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I Introduction

Small, magnetically ordered particles, are ubiquitous both in naturally occur-
ring and manufactured forms. On the one hand, it is remarkable the wide
spectrum of applications of these systems, which range from magnetic record-
ing media, catalysts, magnetic fluids, filtering and phase separation in mineral
processing industry, magnetic imaging and magnetic refrigeration, to numer-
ous geophysical, biological, and medical uses. On the other hand, the nano-
metric magnetic particles can be considered as model systems for the study of
various basic physical phenomena. Among others we can mention: rotational
Brownian motion and thermally activated processes in multistable systems,
mesoscopic quantum phenomena, dipole-dipole interaction effects, and the
dependence of the properties of solids on their size.

Magnetically ordered particles of nanometric size generally consist of a
single domain, whose constituent spins, at temperatures well below the Curie
temperature, rotate in unison. The magnetic energy of a nanometric particle
is then determined by its magnetic moment orientation, and has a number of
stable directions separated by potential barriers (associated with the magnetic
anisotropy). As a result of the coupling of the magnetic moment of the particle,
m, with the microscopic degrees of freedom of its environment (phonons,
conducting electrons, nuclear spins, etc.), the magnetic moment is subjected to
thermal fluctuations and may undergo a Brownian-type rotation surmounting
the potential barriers. This solid-state relaxation process was proposed and
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studied by Néel (1949), and subsequently reexamined by Brown (1963), by
dint of the theory of stochastic processes.

In the high potential-barrier range, AU/kgT > 1, the characteristic time
for the over-barrier rotation process, 7|, can approximately be written in the
Arrhenius form 7 =~ 79 exp(AU/kgT), where 79 (~ 10719-107"%5s) is related
with the intra-potential-well dynamics. For 7| < tm (tm is the measurement
or observation time), 773 maintains the equilibrium distribution of orientations
as in a classical paramagnet; because m = || is much larger than a typical
microscopic magnetic moment (m ~ 102-10° ug) this phenomenon is named
superparamagnetism. In contrast, when 7| > tm, the magnetic moment rotates
rapidly about a potential minimum whereas the over-barrier relaxation mech-
anism is blocked. This corresponds to the state of stable magnetization in a
bulk magnet. Finally, under intermediate conditions (7| ~ tm) non-equilibrium
phenomena, accompanied by magnetic “relaxation,” are observed. It is to be
noted that, in the Arrhenius range mentioned, the system may pass through
all these regimes in a relatively narrow temperature interval.

We shall describe a nanoparticle as a classical magnetic moment with
magnetic-anisotropy energy. This brings generality to the results and the con-
nection with other physical systems that can approximately be described as
ensembles of “rotators” in certain orientational potentials. Examples include:
molecular magnetic clusters with high spin in their ground state (in the ranges
where a classical description of their spins is reasonable); nematic liquid crys-
tals with uniaxial physical properties; relaxor ferroelectrics; certain high-spin
dilutely-doped glasses described by the random-axial-anisotropy model; and
superparamagnetic-like spin glasses.

Indeed, the analogies between the macroscopic behavior of certain electric
and magnetic “glassy” systems and that of ensembles of small magnetic parti-
cles have received recurrent attention during the last 20 years. The magnetic
nanoparticle systems exhibit glassy-like phenomena associated with the dis-
tribution of particle parameters (anisotropy constants, volumes, magnetic mo-
ments, etc.), which lead to more or less wide distributions of relaxation times.
On the other hand, ensembles of interacting nanoparticles apparently exhibit
genuine glassy properties, mainly due to the extremely anisotropic charac-
ter of the dipole-dipole interaction. Therefore, it is important to determine
which phenomena are intrinsically due to the presence of interactions in the
nanoparticle ensemble and which others not. In this connection, owing to the
lack of enough knowledge about some of the properties of independent mag-
netic particles, it is not always known from which “laws” the corresponding
quantities depart as a consequence of the inter-particle interactions. Similar
considerations also apply to the study of the effects associated with quantum
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phenomena in small magnetic particles; as complete a knowledge as possible
of the classical regime is the mandatory starting point towards the study of,
for example, quantum tunnelling and coherence in these systems.

Finally, the study of the dynamics of non-interacting classical magnetic
moments is an interesting strand of research per se, which seems to be far
from exhausted. Indeed, relevant developments of the pioneering works of the
1960s and 1970s have been performed during the last 15 years.

The purpose of this Chapter is to gain a deeper insight into the stati-
cal (thermal-equilibrium) and dynamical (non-equilibrium) properties of non-
interacting magnetically anisotropic nanoparticles in the framework of classi-
cal physics.

The scheme followed in this work is as follows: In Sections II and III
some thermal-equilibrium properties of classical magnetic moments are stud-
ied. Section II is devoted to the obtainment of general results for the basic
thermodynamical functions (partition function and thermodynamical poten-
tials), some of which are subsequently used in Section III to calculate various
important thermal-equilibrium quantities. Some known results are reobtained
(presenting in some cases alternative expressions and/or derivations), whereas
the superparamagnetic theory is extended by calculating a number of other
quantities. The central issue along these first two Sections is the study of
the effects of the magnetic anisotropy on the thermal-equilibrium properties
of superparamagnetic systems. These effects are sometimes ignored because
superparamagnetism is restrictively associated with the temperature range
where the anisotropy energy is smaller than the thermal energy.

In the remainder Sections we shall concentrate on the dynamical proper-
ties of classical magnetic moments. The heuristic approach to the dynamics
of these systems is considered in Section IV, where the analyses of the cor-
responding models in order to extract certain parameters of ensembles of
magnetic nanoparticles are revised and developed. In Section V the dynam-
ical properties of classical magnetic moments are studied by the methods
of the theory of stochastic processes. The Brown—Kubo—Hashitsume stochas-
tic model is presented in a unified way and Langevin-dynamics simulations
are performed to study the non-zero temperature dynamical properties. Both
the study of individual stochastic trajectories and the response of ensembles
of magnetic moments are undertaken. Finally, Section VI is devoted to the
foundation of the dynamical equations that are the basis of Section V. The
techniques of the formalism of the independent-oscillator environment are em-
ployed to derive dynamical equations for the magnetic moment that take the
effects of its interaction with the surrounding medium into account.
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IT Equilibrium properties: generalities and meth-
odology

II.A Introduction

Throughout this Chapter we shall concentrate on the study of magnetic mo-
ments whose physical support (the crystal lattice in magnetic nanoparticles),
to which they are linked by the magnetic anisotropy, is fastened in space. In
small-particle magnetism, this corresponds to particles dispersed in a solid
matrix. Although this apparently excludes the so called “magnetic fluids”
(where the physical rotation of the particles plays a fundamental réle), these
belong to the class of solid dispersions when the liquid carrier is frozen (which
is besides the case of experimental interest when studying low-temperature
properties). On the other hand, we shall also restrict our study to systems
with axially symmetric magnetic anisotropy. This choice makes the problem
mathematically tractable and provides valuable insight into more complex
situations.

As was mentioned in Section I, the thermal-equilibrium (superparamag-
netic) behavior is observed when the measurement or observation time, tp,,
is much longer than the characteristic relaxation times of the system (this is
of course a general statement). In Table I the measurement times of various
experimental techniques are displayed.

Note that the thermal-equilibrium range can extend down to temperatures
where the heights of the energy barriers (created by the magnetic anisotropy)
are much larger than the thermal energy. To illustrate, for a system with an
axially symmetric Hamiltonian and in the high-barrier range, the mean time
for the over-barrier rotation process, 7, can be written in the Arrhenius form

7| = To exp(AU/ksT) . (2.1)

Besides, the “high-barrier” range where this expression for the relaxation time
holds, extends down to AU/kpT 2 2; moreover, for AU/kpgT < 2, the relax-
ation time 7 is of the order of 7o (~ 107'°-107'?s for magnetic nanopar-
ticles). Therefore, the exponential decrease of 7 as T increases, yields the
range

ln(tm/’l'()) > AU/kBT >0,

as the thermal-equilibrium range (7] < tn,) for a given measurement time
tm- For instance, for magnetic measurements with ¢, ~ 1-100s, this range
is extremely wide (25 > AU/ksT > 0). This entails that the frequently en-
countered statement, “superparamagnetism occurs when the thermal energy
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TABLE 1. Characteristic measurement times of various experimental techniques.

Experimental technique | Measurement time
magnetization 1-100s
ac susceptibility 10~%-100s
Mossbauer spectroscopy 10~9-10"7s
Ferromagnetic resonance 107 %s
Neutron scattering 10712-10785

is comparable or larger than the energy barriers”, is unnecessarily restrictive.

Let us further illustrate this important point which rests essentially on the
magnitude of 7y and the exponential dependence of 7 on 7' in Eq. (2.1). For an
experiment with measurement time t,,, the blocking temperature, T}, defined
as the temperature where t,, = 7, is given by ¢, = 79 exp(AU/kpTs). Accord-
ingly, one has In(ty,/79) = AU/ksTy, so that, if t, = 79102 (a typical value
for standard magnetic measurements), it follows that AU/kgT}, = In(10'2) ~
27.6. However, for AU/(kg1.1T},) ~ 25, one already finds 7 = 0.08¢m while
for AU/(kp1.2T}) ~ 23, one has 7| = 0.01tm, i.e., the system is clearly in the
thermal-equilibrium regime, whereas AU is still much larger than kgT.

Thus, there exists an extremely wide range where superparamagnetism
occurs (7 < ) and, simultaneously, the “naive condition of superparamag-
netism” AU/kgT <1, is not necessarily obeyed. Consequently, in that range,
the effects of the anisotropy-energy on the equilibrium quantities can be siz-
able. Indeed, for any thermal-equilibrium quantity, prior to the observation
of the corresponding “blocking” (departure from thermal-equilibrium behav-
ior) when the temperature is sufficiently lowered, one can clearly observe a
crossover from the isotropic-type behavior at high temperatures (where the
anisotropy potential plays a minor réle) to either a discrete-orientation- or
plane-rotator-type behavior at low temperatures (where the magnetic mo-
ment stays most of the time in the potential-minima regions), without leaving
the thermal-equilibrium range.

The organization of the remainder of this Section is as follows. In Subsec.
II.B we shall introduce and discuss the Hamiltonian for a small magnetic
particle. In Subsec. I1.C the partition function and free energy are introduced.
In Subsec. II.D we shall carry out the expansion of the partition function in
powers of either the external field or the anisotropy constant, along with an
asymptotic expansion for strong anisotropy. Finally, in Subsec. II.E, we shall
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derive the corresponding expansions of the free energy.

II.B Hamiltonian

To begin with, we shall discuss the concept of effective Hamiltonian for a
small, magnetically ordered particle. Then we shall introduce the basic form
of the Hamiltonian that will be studied along this work, to conclude with the
study of the energy barriers in the longitudinal-field case.

