
given in Appendix B.! The temperature has been represen
by 1/s, and the temperature window that can be obser
with a measurement timetm;100 s, fort0;1029 s, is lim-
ited from below by bDU5s(12«);25 in each case
~shown by the vertical dashed lines for«50, 1/2, and 3/4).
Again, the nonlinear susceptibility has been divided by t
of isotropic spins @Eq. ~2.9!#, in order to isolate the
anisotropy-induced contribution tox̄ (3).

The graph shows that, for values of the biaxial parame
as large as«;1/2, the overall features of the nonlinear su
ceptibility curves are not too different from those of the ea
axis uniaxial case. We also see that, as anticipated above
anisotropy-induced contribution tox̄ (3) decreases monotoni
cally with increasing« and, as«→1, it tends to the values
corresponding to easy-plane anisotropy. However, this d
not take place uniformly inT and, for «*0.9, a second
crossover to the Ising regime at lower temperatures can
observed@if we analyzedd(T3x̄ (3))/dT, we would find a
second maximum in this derivative#. This crossover is bes
understood by rewriting the biaxial Hamiltonian a
2bH/s5«(12x2)1(12«)z2, which corresponds to easy
plane anisotropy with an easy axis in the plane. Then,
large values of«, the preferred direction introduced in th
easy plane by (12«)z2 becomes relevant at sufficiently low
temperatures@1/s;(12«)!1#, causing the final crossove
to the Ising regime.

IV. SUMMARY AND CONCLUSIONS

We have studied the equilibrium nonlinear response
noninteracting superparamagnets with a general single-
anisotropy. We have obtained a general expression for
nonlinear susceptibility in the experimentally important ca
of anisotropy axes distributed at random@Eq. ~2.8!#, which
can be considered as the generalization for the nonlinea
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sponse of the simple formula for the averaged linear sus
tibility x̄5bm2/3. The expression derived has allowed us
demonstrate some simple but rather general results for
ensembles with random anisotropy:~i! x̄ (3) is always nega-
tive, ~ii ! unlike x̄, the nonlinear susceptibility remains a
isotropy dependent after the random axes average~except for
systems satisfyinĝx2&5^y2&5^z2&, for which x̄ (3) is equal
to that of isotropic spins!, ~iii ! the single-spin anisotropy al
ways increases the magnitude of the nonlinear response
~iv! since this increase depends on temperature,x̄ (3) departs
from the commonx̄ (3)}b3 laws.

The general formula derived has been particularized
various situations that might be relevant in experimental s
tems. For spins with competing uniaxial and cubic anisot
pies we have found thatx̄ (3) exhibits an anisotropy-induce
crossover from the isotropic to the Ising-type behavior,
this crossover is displaced out of the equilibrium temperat
window as the cubic contribution dominates. For spins w
biaxial anisotropy, the crossover never disappears from
superparamagnetic window, though its effects on the non
ear response are reduced as the parameter measuring t
axial character increases. Nevertheless, for large value
this parameter, following the crossover to the easy-plane
gime, it appears a second crossover at lower temperatur
the Ising regime.

We finally remark that the monitoring of the differen
anisotropy regimes provided by the nonlinear susceptib
~which has no counterpart in the averaged linear suscept
ity!, could in principle be reversed to extract informatio
about the magnetic anisotropy of superparamagnets f
simple nonlinear susceptibility measurements.
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APPENDIX A: GENERAL DEFINITIONS
AND EXPRESSIONS FOR THE SUSCEPTIBILITIES

In this appendix various definitions~tensorial and effec-
tive! of the linear and nonlinear susceptibilities are given,
well as the expressions for these quantities in terms
thermal-equilibrium averages of the unperturbed spins.

1. Tensor definitions

Let us consider a classical spinmW with ~unperturbed!
HamiltonianH(mW ) and subjected to a probing fieldbW . The
response of the spin to the perturbation can be characte
by the thermal-equilibrium average^mW &, taken with respect
to the Boltzmann distribution of spin orientations associa
with the total HamiltonianHT5H2mW •bW . When the pertur-
bation is sufficiently weak, a suitable quantity describing
spin response is thelinear susceptibility, which is defined a
the second-rank tensor

x i j 5
]^mi&
]bj

U
b50

. ~A1!
p-

in

nd

o
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-

t
e

h
e
-
bi-
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e-
to

y
il-

m

-

s
f
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d

e

The response to stronger perturbations can be chara
ized by higher-order derivatives and, for moderate fields, i
sufficient to introduce thequadraticandcubic susceptibility
tensors, namely,

x i jk
(2)5

1

2

]2^mi&
]bj]bk

U
b50

, x i jkl
(3) 5

1

6

]3^mi&
]bj]bk]bl

U
b50

.