1. Effective Hamiltonian of a nanoparticle

A basic assumption in small-particle magnetism is that a single-domain parti-
cle, with a given physical orientation, is in internal thermodynamical equilib-
rium at temperature 7. Not too close to the Curie temperature, its constituent
spins rotate in unison (coherent rotation), so the only relevant degree of free-
dom left is the orientation of the net magnetic moment. With respect to this
variable the thermal equilibration can take place in a time scale that can be
considerably longer than that of the internal equilibration. Under such condi-
tions, the internal free energy (for a given instantaneous orientation) can be
considered as an effective energy (Hamiltonian) for the orientational degrees
of freedom.

The consideration of a internal free energy as an effective Hamiltonian
for the remainder degrees of freedom is indeed general, and it is founded in
the very statistical-mechanical definition of the free energy. Let (p,q) be the
canonical variables “of interest” and (P, Q) the set of “internal” variables.
The partition function, Z, and the free energy, F, are defined in terms of the
total Hamiltonian of the system, Hr, as

Z= / dpdgdPdQ exp[-AHr(p,¢:P,Q)],  F= —% Iz,

where 8 = 1/kgT.! One can define internal quantities for given values of the
variables p and ¢ (marked by a tilde), as follows

Z(p,q) = /deQ expl-BHr(0, P, Q)],  F(pq) = —% nZ(p,q).

In these preliminary considerations, we omit in Z a factor (27h)™° where s is the
number of degrees of freedom (Landau and Lifshitz, 1980, § 31). This factor, which renders
Z dimensionless, when multiplied by the volume element in the phase space dpi ---dgs
gives the semiclassical “number of states” in this volume element, providing in this way the
proper link with the quantum-mechanical expression for the partition function.
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Note that, by definition, the internal free energy obeys the relation

expl—BF(p,q)] = / dPAQ exp[-BHr (p,; P, Q)] .

Therefore, the total partition function Z, from which all the equilibrium quan-
tities of the system can be derived, can be written as

Z= /dpdq exp[—BF (p,q)] -

This equation demonstrates the above statement: the so-defined internal free
energy F(p,q) plays the role of an effective Hamiltonian for the variables p
and ¢ when studying the equilibrium properties of the system. Note that this
effective Hamiltonian may have, by its very definition, terms dependent on 7T'.

Naturally, this approach is in principle applicable to any chosen pair of
variables (p,q). However, for this procedure to be useful, a time-scale sepa-
ration between some internal “fast” variables and certain “slow” ones must
occur. In our case, the orientation of the total magnetic moment plays the réle
of the latter and, in what follows, we shall refer to the so-introduced internal
free energy as the magnetic energy (Hamiltonian) of the nanoparticle, and it
will be simply denoted by #(mm).

Similar considerations can, in principle, be applied to a magnetic domain
in a bulk magnet but, for such a macroscopic system, the time scale separation
mentioned is so huge that the probability of thermally activated magnetiza-
tion reversal is almost zero over astronomical time scales; the system is then
effectively confined in a restricted region of the phase space. Note finally that
the separation procedure between “internal” and “relevant” variables would
lead to exact results if one in fact uses the above definitions to calculate
F(p,q) by “integrating out” the internal variables. However, this is not pos-
sible in general, but one determines F(p, q) on the basis of series truncations,
symmetry arguments, etc. (Brown, 1979).

2. Hamiltonian studied

The magnetic energy of a nanoparticle has a number of different contribu-
tions, e.g., magnetostatic self-energy (“demagnetization” or “shape” energy),
magneto-crystalline energy, surface terms, magneto-elastic energy, etc. All
these contributions give rise to a dependence of the energy of the nanoparticle
on the orientation of its magnetic moment, i.e., in the absence of an exter-
nal magnetic field the magnetic properties of the system are anisotropic. We
shall mainly consider systems where the magnetic-anisotropy energy has the
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simplest axial symmetry. Then, if an external field Bis applied (assumed to
be uniform over the volume of the system), the total magnetic energy reads

H) = —— " -n)?—m-B, (2.2)

where K is the magnetic-anisotropy energy constant, v is the volume of the
nanoparticle, and 7 is a unit vector along the symmetry axis of the magnetic-
anisotropy term (hereafter referred to as the anisotropy azis).

On introducing the unit vectors €, in the direction of the magnetic moment
(€ =1m/m), and b, in the direction of the external magnetic field (b = B/B),
as well as the dimensionless anisotropy and field parameters

Kv mB
- = 2.
s=al, =1, (23)
the Hamiltonian (2.2) can be written as
—BH =0(@- 1) +£(@-D) . (2.4)

For K > 0 the anisotropy is of “easy-axis” type, since the two existing minima
of the anisotropy term point along +7 (the “poles”). On the other hand, for
K < 0 the anisotropy is of “easy-plane” type, the minima of the anisotropy
term being then continuously distributed over the plane perpendicular to 7
(the “equatorial” region).

The adopted expression for the magnetic anisotropy is the leading term
in the expansion of a general uniaxial magneto-crystalline anisotropy energy
with respect to the direction cosines of the magnetization.? On the other hand,
such a form is also the appropriate one for shape anisotropy (demagnetization
self-energy) of an ellipsoid of revolution

Haem = svpoM? (D cos®d + Dy sin®d)

where ¢ is the angle between the magnetic moment and the long (polar)
axis of the ellipsoid, My = m/v is the spontaneous magnetization, D, the
demagnetization factor along the polar axis, and Dj the demagnetization fac-
tor along an equatorial axis. Indeed, we can write the above expression as
Haem = cte— %vuo M? (D, — D,) cos?d, so that the corresponding anisotropy
constant reads
Kgem = %/‘LOMsz (Db - Da) . (25)
2For instance, directions of easy magnetization in the equatorial plane would be de-

termined by higher-order terms in the expansion for K < 0 (Landau and Lifshitz, 1984,
§ 40).
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In this case easy-axis and easy-plane anisotropy correspond, respectively, to
prolate and oblate ellipsoids of revolution.

For many materials, slight deviations from spherical shape make the shape
anisotropy to dominate the remainder contributions to the magnetic aniso-
tropy. On the other hand, as was shown by Brown and Morrish (1957), a
single-domain particle with an arbitrary shape is equivalent to a suitably cho-
sen general ellipsoid, as far as the behavior of its magnetization in a uniform
applied field is concerned. Therefore, after these results, the seemingly spe-
cialized study of ellipsoids of revolution (i.e., of uniaxial anisotropy) can be
of great importance to account for the effects of a general shape anisotropy.

In what follows we shall phrase our discussion in the language of classical
magnetic moments. Nevertheless, the results obtained will be applicable to
systems consisting of classical dipole moments that could approximately be
described by Hamiltonians akin to (2.2), i.e., Hamiltonians comprising a cou-
pling term to an (electric or magnetic) external field plus an axially symmetric
orientational potential.

3. Energy barriers in the longitudinal-field case

We shall now study the behavior of the Hamiltonian in the illustrative B || A
case, determining its extrema and how they change as a function of the several
parameters in the Hamiltonian.
Before proceeding, let us introduce two useful quantities: the maximum
anisotropy field, By, and h, the external field measured in units of By,
_ 2Ky LB _ ¢

B = =
K ’l?’l,7 BK 20

(2.6)

Let us now write the energy in terms of o, the reduced field h, and the angle
9 between mi and the anisotropy axis [cf. Eq. (2.4)]

BH = —o(cos®I + 2h cos V) . (2.7)

To fix ideas, we shall assume o > 0, i.e., anisotropy of easy-axis type. The
results for o < 0, will be analogous but what is a maximum for ¢ > 0, becomes
a minimum for ¢ < 0, and vice-versa. The extrema of H are obtained by
equating to zero the ¥-derivative O(fH)/0¥ = 20 sin¥(cos ¥ + h) getting

o(BH) _

sin =0 & 9=0,7
09

cosd=—h if |h/ <1

The type of extrema is obtained by evaluating the second derivative at the
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extrema:
20(1+h) ford=0

= 20(1—h) ford=m ,
—20(1—h?) for cos¥ = —h (if |h| <1)

0*(BH)
82

so that one gets the following results

| minima | maxima
|[h| <1 | ¥=0,7 | 9= arccos(—h)
h>1 9=0 Y=
h<-1| d=m 9=0

Thus, for |h| < 1 (i.e., for |B| < Bk), the energy has minima at ¢ = 0 and
¥ = 7, with a maximum between them (see the upper panel of Fig. 1). On the
other hand, for |h| > 1 (that is, for fields higher than the maximum anisotropy
field Bk), the upper (shallower) energy minimum (¢ = 7 for A > 0) turns into
a maximum as it merges with the intermediate maximum, which disappears
(lower panel of Fig. 1).

Finally, from the values of the energy at ¥ = 0,n, and, when it exists,
at the intermediate maximum ¥y = arccos(—h), one gets the energy-barrier
heights (|h| < 1)

BHWM) —H(O)] =04,  B[H(IM) - H(m)] =0,

where
or =o(l+h)?. (2.8)

II.C Partition function and free energy
1. General definitions

The statistical independence of non-interacting magnetic moments allows one
to express the thermodynamical quantities as sums over one-dipole contribu-
tions. Consequently, we shall study these contributions and the results for the
whole system will be obtained by summation (or integration) of them over the
ensemble of dipoles, taking their different anisotropy constants, orientations
about the external field, magnitude of their dipole moments, etc. into account.

The partition function associated with a Hamiltonian H (9, @), where ¥, ¢

are the angular coordinates of m in a spherical coordinate system, can be
defined as

bl 2w
z=1 / dv sin 9 / di exp[—BH(, 9)] , (2.9)
27T 0 0
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0.5 41—
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FIGURE 1. Magnetic energy in the longitudinal-field case for a number of values
of the reduced field parameter h = B/Bgk. Upper panel: 0 < h < 1, so that the
potential has two minima with an energy-barrier between them. Lower panel: A > 1,
so that no potential barrier exists.

while the associated free energy is then given by
F = —kBTan .

The definition (2.9) deserves some discussion. First, as was mentioned above,
the definition of the partition function for a system with one degree of freedom
is Z = [(dpdg/27h)exp(—AH) (Landau and Lifshitz, 1980, § 31). On the
other hand, for a classical magnetic moment a convenient pair of conjugate
canonical variables is p = m,/vy and ¢ = ¢ [see Eq. (6.11) in Section VT],
where m, = mcos?d and v is the gyromagnetic (or rather “magnetogyric”)
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TABLE II. Definition of various thermodynamical quantities and their expressions
in terms of the partition function Z, and of the free energy F.

energy U (H), - %(ln Z) F+ /3%]:
entropy S —(InPF), | InZ— ﬂ%(ln 2) 5? % A
— 7 8 8
magnetization Mg (- b>e mze(In Z) —mpBgeF

ratio. Therefore

dpdq _
/ 27rh 'yh27r/ d(cos) dgo =85 x /d19 s1n19/

where S = (m/v)/h is the quantum number associated with the angular
momentum m/v. This expression yields Z = 25 for H = 0, which is the
correct semiclassical case (S > 1) of the corresponding quantum expression
Z = Zgz:_s 1 = 25 + 1. Therefore the definition (2.9) corresponds to the
proper statistical-mechanical definition, except for the factor S, which when
required can be introduced by hand.

The equilibrium probability distribution of magnetic moment orientations
is given by the Boltzmann distribution

Pe(COS 197 (P) = Z_l exp[—B’H(ﬁ, SO)] ’

so that the statistical-mechanical average of any observable A = A(m) =
A(9, ) reads

JAQ AW, ) exp[—BH (D, ¢)]
JdQ exp[—BH (Y, )]

where [dQ () = (1/2n) fild(cos 9) OZﬁdgo(-). The relevant thermodynami-
cal quantities can be written as the statistical-mechanical average of a certain
function A = A(¥, ) as above. Besides, all of them can be obtained as com-
binations of Z (or F) and its derivatives. Table II summarizes some of these
celebrated relations, which illustrate the pivotal role that the calculation of
the partition function (or the free energy) plays in equilibrium statistical me-
chanics.

_ /dQ AW, 0)Pa (9, 0) = ., (2.10)
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2. Partition function for the simplest axially symmetric anisotropy
potential

We shall usually choose the anisotropy axis 7 as the polar axis of a spherical
coordinate system. Then, if (9, ) and (a,0) denote the angular coordinates
of m and B, respectively (see Fig. 2), the Hamiltonian (2.4) reads

—,8’H=0c05219+§|| cos? + & sindcosp , (2.11)

where we have introduced the longitudinal and transverse components (with
respect to the anisotropy-axis direction) of the dimensionless field £ = mB/kgT,

namely
§ =&cosa, £ =¢sina. (2.12)

In order to analyze the partition function we, following Shcherbakova
(1978), do first the integral over ¢ in the expression for Z associated with
the Hamiltonian (2.11), getting

Z= / d¥ sind exp(o cos®? + & cos¥)Io(£L sind) , (2.13)
0

where

1 " cos .- 1 Yy 2k+n
In(y) = ;/ dte? tCOSTLt = Z W (5)
0 k:O . .

, n>0, (2.14)
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is the modified Bessel function of the first kind of order n (see, for example,
Arfken, 1985, Sect. 11.5).

Equation (2.13) gives the partition function in terms of an integral over
¥ only. Therefore, the integrand (divided by Z) can be interpreted as an
effective probability distribution of the polar angle. Indeed, on introducing
the substitution z = cos ¥ one can first write Eq. (2.13) as

1
Zz= / dz exp(oz® + §2)Io(ELV1 — 22) . (2.15)
~1

Then, the thermal-equilibrium average of functions of cos® only can be ob-
tained through (A), = f_lldz A(2) P (z) where

P (2) = % exp(o2? + E2)Io(ELV1 = 2) | (2.16)

is the effective or averaged (over the azimuthal angle), probability distribution.
Naturally P (z) coincides with the actual probability distribution when the
total H () is axially symmetric.

3. Particular cases and limiting regimes

In various special cases, one can write down the partition function and the
free energy in a closed analytical form. Accordingly, along with being relevant
to get insight into the thermal-equilibrium properties of the system, these
expressions will be used as reference for the general or approximate formulae
derived along this Section.

a. Isotropic case. We shall first consider the case ¢ = 0. This isotropic
or Langevin regime will be attained if the anisotropy constant is identically
zero or at high temperatures where |o| < 1. Then, the partition function does
not depend on « (cosa = # - b), so we can choose a at will in Eq. (2.15). On
setting o = 0 (so that £, = 0 and § = &) and using I (0) = 1, equation (2.15)
reduces to Zyan = fildz exp(€z). Therefore, the partition function and free
energy in the isotropic case can be written as

Zran = %sinh,f , Fran = kT[In(§) — In(2sinh §)] . (2.17)

Similarly, the probability distribution (2.16) reduces in this case to

Peran(2) = _ep(Ez) (2.18)

(2/€)sinh &’
which is is displayed in Fig. 3
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b. Zero-field case. In the absence of an external field (unbiased case),
one can use again Ip(0) = 1 in Eq. (2.15), to get Zuup = 2f01dz exp(c2?). It
will be very useful to introduce the function (Railkher and Shliomis, 1975)

1
R(o) = /0 dz exp(02?) (2.19)

in terms on which one can simply write the partition function and the free
energy in the unbiased case as

Zub = 2R(0) , Funb = —ksT In[2R(0)] . (2.20)
On the other hand, the probability distribution (2.16) reduces in this case to

- 2

Panb(2) = % . (2.21)
In the easy-axis anisotropy case (¢ > 0), this probability distribution evolves
from uniform for ¢ <« 1, to be quite concentrated around the poles for o >
1 (see Fig. 4). Then the system approaches and effective Ising spin, since
the magnetic moment stays most of the time close to the potential minima
(m = £mn). For o < 0 (easy-plane anisotropy), the probability distribution
evolves from uniform for |o| < 1, to be concentrated close to the equatorial

5_""I""I""IIIII
z

44

3

2]

] =0 £=1

S

O:Lfﬁifl}:’ﬁj;’. T et B
-1 -0.5 0 0.5 cos® 1

FIGURE 3. Probability distribution of the z component of the magnetic moment
for 0 = Kv/ksT = 0 in a magnetic field [Eq. (2.18)], for various values of the di-
mensionless field parameter £ = mB/kgT. The value 0.5 corresponds to the uniform
probability distribution (o = ¢ = 0).
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circle for o0 < —1 (“plane-rotator” regime). Note that, in contrast to the easy-
axis anisotropy case, where for ¢ ~ 5-10 the distribution of magnetic moment
orientations is rather concentrated around the poles, for easy-plane anisotropy
the corresponding shrink of the probability distribution around the equatorial
region is less steep as a function of |o|.

c. Ising regime. We shall now consider in more detail the o > 1 range.
Here, the function exp(c2?) in the integrand of Eq. (2.15) is sharply peaked
at the poles (see Fig. 4), so it can be approximated as a sum of two (non-
normalized) delta functions centered around z = +1. Consequently, one has

Z ~ [65"210(.&\/ 1- zz)] . /ldz "% 4 [65"210(@_\/ 1- zz)] . /Odz e
2=1 Jo 2=-1.J1

=
o

¢é=0 easy axis

©

o

IN

N

o

P S s W S S—— N -
"ttt

=0 o=-10

=
2]
1

easy plane

o=-5

=
MR B R

o
o
1

ri I T N SR T N T TR SR S Iy o S S

-0.5 0 0.5 cost 1

o

'
iy

FIGURE 4. Probability distribution of the z component of the magnetic moment in
zero field [Eq. (2.21)], for different values of the dimensionless anisotropy parameter
o = Kv/ksT. The value 0.5 corresponds to the uniform probability distribution.
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fo@=1 R(0)(ef1 +e~%1) o>1.

Then, on using the leading asymptotic result R(c) ~ €? /20 (see Appendix A),
the partition function and free energy in the “Ising” regime, can be written
as

a

Ziging = % coshé,  Fising = —Kv+ ksT[In(0) — In(cosh )] . (2.22)

Note however that for an Ising spin, the factor e? /20, is absent in the cor-
responding Z, which is equal to efl 4+ =&l = 2 cosh §)- This factor does not
alter quantities as the magnetization or the linear and non-linear suscepti-
bilities, because they are obtained as £-derivatives of In Z (see Section IIT).
Nevertheless, the occurrence of the factor e’ /20 moves the “thermal” quan-
tities (thermodynamical energy, entropy, and specific heat) from those of the
archetypal Ising case.

Note finally that the employed replacement of the factor exp(cz2) by a sum
of Dirac deltas will work if the remainder terms in the integrand vary slowly
enough with z. Naturally, this condition will not be obeyed for sufficiently
high external fields (specifically, for £ 2 o).

d. Plane-rotator regime. For ¢ < —1 the term exp(cz?) in the inte-
grand of Eq. (2.15) is peaked at the equator (see Fig. 4). It can therefore be
approximated by a Dirac delta located at z = 0, to get

1
Z ~ [egllzlo(@_\/l — z2)] 0/ dze’® = 2R(0)Ip(€L), oK -1.
z=| 1

Now, on employing the asymptotic (¢ <« —1) result R(oc) ~ (—u/40)'/?

(Appendix A), we obtain the following expressions for partition function and
free energy in the “plane-rotator” regime

1/2
Zro = (-2) " 0l€2) . T = —hT { G0 (=) + (e}

(2.23)
The factor (—w/0)'/? is absent in the partition function of the archetypal
plane rotator, which is merely given by (1/27) fo%dgo efLcos¥ = [(€1). Again,
this factor is irrelevant for the quantities obtained as ¢-derivatives of In Z,
whereas is important for the calculation of the thermal quantities. Similarly,
the replacement of the factor exp(c22) by a Dirac delta will only work for not
very high external fields.
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e. Longitudinal-field case. We shall finally consider the situation in
which the external field points along the anisotropy axis. In this case, without
making assumptions concerning the magnitudes of the anisotropy energy or
the field, one can write down a closed analytical formula for the partition
function (and accordingly for all the thermodynamical quantities).

When the external field is applied along the anisotropy axis one has | = ¢
and £, = 0, so that the general partition function (2.15) reduces to

1
Z) = /Adz exp(o2? + £2) . (2.24)

Then, on completing the square in the argument of the exponential and taking
the definition (2.6) of h into account, one gets Z = exp(—oh?) f_lldz explo(z+
h)?]. If we now introduce the substitution ¢ = z + h, the partition function
reads

h+

1
Z” — e*JhZ dt eotZ — efa'h2 |:

h+1 ) h—1 )
dt e’ —/ dte"t] ,
h—1 0

so that, on using the substitutions v = ¢/(h + 1) in the first integral after the
last equal sign, and u = t/(h — 1) in the second one, we find

1 1
2z = e_”hQ{(l +h) / du e 4 (1 - h) / du ea(l_h)w} '
0 0

0

However, the above integrals are merely the R function (2.19) evaluated at
o+ = o(1 £ h)? [the energy-barrier heights for h < 1, Eq. (2.8)], so that we
can finally write the desired closed analytical formula for 2| as

2 =e " [1+h)R(o4) + (1 —h)R(c_)] . (2.25)

On the other hand, the probability distribution of z = cos} is in this case
given by
exp(cz? + £2)
P, (z) = ——+—
(%) Z)(0,8)
which is displayed in Fig. 5 for various values of the longitudinal field.

An alternative expression for Z|| can be obtained by using the relation
(A.10) between R(o) and the Dawson integral D(-) [Eq. (A.9)], namely

(2.26)

Z = f/;'_ [e£D(y/a5) + e 7¢D(\/52)] - (2.27)

g
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Note however that, since the relation employed only holds for o > 0, the above
formula for Z is also subjected to the same restriction.