~A2!

Using these definitions, the Taylor expansion of^mi& with
respect to the probing field can simply be written as

^Dmi&.(
j

x i j bj1(
jk

x i jk
(2)bjbk1(

jkl
x i jkl

(3) bjbkbl ,

whereDmi stands formi2^mi&ub50.

2. Effective susceptibilities

Let us now consider the projection of the therma
equilibrium average ofmW on the probing-field direction.
Since ^DmW •bW &5( i^Dmi&bi , we get from the preceding
Taylor expansion:

^DmW •b̂&.S (
i j

x i j a ia j Db1S (
i jk

x i jk
(2) a ia jakDb2

1S (
i jkl

x i jkl
(3) a ia jaka l Db3, ~A3!

where we have introduced the unit vectorb̂[bW /b and the
associated direction cosinesa i5bi /b. The quantities in the
brackets define the scalareffectivesusceptibilities

x5(
i j

x i j a ia j ~A4!

x (2)5(
i jk

x i jk
(2) a ia jak ~A5!

x (3)5(
i jkl

x i jkl
(3) a ia jaka l , ~A6!

which are the quantities commonly obtained in experimen

3. Susceptibilities in terms of averages in the absence
of the probing field

Let us finally express the susceptibilities in terms of a
erages ofmW taken in the zero-probing-field limit. The corre
sponding calculations can be carried out by starting from
total HamiltonianHT5H2mW •bW , where the actual form of
the unperturbed HamiltonianH is not required, and setting
bW 50W at the end.~Together with magnetic anisotropy term
H could include the coupling with an external bias fieldBW .!

The thermal-equilibrium average of any quantityA(mW )
can be written as

^A&5
1

ZE dV A~cosq,w!e2bHT. ~A7!
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where we have introduced the notation*dV
[*21

1 d(cosq)*0
2p(dw/2p), the spherical coordinates are d

fined by mz5m cosq and mx1 i my5msinq exp(iw), and
Z5* dV exp(2bHT) is the partition function. The genera
derivative ]^A&/]bj can easily be taken by using
2]HT /]bj5mj , and reads

]^A&
]bj

5b@^Amj&2^A&^mj&#. ~A8!

The application of this result toA5mi gives

]^mi&
]bj

5b@^mimj&2^mi&^mj&#, ~A9!

which when evaluated atb50 and introduced in Eq.~A1!,
yields the familiar expression forx i j in terms of averages
taken with respect to the Boltzmann distribution associa
to the unperturbed HamiltonianH.

The nonlinear susceptibilities can be expressed an
gously. For instance, if we use Eq.~A8! also forA5mimj ,
we can readily differentiate Eq.~A9!, to obtain

]2^mi&
]bj]bk

5b2@^mimjmk&2^mimj&^mk&2^mimk&^mj&

2^mjmk&^mi&12^mi&^mj&^mk&#,

from which we can get the quadratic susceptibilityx i jk
(2) . Fi-

nally, we can similarly differentiate this result to obtain th
third-order derivatives, getting

]3^mi&
]bj]bk]bl

5b3$^mimjmkml&2^mimjmk&^ml&

2^mimjml&^mk&2^mimkml&^mj&

2^mjmkml&^mi&2^mimj&^mkml&

2^mimk&^mjml&2^mjmk&^miml&

12@^mimj&^mk&^ml&1^mkml&^mi&^mj&

1^mimk&^mj&^ml&1^mjml&^mi&^mk&

1^mjmk&^mi&^ml&1^miml&^mj&^mk&#

26^mi&^mj&^ml&^mk&%.

On evaluating this formula atb50 and multiplying by 1/6
one getsx i jkl

(3) . These results illustrate the general rule: t
nth-order derivatives of the first-order moments~i.e., the sus-
ceptibilities! can be expressed in terms of moments of
unperturbed probability distribution of order not higher th
n11.