Let us finally consider some particular cases and approximations. On tak-
ing the h — 0 limit in the expression (2.25), one again gets the unbiased
partition function Z,,, = 2R(0) [Eq. (2.20)]. The ¢ — 0 limit can also be
taken, but this should be done with some care. One must first realize that,
since h = £/20, the arguments of the R functions in Eq. (2.25) are large in
this case. Accordingly, on assuming for example ¢ > 0 and using the leading
term in the asymptotic expansion (A.16) of R, one has R(oy) ~ €% /204,
whence (cf. Eq. (3.12) by Garanin, 1996)

T+ e’ €§ e_E
zZi~e=oh (1 mE 1—h et |
=€ At A=) = e T2 =)

7— o=5, ED =0 easy axis \“—

B
N —_ & =1 L
1] ¢ 1 :

§=05¢

0.8 _
0.6 & =025¢
0.4 -

0.2 -

0: FER TR T TR T SN T SO T TN S NN S T
-1 -0.5 0 05 cosd 1

FIGURE 5. Probability distribution of the z component of the magnetic moment
[Eq. (2.26)] for |o| = |Kv/ksT| = 5 and various values of the longitudinal-field
parameter § = { = mB/ksT.
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where we have used o+ = o(1 £+ h)? and exp(o+) = exp[o(1l + h?)] exp(££).
On further manipulating the above expression, one eventually gets the ap-
proximate result

2|~ —5——F5(20cosh§ — {sinh §) (K >0). (2.28)

52
Note that we have obtained more than we were initially looking for. Taking the
limit ¢ — 0 in this expression, we indeed get the isotropic partition function
ZLan = (2/§)sinh & [Eq. (2.17)]. However, on considering the o > 1 range of
Eq. (2.28), we get as a bonus the Ising partition function Zisin; = (e? /o) cosh &
[Eq. (2.22)]. We have also obtained this result since, for o > 1, the arguments
of the functions R(0) in Z are also large and positive. Note finally that Eq.

(2.28) can also be written in terms of h = £/20 as
e’ 1
2 ——— [(1-h)e*" + (1 —20h K . (22
I~ 5 A=) [(1 = h)e* ™ + (1 + h)e ], (K >0) (2.29)

II.D Series expansions of the partition function

We shall now carry out the expansion of the partition function in powers of
either the external field or the anisotropy parameter, as well as an asymptotic
expansion for strong anisotropy. These expansions will enable us to derive the
first few terms in the corresponding expansions of the free energy in Subsec.
II.LE. From these expressions one can obtain formulae for the linear and first
non-linear susceptibilities, as well as the deviations of the magnetization from
the Langevin or Ising-type curves.

1. Field expansion of the partition function

Let us first consider the expansion of Z in powers of the external field (Garcia-
Palacios and Léazaro, 1997).
To begin with, we insert the power expansions of the functions exp(z)

and Ip(€1vV1 — 22) [see Eq. (2.14)], into the partition function (2.15), to get
i

z = i#(?) T /dzz 1—z)2kexp(0z2)

i,k=0
oo £2k
= 22 @ ‘2% F)? /dzz (1 — 2k exp(02?) .
i,k= 0

Note that the terms with odd powers of z have vanished upon integration,
while the integration of the terms with even powers of z has been reduced to
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the interval [0, 1], by taking the symmetry of the corresponding integrand into
account. Next, on recalling the definitions (2.12) of § and £, and introducing
the angular coefficients

1 .
b,’k(a) = W COS2 a51n2ka , (230)

the partition function can be written as

oo

Z (o) €2FR) / dz 2%(1 — 22)* exp(02?) . (2.31)

i,k=0

Now, on expanding (1 — 22)* by means of the binomial formula we obtain

io: 52(Z+k) Z ( ) (z+m)(0)7 (2.32)

where the ( ) = k!/[m!(k — m)!] are binomial coefficients and we have used
the derivatives R\¥) (o) = d*R/da?’ of the function R(c) [Eq. (2.19)], namely

RO (5 /dzz exp(02?) , (=0,1,2,..., RO=R. (2.33)

Finally, on collecting the terms with the same power of £ by means of the

identity
D Appylh = Z( AJ M)y ; (2.34)

i,k=0 j=0

the expansion (2.32) can be rewritten as

Z=2R0)} C"(;’ @) g2i (2.35)

where the coefficients C; are given by

k (i—k+m) (o
—z'sz ki(@) D (= ( )%. (2.36)

m=0

For the sake of later convenience, we have extracted the factor R(o) in Eq.
(2.35) [recall that 2R(o) is the partition function at zero external field] and
introduced the factor 3! in the definition of the coefficients C;.
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FIGURE 6. The functions R'/R and R"/R.

The functions R(® are directly related with known special functions —
confluent hypergeometric (Kummer) functions, error functions, the Dawson
integral, etc.— and their properties are summarized in Appendix A. All the
combinations R /R occurring in the above coefficients are non-negative and
increase monotonically in the whole o range. R(9 /R tends to 0 as 0 — —o0,
takes the value 1/(2£+ 1) at 0 = 0 and tends to 1 as 0 — oo [Egs. (A.21),
(A.4), and Eq. (A.17), respectively]. The first two quotients R®) /R (R'/R and
R"/R) are shown in Fig. 6. Note that we can write R'/R = (cos?¥),, so that
R'/R is a measure of the “degree of polarization” of m along the anisotropy
axis in the absence of an external field.

a. Alternative expressions for the coefficients C;. The coefficients
C; can also be written in terms of the Kummer function M (a,c;z). First, on
using the integral representation (A.5) for M (a,c;x), the integral occurring
in the expression (2.31) can be written as

L@+ HT(k+1)

M@GE+Li+k+30), (237
20(i+ k+ 2) (i+35i+k+350), (230)

1
/dzz%(l _ z2)ke<rz2 —
0

where I'(2) is the gamma (factorial) function [Eq. (A.2)]. If we introduce this
expression into the expansion (2.31), we find the numerical coefficient

1 T+ HT(k+1) 1 i+k
(20)122k(k!)? 2T(i+k+3) [2(i+k)+1]!( k ) ’
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where the basic property of the gamma function, I'(z + 1) = 2I'(2), has been
used. Then, on gathering the terms with the same power of £ in the resulting
Z by dint of Eq. (2.34), we get

(o) €2i i ' . 3
=22 @i i M(@i— 1,43 ’
: g(%ﬂ)! ,;d kk(@)M(i =k + 3,04 550)

where the angular coefficients d; (a) are given by

dik(a) = (l -Z k) cosPasin®*a . (2.38)

Consequently, on comparing with Eq. (2.35), we can finally express the coef-
ficients C; as

il MG —k+1i+2;0)
Ci g,Q) = T di—k,k (8] 2 2 s (2.39)
(@0) = Gy 2 e
where we have used (see Appendix A)
R(o)=M(1,%;0) . (2.40)

Let us finally write in full the first few coefficients for future reference. If
we introduce the first few angular coefficients d; ()

doo = 1, dio = cos’a, dor = sin’a,
dyg = cos'a, di; = 2cos’asin’a, doy = sin'a,
into Eq. (2.39), we get:
1 [M(3,50 M(L, 3 0)
Clz_[ F 53— cos’a + — 22T sina (2.41)
¥ MG e M(3,3;0) !
and
1 M3, 1.0 M2 I LT
Cy=— [(%’737) costa + (377?;7)200S2asin2a + (21,7?) sin4a] ‘
60 | M(5,5;0) M3, 3;0) M, S0)

The coefficients C; can also be expressed in terms of the averages of m
in zero field. To this end, let us begin from the definition of the partition
function

z- / 49 explo(@-7)? + £@-H)] ,
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where [dQ(-) = (1/2m) fild(cosﬁ) f027rdcp(-) and the expression (2.4) for
—BH have been used. Next, on expanding exp[£(€ - f))] in powers of £, we

obtain
o €2i
Z =
; (24)!

where to eliminate the odd powers of £ we have merely considered that (€ -
b)?i+1 reverses its sign when the transformation &€ — —€is applied, whereas the
term exp[o(€- n)?] is invariant against such transformation, whence [dQ (€-

/dQ (€-b)* explo(€-1)?]

b)2i+1 explo(€ - 7)2] = 0. Finally, on comparing the above expansion of Z
with Z = 2RY"°(C;/i)é%, noting that R(o) can be written as R(o) =
(1/2) [d exp[o(€-7)?], and introducing the thermal-equilibrium averages in
zero field [cf. Eq. (2.10)]

_ [dQ(e-b)" explo(€ - 1)?]
B=o  [dQexplo(€-n)?]

(@-b)"),

we arrive at the desired relation

CZ'O, 1 o IN\2i
%:@W-b) e

b. Particular cases of the coefficients C;. Let us briefly consider the
form that the coefficients appearing in the field expansion of the partition
function take in the particular cases considered in Subsec. II.C. To this end,
the alternative expression for those coefficients in terms of Kummer functions
[Eq. (2.39)] results to be more convenient.

. (2.42)

(i) On noting that M(a,c;z = 0) = 1 [see the definition (A.1)], one gets
for C; in the isotropic case

1 1 (i 2imk) . o 2k 1
7 Cilo=o = s kzzo (k) oS asIT e = i

since the sum is equal to (cos?a + sin’a)? = 1.

(ii) In the o — oo limit, on employing the asymptotic expansion (A.15) of
M (a,c;z) for large positive argument, one finds

Lii+3) 2 500
T —k+3)ot

— (2i + 1)(51%0 ,

o>1
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where we have used I'(i + 3/2) = (i + 1/2)I'(i + 1/2). Therefore, the
general expression (2.39) reduces in the Ising case to

E Ci'o’—)oo - (22)'

1 cos?a

(iii) To get the o — —oo limit of C;, we can now use the asymptotic expan-
sion (A.18) of M(a,c;x) for large negative argument. On doing so, one

first finds
M@i-k+3,i+3;0) _TE+3) 1 — 2F(i+%)6.
M(3:5:0)  logm  am/R(=0)F w2t

Therefore, by using Eq. (A.20) for the gamma function of half-odd-
integer argument, the plane-rotator C; reads

IC _ (sina |
i Cilos—o = | 5 Gtk

(iv) The longitudinal-field case corresponds to set @ = 0 in the expression
(2.39) for C;(0,a). On doing this and using d;—_gk|a=0 = 0,0 [see Eq.
(2.38)], one gets

10| 1 M(i+4,i+30) 1 R9(0)
il =0 2i+ 1) M(3,%0) (20)! R(o)

where the relations (A.3) between the functions R} and Kummer func-
tions have been taken into account.

All these particular cases of the coefficients C; are summarized in Table III,
while the first few ones are displayed in Table IV.

2. Expansion of the partition function in powers of the anisotropy
parameter

We shall now derive the first few terms in the expansion of Z in powers
of 0 = Kv/kgT. This expansion will be a suitable description of the ther-
modynamical properties when the anisotropy energy is sufficiently small in
comparison with the thermal energy.

In order to perform this expansion, it is more convenient to rotate the
spherical coordinate system to set the polar axis pointing along the external
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field B (see Fig. 2; the anisotropy axis 7 is now in the zz-plane and « is its
polar angle). With this choice of coordinates, the partition function reads

27

iﬁ / d¥ sin ¥ exp(€ cos ) dy exp[o(cos a cos ¥ +sin asin 9 cos ¢)?] .
0 0

If we now expand the second exponential, we get an expression of the form

Z= Z i (2.43)
=0
where
1 T 2m .
Z; = Py / dd sin ¥ exp(€ cos ) dy (cos a cos ¥ + sin a sin 9 cos ¢)*
T Jo 0
(2.44)

Note that the zeroth order coefficient is naturally the isotropic partition func-
tion Zy = (2/€) sinh ¢ [Eq. (2.17)].

On using the binomial expansion in the second integrand of Eq. (2.44),
and employing the following result (Arfken, 1985, p. 318),

1 [2m 0 for odd n
— dp cos™p = (2k)! _ , (2.45)
27 0 W for n = 2k

to do the integrals over the azimuthal angle, we see that only even powers
of cosa and sina appear in Z;. On the other hand, sin?*¥ can always be
expressed as a sum of powers of the form cos?4, with £ < k, namely

k
sin?*9 = (1 — cos?9)* = Z ( ) £ cos®ey .
=0

TABLE III. Expressions for the coefficients C;/i! of the field expansion of the par-
tition function in the isotropic, Ising, plane-rotator, and longitudinal-field cases.

|| c=0 |J—)oo|0—> oo| B|#n |
sin”a ‘ 1 R® ‘
22i(i)? | (2i)! R

COS

(2i)!

|
C,
Fil

‘ (2i+1)!
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TABLE IV. The coefficients C1, C2, and Cj3 in the isotropic, Ising, plane-rotator,
and longitudinal-field cases.

| ||0:0| o — 00 0—>—oo| §||h |

i T, r_, IR

Ch1 § 3 cos”a 1 sin“a 12 g,,
—_— —_— 4 —_— H 4 —_—
Cy 610 2 cos & 2 sin“a 112 }}2?,,,
C = = 6 PN ] - v
S0 840 | 1209 % 1 384" | 120°R

Accordingly, on introducing once more the substitution z = cos? and noting
that,

L _dm ! o
[ldzz exp(€z) = 3 [1dz exp(§z) = @ZO ) (2.46)

one realizes that all the functions Z; can be expressed in terms of the isotropic
partition function, Zg, and its £-derivatives. For instance, Z; reads

2y

1 1
1
cos2a/ dz 2% exp(£2) + 3 sin2a/ dz (1 — 2%) exp(£2)
—1 —1
1
= ZJcos’a+ E(ZO — Z)sin’a (2.47)

where the prime denotes differentiation with respect to £&. On the other hand,
since Zy = (2/€) sinh &, the derivative Z] is given by

where

L(&) = coth& — % , (2.49)

is the celebrated Langevin function. On taking a further {-derivative and using
the relation between L' and L, namely
2

L'=1- EL—L2, (2.50)

we get for the combinations of Zy and Z{' occurring in Eq. (2.47)

2 =2 (1 - %L) : %(Zo —2g) = ZoéL : (2.51)
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Therefore, on introducing these results in Eq. (2.47), we finally get

Z ( 2 ) 9 1.5
— =(1—=L)cos’a+ —-Lsin“a . 2.52
2 ¢ 3 (2:52)

The calculation of Z5 proceeds similarly. On taking the definition (2.44)
into account and using z = cos¥, one obtains

1 1
6
Zy = cos4a/ dz 2%e** 4 = cos’a sinza/ dz 22(1 — 2%)e*?
-1 2 —1
3 1
+ 3 sin4a/ dz (1 — 2%)%e%
~1

where Eq. (2.45) has been used for calculating the integrals over ¢. Conse-
quently, in terms of Zy and its derivatives, Z» is given by

Zy = 2§" costa+3(Zl - 2" cos’a sin2a+g(20—236'+26”’) sin‘a . (2.53)

In order to take the 4th-order derivative Z}"', one can repeatedly use Egs.
(2.48) and (2.50). However, it significantly simplifies the calculations to obtain
first the derivative (L/€)’, which can be written as

Rt 2

Thus, after some manipulation, one gets the expression

" 4 8 3
% 130[1‘5“?(1‘#)] !

which, along with Egs. (2.51), gives

4 1
ZUM_Zl =22, [ (1 - §L) - —L] | Zg2EY4EN = 290 (1 - §L) :

e £ 3 e £

On introducing all these results into Eq. (2.53), we finally find for Z5:
Z [ 4 8 ( 3 )] 4
— = [1=-=-L+—=(1-=L||cos*a
2 3 & 3

1 4 3 . 3 3

+6 [—L - = (1 - —L)] cos?asina + [— (1 - —L)] sina . (2.55
fe\lTe e\'"¢ (2.55)

This formula completes the explicit expansion of the partition function in
powers of the anisotropy parameter up to second order.
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3. Asymptotic expansion of the partition function for strong ani-
sotropy

In order to complement the above derived weak-anisotropy expansion, we shall
now carry out an asymptotic expansion of the partition function for strong an-
isotropy (easy-axis case only). As will be seen below, the approximate thermal-
equilibrium quantities obtained from the combined use of those expansions,
well approximate the exact results in the whole temperature range. Therefore
we shall be able to get simple analytical expressions for the thermodynam-
ical quantities that reasonably avoid the necessity of their computation by
numerical methods.

In order to perform an expansion of the partition function for large o =
Kuv/kgT, we shall start from the field expansion (2.35) of Z and use the as-
ymptotic results for its coeflicients. Then, we shall obtain a number of infinite
series of powers of £ = mB/kgT, which will be identified as certain elementary
functions, obtaining in this way a closed asymptotic expression for Z.

We start by recalling that the whole coefficient of £2! in the general ¢-
expansion of Z reads [see Egs. (2.35) and (2.39)]

2R(0)C; 2 < . .
O 2 S @M -k + bitSe),  (256)

di_pp(e) = (;) cos? R g sin®k g (2.57)

On the other hand, the asymptotic expansion (A.15) of the confluent hyper-
geometric functions yields for ¢ > 1

7 N+ 3) 1 (2k—2i+1)(k+1)
M@G—-k+1i+3; — 6_72_[1
(i=kt5itsi0) = i rehor| T %
(2k —2i+3)(2k — 2i + 1) (k +1)(k + 2)
+ ) +

Considering that the sum in Eq. (2.56), begins at ¥ = 0, and that we shall
carry out the expansion of Z through order 1/0?, we write

i
Zdi,k’kM(i —k+1i+30) ~cos®aM(i+1,i+3;0)
k=0



ON THE STATICS AND DYNAMICS OF MAGNETOANISOTROPIC NANOPARTICLES 33

+ =(2i) cos? D asina M@ — %ﬂ' + %;a)

CO| = DN =

+ —(20)(2i — 2) cos’Dasin*a M(i— 2,i+ 2;0),
2 2

where we have taken Eq. (2.57) into account. Now, on using I'(z + 1) = 2I'(2),
we get for the quotients of gamma functions occurring in the above equation
via the Kummer functions

oD 4 2 (2i + 1), for k=0
_(17+2)1 _ L(2i+1)(2i — 1), for k=1
Tii—k+3) L2i+1)(2i —1)(2i —3), fork=2

On collecting all these intermediate results, we can approximately write
the ith term in the £-expansion of Z in the form

2i—1) (2 —1)(2i —3)
20 + 402 ]

fﬁ(’ Ve @-3)] &7 1

[2(1 -1 [40 402 ] [2(i — 2)]! 3202 °

(2.58)

e i 521' ~ ﬁz |:1_
] = @i

where we have multiplied across by o/e” to avoid writing e” /o in all the
right-hand sides of the subsequent equations. In addition, in the above equa-
tion we have introduced the longitudinal and transverse components of the
dimensionless field: §; = {cosa and £, = {sina. Note however that Eq.
(2.58) only holds for the terms with ¢ > 2. For ¢ = 1, the sum in & in the
expression (2.39) only runs over k = 0 and k = 1; therefore, the last term on
the right-hand side of Eq. (2.58) is absent. Similarly, for ¢ = 0, only the first
term remains. Taking these considerations into account by properly adjusting
the summation limits in the following expression, we can already write down
the partition function Z = 2R ;2 (C;/i!)£* as

o, & 2i—1) (2i—1)(2i—3)
ol = Z(2@)! [1_ % 4072 ]

=g e eis 1&g
40 2 R — 1) T 3202 Zpa-2)

If we now redefine the summation indices in order to force all the above series
to start at the value zero of the corresponding new index and gather the terms
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multiplying the same type of series, we get
o 1 1 > £
°z ~ (14— + —¢ I
e’ ( + 40§L * 3052 EL) Z (2i)!
1 X g
- —2—21—1 (2i — 3) .
402 — (21

(3 1) L
(2.59)

Our last goal is to identify all the power series occurring in Eq. (2.59).
The series in the first term on the right-hand side is precisely that of the
hyperbolic cosine, coshz = Y2 z?¢/(2i)!. The other two series can also be
identified after some redefinition of the summation indices (k =i — 1):

’L

o 2 © 2k+2
2 (Zi)!(Zi—l)zzm—coshmzmsinhx—coshx,
=0 k=0
while
> 2 o0 2(k+1)
Z o (20 -1)(21-3) = Z 3(x sinh z — cosh z)
i=0 ’ k=0

= (22 + 3) coshz — 3zsinhz .

Finally, we insert these results into Eq. (2.59), gather the terms with the same
power of 1/0, and extract a factor cosh ¢, obtaining

7 1
Z o~ % cosh § { 1+ e [(2 +&2) - 2§ tanh §||]

1 1
+ 3 [(3 +&+88 + ggi) - (B+8)¢ tanh{n] } :
(2.60)
This equation is the desired asymptotic expansion of the partition function.

Note that, as could be expected, the leading term in this equation is precisely
what we called partition function in the Ising regime [Eq. (2.22)].

II.LE Series expansions of the free energy

Once one has obtained an expansion of the partition function in a series of
powers of a given quantity, one needs to construct the corresponding expansion
of In Z in order to obtain the relevant thermal-equilibrium quantities (see Ta-
ble II). Here, we shall derive the expansions of the free energy F = —kgT' In Z
corresponding to those developed above for the partition function.
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1. Expansion of the logarithm of a function

The problem of constructing the series expansion of the logarithm of a func-
tion with a given series representation appears in a number of physical and
mathematical problems (e.g., in the construction of the cumulants of a prob-
ability distribution in terms of the known moments of such distribution; see
Risken, 1989). Thus, if one has derived an expansion of the partition function
of the type

2w) =20 ) S (261)

(note that Ag = 1), the first few terms in the corresponding expansion of In Z
are given by

1 1
n2(y) = WZ(0)+Aiy+ 35 (42— AN y? + 5 (A3 — 34,4, +243) ¢°
1
+ 51 (Ag —4A3A; — 343 + 124, A7 — 6A}) y* +--- . (2.62)

This formula, when multiplied by —kgT, gives the first few terms of the y-
expansion of the free energy.