APPENDIX B: CALCULATION OF S2 AND D

In this appendix we derive~single-integral! formulas for
the quantitiesS25(3^z2&21)/2 and D5(^y2&2^x2&)/2,
which enter in the general expression~2.8! for the effective
nonlinear susceptibility, in the cases of spins with compet
uniaxial and cubic anisotropies@Hamiltonian ~3.4!# and bi-
axial anisotropy@Hamiltonian~3.5!#.
d

o-

e

g

1. Competing uniaxial and cubic anisotropies

Note first that in the coordinate system in which t
Hamiltonian ~3.4! has been written, the cross correlatio
^mimj& vanish foriÞ j , so one can use Eq.~2.8! to calculate
the nonlinear susceptibility. On expressing the Hamilton
in terms of the~canonical! variablesz andw, we have

2bH5sz22sd @z2~12z2!1 1
8 ~12z2!2~11ez2!#

1 1
8 sd~12z2!2~11ez2!cos 4w, ~B1!

where only the last term breaks the axial symmetry. In or
to calculate averages of functions ofz alone~or the partition
function!, we can deal with this term by using the identity

1

2pE0

2p

dw ej cos(nw) 5
nw5w8 1

2pE0

2p

dw8ejcosw85I 0~j!,

~B2!

whereI 0(j) is the modified Bessel function of the first kin
of order 0, and to get the first equality we have used
periodicity of the integrand and thatn is an integer.

The application of Eq.~B2! @with n54 and j5sd(1
2z2)2(11ez2)/8# to integrals of the type mentioned,

F[E
21

1

dzE
0

2pdw

2p
f ~z!e2bH(z,w), ~B3!

gives

F5E
21

1

dz f~z!I 0@ 1
8 sd~12z2!2~11ez2!#

3exp$sz22sd @z2~12z2!1 1
8 ~12z2!2~11ez2!#%.

Then, on introducing an effective~temperature-dependen!
uniaxial Hamiltonian

2bHeff~z!5sz22sd @z2~12z2!1 1
8 ~12z2!2~11ez2!#

1 ln I 0@ 1
8 sd~12z2!2~11ez2!#, ~B4!

we can compactly write

F5E
21

1

dz f~z!exp@2bHeff~z!#. ~B5!

For instance, the average of the second Legendre polyno
@casef (z)5Z 21(3z221)/2# reads

S25
1

ZE21

1

dz1
2 ~3z221!exp@2bHeff~z!#,

where the partition function@ f (z)51# is given by the natu-
ral expressionZ5*21

1 dzexp@2bHeff(z)#. Finally, as the
starting Hamiltonian~3.4! is invariant against the transfor
mation x↔y, we find D50 in this case, so the simplified
form ~3.1! for x̄ (3) holds again~the same would occur if the
uniaxial axis pointed along a@111# type direction!.

2. Biaxial anisotropy

Let us first rewrite the Hamiltonian~3.5! for the biaxial
spin in terms of the variablesz andw,
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2bH5 1
2 s«1s~12 1

2 «!z22 1
2 s«~12z2!cos 2w.

This form is very convenient because to calculate integral
the type~B3!, we can deal with the nonaxially symmetr
term in a manner analogous to that used in the uniaxial p
cubic case. Thus, by means of Eq.~B2! @now with n52 and
j52s«(12z2)/2# we find

F5E
21

1

dz f~z!exp@ 1
2 s«1s~12 1

2 «!z2#I 0@ 1
2 s«~12z2!#,

where I 0(2j)5I 0(j) has been taken into account. Ther
fore, if we introduce the following effective uniaxial Hami
tonian @cf. Eq. ~B4!#

2bHeff~z!5 1
2 s«1s~12 1

2 «!z21 ln I 0@ 1
2 s«~12z2!#,

we can again writeF as in Eq.~B5!.
The average of the second Legendre polynomial can

obtained by insertingf (z)5Z 21(3z221)/2 in Eq.~B5!. Be-
sides, since the partition function is defined as

Z5E
21

1

dzE
0

2pdw

2p
exp@s~z21«y2!#,
e

B
ly

.
v

of

s

-

e

one can obtain̂ y2& ~and henceD) from the derivative
^y2&5(sZ)21(]Z/]«). On this doing with the partition
function written asZ5*21

1 dzexp@2bHeff(z)#, we get

whereI 1(j)5dI0 /dj is the modified Bessel function of th
first kind of order 1. By comparing witĥy2&5(12^z2&)/2
1D, one realizes that the first integral in the preceding eq
tion is actuallyD, so we finally obtain for the quantitie
entering in the expression forx̄ (3):

S25
1

ZE21

1

dz1
2 ~3z221! exp@2bHeff~z!#,

D5
1

ZE21

1

dz1
2 ~12z2!S I 1

I 0
D U

s«(12z2)/2

exp@2bHeff~z!#.
T.
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