2. Averages for anisotropy axes distributed at random

In what follows we shall frequently consider the values of the relevant quan-
tities for an ensemble of magnetic moments whose anisotropy axes are dis-
tributed at random. Note that averaging, in the sense of keep fixed some
parameters and then sum over the remainder ones (e.g., anisotropy-axis orien-
tations), does not make sense for the partition function since, for independent
entities, Z is a multiplicative quantity. On the other hand, averaging makes
sense for the customary thermodynamical functions (free energy, entropy, en-
ergy, etc.) as they are additive quantities.

When averaging the thermodynamical quantities over assemblies of equiv-
alent magnetic moments (i.e., with the same characteristic parameters) whose
anisotropy axes are distributed at random, we shall need to calculate integrals
of the general form

2w ™
(F0nDan = 3= [ dion [ dasinafon.a).

where ¢; and « are, respectively, the azimuthal and polar angles of the unit
vector along the anisotropy axis . We shall be mainly interested in the cases
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where f(pp,a) = cos®a sin?*a, which does not depend on the azimuthal

angle. For these functions, one finds

(cos® sinzkr)z)]ran

1 /7 . - ! .
== / da sin a cos* asin® o T2 / dz 2%(1 — z)* .
2 Jo 0
Now, on comparing with the relation (2.37) between integrals of 22/(1 — 22)k
weighted by exp(cz?), and Kummer functions, we get the expression

L(i + 3)k!

S L EL 2.63
ran Ui+ k+ 3) (2.63)

(cos*asin®*a)
where we have employed M (a,c;z =0) =1 [see Eq. (A.1)] and I'(k+1) = kL
Alternatively, on using I'(z + 1) = 2I'(z) to expand the above quotient of
gamma functions, we obtain

(cos®asin**a) = — ' 2k k! . )
ran (2 4+ 1)[(20+ 1) +2]---[(26 + 1) + 2k]

~

k+1 terms

To conclude, we explicitly write down the particular cases of the above
results that, in what follows, will more frequently be used:

(cos®Q)ran = 1/3, (sin’Q)ran = 2/3,

(cos*a) 1/5, (cos’asin’a) =~ = 2/15, (sin'a) = 8/15.
(2.64)

3. Field expansion of the free energy

On considering the expansion (2.35) of the partition function in powers of
& = mB/kgT, one realizes that the function 2R(0), &2, and C; play the role,
respectively, of Z(0), y, and A; in the generic y-expansion (2.61). Conse-
quently, the corresponding general series (2.62) for In Z yields in this case

In Z = In[2R(c)] + Ci (0, )€ + % [Co(0,0) = Cy(0,0)2] € +--- . (265)

This result shows the convenience of the introduction of the factor ! in the
definition (2.36) of the coefficients C;: the general expansion (2.62) can then
be directly used by merely replacing the coefficients A; by the C; ones.

Now, on introducing the first few angular terms b; (a) [Eq. (2.30)],

b0,0 = 1 , bl,O = %COSQOL ; ) b0,1 = Sinzi)é ,
1 4 I S S S T
byg = ggcosta, by = 5 cos*asin“a boo = ssin"a,

W=
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into the definition (2.36), one gets for the first coefficients C;: Co = 1,

1 (R , R-R .,
C1—§<Ecos o+ 5p Sin a), (2.66)
and
_1(/1R" R -R" , ., R—-2R' +R" . ,
02—4(3 7 cos" o + R cos“asin“a + 3R sin“a |

where, instead of superscripts, we have used primes to indicate derivatives of
R(o) with respect to its argument. On using these formulae we get for the
coefficient of £* in the expansion (2.65),

1 1 1R" (R’

—(Cy=C3) == -— — | =

5 (G =) =3 { 3R (R>

cos4a

R 2 R" ) )
+ (E) - f cos“asin“a
1 R R 2 R .
—|-14+2— -2 — — | si 2.
+8 + 7 (R) +R s1na}( 67)

Equations (2.66) and (2.67), along with (2.65), yield the desired &-expansion
of the free energy up to the fourth order.

In Section IIT we shall introduce the reduced linear and non-linear sus-
ceptibilities. These quantities, which incorporate the anisotropy-induced tem-
perature dependence of the susceptibilities, are directly related with C; and
(Cy — C%), respectively.

Average for anisotropy axes distributed at random. On introducing

the values of the averaged trigonometric coefficients (2.64) into Eq. (2.66),
we get (C1),,, = 1/6. Proceeding similarly with the expression (2.67) for

(Cy — C2)/2, one obtains
! 1\ 2
2% _ 3(%) _ 1] . (2.68)

If we introduce these results into the £-expansion of In Z [Eq. (2.65)], we finally
get for the free energy of an ensemble of equivalent dipoles with anisotropy

axes distributed at random:
R R 2
2— —3( =) —1|&+---3 .
7 -3(x) e }

(2.69)

1 1
2{C2 = Ol = 19

(F)ran = —kBT {111[23(0)] + %‘52 + L

120
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It is to be noted that the first correction, —kgT'¢%/6, to the unbiased free
energy —kgT In[2R(0)], does not depend on the magnetic anisotropy. This will
take its reflection in, for example, the independence of the linear susceptibility

on the anisotropy energy for systems with axes distributed at random (see
Subsec. IIL.D).

4. Expansion of the free energy in powers of the anisotropy pa-
rameter

The expansion of the free energy in powers of 0 = Kv/kgT can be obtained
similarly. Let us first rewrite the expansion (2.43) of the partition function in

powers of o as
Z 12, , )

where Zj is a shorthand for 2, = (2/€) sinh €. If one compares this expan-
sion with the general one (2.61), one sees that Zg, o, and Z;/Z, play the rdle,
respectively, of Z(0), y, and A; there. Accordingly, we can immediately write
down an equation similar to that obtained for the &-expansion of In Z

Zy zZ\*
2o 2o
Concerning the coefficients in this expansion, Z;/2y was already written in
Eq. (2.52), namely

z 1
an:anLan+—lo+5

2
. 2.
Z o (2.70)

Z < 2 ) 9 1.,
— =|1—-<L)cos’a+ <Lsin“a, 2.71
2 3 3 ®11)

while, taking Eq. (2.55) into account, one obtains after some algebra

2, Z\? 2 3
Z_o — (Z_o) = §—2 { [2 (1 — EL> —LQ] cos*a

— [6 (1 — %L) —-L? - §L] cos’asin’a

n i [3 (1 - %L) - L2] sin4a} . (272)

Equations (2.71) and (2.72), together with Eq. (2.70), yield the desired ex-
pansion of the free energy in powers of the anisotropy parameter up to second
order.

1
2
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Average for anisotropy axes distributed at random. On introducing
now the averages (2.64) of the trigonometric coefficients into the expression
for Z1 /2y, one gets (Z1/Z)ran = 1/3. Analogously, on averaging Eq. (2.72)

one arrives at
1/ 2 zZ\? 2 3\1
(= - = =—|(2—-L|-L.
2<Zo (Zo> > 15( € )e
ran

On introducing these results into the expansion (2.70) of In Z, one gets for
(F)ran the approximate result

(F)ran = —kBT{ln <% sinh.f) + %a—{— 1—25 [(2 — %L) %L] o? + } .
(2.73)

As kgTo = Kv [see Eqgs. (2.3)] is a constant (neglecting the possible tem-
perature dependence of K), we get the important result that, for anisotropy
axes distributed at random, the corrections due to the magnetic anisotropy
to the isotropic free energy, begin at order 2. This will lead to, for example,
a dramatic decrease of the anisotropy effects on the magnetization curves for
weakly anisotropic systems (o < 2) with a random distribution of anisotropy
axes (see Subsec. III.C).

5. Asymptotic expansion of the free energy for strong anisotropy

Finally, the 1/0-expansion of the free energy can be obtained similarly. If we
compare the asymptotic expansion (2.60) for the partition function with the
general one (2.61), we see that (e”/o)cosh§) and 1/0 play the role, respec-
tively, of Z(0) and y in that general formula. Therefore, we can immediately
write for In Z

nZ ~ In (% cosh§||> + % X i [(2+&1) — 2¢ tanh §]

+ L{% [(3+ &+ &1+ %gi) - 3B+&)g tanhgn]

202
1 2 2
BT [(2+¢€7) — 2¢ tanh & | } ,

where, to get the coefficient of 1/0? [i.e., (A2—A?})/2 in the general expansion)],
we have subtracted from the corresponding coefficient in the expansion of Z
the square of the coefficient of 1/0 (i.e., A1). Then, on explicitly squaring
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such term, we finally get

InZ ~ In (i cosh§||> + 4i [(2+¢&7) —2¢ tanh §]
g g
1

+ 802

[5 + (268 +€2) — (4 + €3¢ tanh & — & tanh? 5”] (2.74)
Note that this expansion has as leading term the Ising-type free energy (2.22)
(this corresponds to a potential with two deep minima), while the next terms
are corrections associated with the finite curvature of the potential at the
minima.

Note finally that, due to the presence of cosa (via §) in the arguments
of the hyperbolic trigonometric functions, we cannot write down an explicit
analytical formula for the average of the above expansion for anisotropy axes
distributed at random.

IIT Equilibrium properties: some important
quantities

ITI.A Introduction

In this Section we shall use some of the general results of the previous one,
in order to calculate a number of thermodynamical quantities for indepen-
dent classical magnetic moments with axially symmetric magnetic anisotropy.
The results obtained would also apply to systems approximately described
as assemblies of classical dipole moments with Hamiltonians like (2.2), i.e.,
Hamiltonians comprising a coupling term to an external field plus an axially
symmetric orientational potential.

The organization of this Section is as follows. In Subsec. III.B we shall
study the thermal or caloric quantities —energy, entropy, and specific heat—
in a number of particular situations. Subsections III.C, III.D, and IIL.LE will
be devoted, respectively, to the study of the magnetization, the linear suscep-
tibility, and the non-linear susceptibilities. We shall mainly be interested in
the effects of the magnetic anisotropy on these quantities.

III.B Thermal (caloric) quantities

We shall begin with a brief study of the thermal properties of non-interacting
classical magnetic moments. We shall merely consider the particular cases of
zero anisotropy and finite anisotropy in a zero field or in a constant longitu-
dinal field.
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1. General definitions

The thermodynamical energy, U, is defined as the statistical-mechanical av-
erage of the Hamiltonian H [cf. Eq. (2.10)]

_ JAQH, ) exp[-BH, o)
T JA e[ FH,9)]

where [dQ(:) = (1/27) fild(cos 9) fo%dgo (-). From the above definition one
immediately gets the relation

U = (H) (3.1)

0
=——(nZ 2
U=-7-nz), (32)
between U and the logarithm of the partition function Z = [dQ exp(—S8H)
(or the free energy F = —3 !1ln Z).
The entropy, S, can formally be defined as minus the average of the loga-
rithm of the equilibrium probability distribution P, = exp(—fH)/Z, i.e.,

S _ _inpy = — [dQ In Pe(9, ) exp[—BH (Y, ¢)]
ele JdQ exp[—BH(9, ¢)]

kg
Note however that this quantity, in contrast to other thermodynamical quan-
tities, is not defined as the average of a physical quantity of the system —it
is an intrinsic thermal quantity—. On the other hand, by using — (In P), =
BU + 1n Z, which is essentially the celebrated thermodynamical relation F =
U — TS, one gets from Egs. (3.2) and (3.3) the entropy expressed in terms of
the partition function as

(3.3)

S _mz-pl

. 552 (3.4)

The last thermal quantity that we shall consider is the specific heat at

constant field, namely
ou

=aT|,
Taking into account the relation (3.2) between U and Z, one obtains from the
above definition the well-known results

B _ _p0U
ks ’865

CB (3.5)

32

_ B2
Let us finally consider a quantity A = A(o, &) that is a function of o =

Kv/kgT and £ = mB/kgT [the dimensionless anisotropy and field parameters
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(2.3)]. Then, on using 00 /08 = o and BIE/OB = &, one gets for the -
derivatives of A

0A _ 04 PA_PA, A, A

0A

%~ 00" "B o~ 002° Tlac0e”t T o
Note that, when taking the S-derivatives, we have implicitly assumed that
the only dependence of ¢ and £ on T enters via [, that is, we neglect the
possible dependence on the temperature of both K and m, which otherwise
might be relevant in systems of magnetic nanoparticles at sufficiently high
temperatures. Next, if A = In Z, on taking the relations (3.2), (3.4), and (3.6)
into account, we can express the thermal quantities for a system described by

&, B & .

o and &, as

u = —(@KU+6ZTmmB), (3.7)
S 0Z/0c  DZ/OE
W an—< z 0t {), (3.8)
ce _ |0%°2)80% [(8Z]do\?| ,
ks Z _( Z )

d%2Z/00d¢  (0Z/090)(82

49 /Zoﬁ_( /2)2( /€) ot
9Z)0e2  (0Z2/06\°] ..
= —< = )]gz. (3.9)

These formulae allow one to identify the contribution of the anisotropy and
Zeeman energies to the thermal quantities. However, one does not need to use
them in their general forms since, when both types of energies are present,
one can write £ = 20h and differentiate with respect to o keeping h = B/Bk,
which is assumed to be independent of the temperature, constant.

2. Thermal quantities: particular cases

a. Isotropic case. When the anisotropy energy is absent, the partition
function reads Zya, = (2/£) sinh & [Eq. (2.17)]. The o-derivatives of this par-
tition function are identically zero, while the required £-derivatives are given
by Eqgs. (2.48) and (2.51). Therefore, on taking Eq. (3.7) into account, one
obtains for the mean energy

ULan = —m (coth§ - %) B=-mL(¢)B, (3.10)
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where L(€) is the Langevin function. This is the natural result considering that

in this case H = —m_B and that the Langevin result for the magnetization

is {m;)e = mL(§). Similarly, Eq. (3.8) yields the following expression for the
entropy

SL n .

H = In[(2/€)sinh ] - €L(9) - (3.11)

Finally, on introducing Egs. (2.48) and (2.51) into Eq. (3.9), the isotropic

specific heat can be written as

iy S _epg (312)
ks sinh? ¢ ' ’
At high temperatures, i.e., when £ < 1, we can approximate the square of the
hyperbolic sine in Eq. (3.12) by sinh? ¢ ~ £2+£%/3, while at low temperatures
(€ > 1) we have £2/sinh® ¢ ~ 0. Consequently, in these limiting ranges cp
approximately reads

N { kp€?/3  for £ 1 (3.13)

€BLan =\ ko for £ > 1

Thus, the specific heat obeys a customary 7~2 law in the high-temperature
range, whereas it tends to kg at low temperatures. This last limit does not
obey Nerst’s theorem, which states that cg — 0 as T — 0, and this is due to
the classical character of the magnetic moment (the energy levels of 7} are not
discrete, which is a proviso for the result mentioned, but they are continuously
distributed).

Figure 7 shows the specific heat in the isotropic case. This increases mono-
tonically from 0 at high temperatures to kg at low temperatures, where the
curve exhibits a plateau. This region corresponds to the high-field (£ > 1)
range where the average magnetic moment is close to saturation [1 — L(§)]
&1 the thermodynamical energy, which is proportional to L(£), then in-
creases linearly with T, yielding a constant cp.

b. Zero-field case. In the absence of an external field (unbiased case),
the partition function is given by Z,;, = 2R(0) [Eq. (2.20)]. Owing to the
fact that the £-derivatives of Z,,;, are identically zero, the mean energy in the
absence of an external field obtained from Eq. (3.7) reads

!

R
uunb = —KUE . (314)

This expression provides another simple physical interpretation for the famil-
iar combination R'/R — it is essentially minus the thermodynamical energy
in the absence of an external field—.
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FIGURE 7. Temperature dependence of the specific heat, ¢p, of a classical spin in
the isotropic and unbiased cases. ¢p is measured in units of kg and the dimensionless
temperatures are 1/¢ = ksT/mB and |1/o| = kT /|K|v, respectively.

On the other hand, the zero-field entropy and specific heat, as derived
from Egs. (3.8) and (3.9), read

!
‘9]:—;‘" =In(2R) — a% , (3.15)
and X
1! !
cf;c’—]‘;’“) = % - (%) 2. (3.16)

In the high- (Jo| <« 1) and low-temperature (|o| > 1) ranges, we can use the
approximate Eq. (A.31) for R”/R — (R'/R)?, to get the limit behaviors of the
zero-field specific heat:

ks/2 for o < —1
cBunb =~ (4/45)kgo?  for |o| <1 . (3.17)
kB foro>1

As it should, the specific heat obeys a T2 law at high temperatures. At low
temperatures, owing to the classical nature of the spin (cf. Jacobs and Bean,
1963), cp tends to kg and kp/2, for easy-axis and easy-plane anisotropy, re-
spectively. The factor 1/2 originates from the different geometry of the region
of the minima; for easy-axis anisotropy the minima are the poles of the unit
sphere, whereas for easy-plane anisotropy, the minima are continuously dis-
tributed on the equatorial circle.

Figure 7 also shows the specific heat in the unbiased case. In contrast to
the isotropic specific heat, in the easy-axis zero-field case, the specific heat
exhibits a maximum. This peak (located at o ~ 5) can be interpreted in



ON THE STATICS AND DYNAMICS OF MAGNETOANISOTROPIC NANOPARTICLES 45

terms of the crossover from isotropic behavior at high temperatures to the
two state (Ising-type) behavior at low temperatures. This is supported by
Fig. 4, where it was shown that, whereas at ¢ ~ 2, P ynb(m;) is not far from
uniform, for ¢ ~ 5, the probability distribution is quite concentrated close
to the poles. These features of the specific heat resemble the Schottky effect,
and, in this context, they could be attributed to the “depopulation” of the
high-energy “equatorial levels.” On the other hand, the specific heat in the
easy-plane unbiased case does not exhibit a peak but it also has a plateau at
low temperatures. The absence of maxima in ¢g(T) is to be attributed to the
geometrical structure of the Hamiltonian for easy-plane anisotropy.

c. Longitudinal-field case. We shall finally consider the caloric quan-
tities when an external field is applied along the anisotropy axis. The cor-
responding partition function is given by Eq. (2.25), where o = o(1 & h)?
and h = £/20. As was previously remarked, in order to calculate the thermal
quantities we do not need to make use of Egs. (3.7), (3.8), and (3.9) in their
general forms; in this case we only need to take o-derivatives of 2| (denoted
by primes) keeping h = B/Bg constant.
On calculating Zl’l/Z”, we get

2 _ e Q+W°R(0y) + (1= h)PR(o)

A (1+h)R(oy)+ (1 —Rh)R(e_) °’ (3.18)

where we have used 0o+ /00 = (1 £ h)2. Equation (3.18) yields, essentially,
minus the mean energy. However, before writing down an equation for U, we
shall manipulate slightly the above expression in order to eliminate R'(oy).
To this end, we can use R' = (e” — R)/20 [Eq. (A.12)], getting

(1+ PR (04) = 2" fexplo(1 + 1?) + 20h] - R(os)} .

20
Then, on introducing the function
J(o, h) = 2[cosh(20h) + hsinh(20h)] ,

one can write the thermodynamical energy in a longitudinal field as

Uy = Kv [hz + % (1 - %)] . (3.19)

The entropy can then be derived by merely using F =U — T'S, to get

S” T 1 e’ J
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Note that, since (e"J/Z||)|h:0 =e¢’/Rand 1-e°/R = —-20R'/R, Egs. (3.19)
and (3.20) duly reduce for h = 0 to Egs. (3.14) and (3.15), respectively.

Let us finally derive the specific heat in the longitudinal-field case. On
taking the o derivative of Eq. (3.18) by using again oy /00 = (1 £ h)?, we
find

el _ [ (L+h)PR'(04) +(1—h)°R"(o-)

e (L +MER(oy) + 1~ h)R(o-)
(L+h)*R'(0y) + (1 = h)*R'(0)]" | »
ey }” (321

which generalizes the zero-field expression (3.16). An alternative formula,
more suitable for computation, can be obtained by differentiating ¢/ in Eq.
(3.19), namely

5| eJ n_ L) L
kB_2{1+ Z”[(l-i—h) 2(1+le o5l (3.22)

where the prime in J' stands for o-derivative (keeping h constant), i.e.,
J' (o, h) = 4h[sinh(20h) + h cosh(20h)] .

In order to get the high-temperature behavior of ¢g, we can expand Eq.
(3.21) in powers of ¢ [to first order we evaluate R(“ (o) at zero with help
from Eq. (A.4)], getting

¢ {1(1+h)5+(1—h)5 1(1+h)3+(1—h)3]2}02
ks 5 '

(1+h)+(1—h) |3 (1+h)+(1—h)

lo|<1

The low temperature behavior (case K < 0) can also be obtained by intro-
ducing the asymptotic Eq. (A.19) into Eq. (3.21), whereas for K > 0 it is
more eagsily obtained by differentiating twice the approximate partition func-
tion (2.29) with respect to o (keeping h constant). Thus, one arrives at the
following limit behaviors of the specific heat

ks/2 for o <« —1
cp,| =4 (4/45)kp(1+15h%)0*  for o] <1 . (3.23)
kg foro>1

Again, the specific heat obeys a T—2 law at high temperatures while, due
to the classical character of the spin, cg tends to non-zero values at low
temperatures.
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FIGURE 8. Temperature dependence of the specific heat, cp, in various longitu-
dinal fields h = B/Bxk for easy-axis anisotropy. c¢g is measured in units of ks and
the dimensionless temperature is 1/0 = ksT/Kwv.

Figure 8 displays the specific heat in the longitudinal-field case. The cp
curves exhibit a maximum, the height and location of which depend on the
magnitude of the applied field. For h < 1, these maxima can again be inter-
preted in terms of the crossover from the isotropic regime at high temperatures
to the low-temperature regime in which the magnetic moments are concen-
trated close to the potential minima. Besides, the height of the maximum
steeply increases for h < 0.15 and then decreases monotonically with increas-
ing h. At high fields, the maximum is actually rather smeared and its height
is small, approaching a plateau. This occurs because the Zeeman energy dom-
inates the magnetic-anisotropy energy for such high fields, approaching the
specific heat the zero-anisotropy cp an, Which, after exhibiting a plateau,
decreases monotonically (Fig. 7).

ITI.C Magnetization

We shall now study the magnetization of classical magnetic moments with
axially symmetric magnetic anisotropy. The magnetization along the external
field direction, Mp = (i - b)_, where b = B/B, can in the general case be
derived from the partition function as follows. Consider that —3H contains
among others a Zeeman term £(€ - b), where £ = mB/kgT and € = ni/m.
Then, because Z = [dQ exp(—(H), one has

(i - 13>e =z /dQ m(e-b)e P = mZ_I% /dQ e PH,
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whence one gets the known statistical-mechanical relation

0
MB_ma.fan' (3.24)

The magnetization for an ensemble of non-interacting superparamagnetic
particles without magnetic anisotropy can be obtained by means of a sim-
ple translation of the classical Langevin theory of paramagnetism, and it is
given by Mp ran = mL(€) where L(£) is the Langevin function [Eq. (2.49)].
The magnetization then depends on the field and temperature via B/T. A
related salient result is that in a liquid suspension of magnetic particles (usu-
ally called magnetic fluid or ferrofluid) with a general single-particle magnetic
anisotropy, the magnetization is also given by the Langevin result (Krueger,
1979). This holds essentially because the physical rotation of the particles in
the liquid decouples the anisotropy from the magnetization process. In fact,
the same result holds for a molecular beam of single-domain magnetic clus-
ters, such as those deflected in Stern-Gerlach experiments (Maiti and Falicov,
1993). However, the rotational degrees of freedom are fastened in solid dis-
persions, giving rise to effects of the magnetic anisotropy on the equilibrium
quantities.

West (1961) studied the magnetization of an ensemble of non-interacting
magnetic nanoparticles with uniaxial anisotropy in a longitudinal constant
field. He derived an equation for the magnetization (see below) and studied
the anisotropy-induced non-B/T superposition of the magnetization curves.
Unfortunately, his analytical calculation cannot be easily extended to situ-
ations where the field and the anisotropy axis are not collinear, where only
more or less complicated expressions have been derived.

Lin (1961) and Chantrell (see, for example, Williams et al., 1993), ex-
pressed the magnetization for an arbitrary orientation of the magnetic field
as quotients of two infinite series. On the other hand, Mgrup (1983) derived an
approximate expression for the magnetization valid when kg7 is much smaller
than #, which holds irrespective of the symmetry the Hamiltonian. However,
inasmuch as is assumed that the magnetic moment is effectively confined to
one of the potential wells, his formula does not hold for the full equilibrium
(superparamagnetic) range.’

In what follows, we shall first consider the form of the magnetization in var-
ious simple cases. Then, we shall briefly analyze a general expression derived

3The mentioned approximation is different from what we are calling the Ising regime,
where the magnetic moment stays most of the time around the potential minima, but it is
still in complete equilibrium, and performs a sufficiently large number of inter-potential-well
rotations during a typical observation time.
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from the field expansion (2.35) of the partition function (this is our contribu-
tion to the abovementioned class of “more or less complicated expressions”).
Finally, we shall study the expressions for the magnetization derived from the
weak- and strong-anisotropy expansions of the free energy obtained in Subsec.
IL.E.

1. Magnetization: particular cases

We shall now study the expressions that emerge from Eq. (3.24) when one
introduces into it the particular cases of the partition function considered in
Subsec. I1.C.

a. Isotropic case. For ¢ = 0 the partition function is given by Zran =
(2/€) sinh & [Eq. (2.17)], so that the magnetization reads

1
MBian =m (cothE — g> =mL(§) , (3.25)
where L(€) is the Langevin function (2.49).

b. Isingregime. Foro — oo, the partition function is Zising = (€7 /0) cosh§)
[Eq. (2.22)]. Since § = {cosa, the magnetization derived from Eq. (3.24)
reads

MB 15ing = mcosatanh(§)) , (3.26)

which naturally vanishes when B is perpendicular to the “Ising axis” 7.

c. Plane-rotator regime. The ¢ — —oo partition function is Z,oy ~
(=)o) 21y (€1) [Eq. (2.23)], so that the plane-rotator magnetization is given
by

MB,rot = msina[l(&_)/[o(&_) ; (327)

where we have used I)(y) = I1(y) [see the integral representation (2.14) for
I,(y)]- In this case, Mp is zero when Bis perpendicular to the easy plane.

Note that, when the magnitude of the magnetic moment is independent
of the temperature, Mp depends on B and T via ¢ (x B/T) in all three con-
sidered cases. This is called the B/T superposition of Mp; the magnetization
vs. field curves corresponding to different temperatures, when plotted against
B/T, collapse onto a single master curve. However, outside those limit ranges,
T does not enter in Mp(B,T) via B/T only, but Mp depends on £ as well
as on o. This will be illustrated now with the magnetization in a longitudinal
field.
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d. Longitudinal-field case. When B || 7, the partition function is given
by Eq. (2.25). In order to derive the associated magnetization, we need to
take the derivatives (h = £/20)

r%[(lih)R(Ui)] =+ %R(Oi)-i-(l:l:h)QR'(ai) :i%,

where we have used do1/0¢ = £(1 + h) and the terms R'(o4) have been
eliminated by dint of Eq. (A.12). Then, with help from exp(c+) = exp[o(1 +
h?)] exp(£€), we get from Eq. (3.24) the magnetization in a longitudinal field
as

M 0'(1+h2) inh
Bl _¢ sinh & —h, (3.28)
m o (1+h)R(o4)+ (1 —h)R(c-)
which, by using Eq. (2.25), can more compactly be written as
Mg, :isinhﬁ_i' (3.29)

m g Z” 20

Figure 9 displays the magnetization vs. the longitudinal field, showing
that Mp | does not depend on B and T via £ only. As T' decreases one finds
the crossover, induced by the uniaxial magnetic anisotropy, from the high-
temperature (|o| < 1) isotropic regime, to the low-temperature (o > 1) Ising
regime. Note that, even for ¢ ~ 20, the typical measurement times for the
magnetization (~ 1-100s) would be much longer than the relaxation times of
the magnetic moment. Therefore, all the displayed curves could be observed
experimentally without leaving the equilibrium (superparamagnetic) range.

Finally, we shall compare the above results with other expressions derived
for the magnetization. For ¢ > 0, Eq. (3.29) reduces to the expression obtained
by West (1961). Indeed, if we use the alternative expression (2.27) for Z in
terms of the Dawson integral D, we get

Mg 1 sinh £ B i (3.30)
m o eD(fo5)+e¢D(\Jo-) 20’ '

which is the result of West almost in its original form. Another formula was
derived by Coffey, Cregg and Kalmykov (1993) when calculating relaxation
times for magnetic nanoparticles by the effective eigenvalue method, namely

Mp,) _ 13
Mmoo [(€LE) + 1+ DT + 55) + ELE) +1-HD(/7 ~ 55)

€

20’
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FIGURE 9. Magnetization vs. longitudinal field ¢ = mB/ksT [Eq. (3.29)] for
various values of the dimensionless anisotropy parameter o = Kv/kgT, showing the
anisotropy-induced non-B/T superposition of the magnetization curves.

where L(£) is the Langevin function. However, on merely noting that /o +

&/2/o = \Jox, and using

£
sinh &

(cosh& £sinh§) = 3 ett

EL(E)+1+E=EcothE €= Sinh €

their formula can be cast into the form (3.30) of West. Likewise the latter, the
above alternative expression for Mp | is written by assuming easy-axis aniso-
tropy implicitly [recall the discussion as regards the validity of the expression
(2.27) for Z“]

2. General formula for the magnetization

On inserting the field expansion of the partition function (2.35) into the
statistical-mechanical relation (3.24), the magnetization emerges in the form

Mp=m)_ (iz_ci)!g%—l/; %gﬁ : (3.31)

i=1

This formula gives a general expression for Mp as a quotient of two series of
powers of & whose coefficients are expressible in terms of Kummer functions
[Eq. (2.39)]. Such a mathematical object is clearly not easy to deal with.
Nevertheless, one can check by an explicit identification of the corresponding
series, that when the limit cases of the coefficients C; (see Table III) are
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introduced into Eq. (3.31), one gets the isotropic, Ising, and plane-rotator
results for the magnetization. Indeed, for the series in the numerator and the
denominator (the magnetic-field dependent factor in the partition function)
we obtain

|| c=0 | g — 0 | o — —00
T (iZFf)!gzi_l % (cosh£ - % sinh £) cosasinh(§)) | sinal;(£1)
Yo € Lsinh¢ cosh(§)) To(€1)

Therefore, Eq. (3.31) contains, as particular cases, the limit formulae for the
magnetization discussed above.

3. Series expansions of the magnetization

a. Expansion of the magnetization in powers of the anisotropy pa-
rameter. Here we shall derive the magnetization from the weak-anisotropy
expansion of the free energy obtained in Subsec. ILE. In this way, we shall
arrive at an approximate analytical expression for Mp that comprises the first
corrections to the Langevin magnetization due to non-zero magnetic aniso-
tropy.

To this end, we must differentiate the expansion of F in powers of ¢ =
Kuv/kgT [Eq. (2.70)] with respect to the field. Prior to taking the &-derivatives
of the first two coefficients of that expansion, we shall rewrite them in alter-
native forms. Equation (2.71) for Z1/Z, can be written as

Z 9 9 1
— =cos“a — (3cos“a—1)-L,

while Eq. (2.72) for the coefficient in ¢? can be cast into the form

112 (2 . ) 1 3
Sl e Y (et - - — (1-2L
2l30 (Zo>] (35 cos*a 30cosoz+3)262 ¢
4 2 Lo 4 2 12
— (9cos*a — 6cos a+1)2£2L — (cos*a — cos a)gL.

Now, on taking the derivatives of the above coefficients with help form Eq.
(2.54) for (L/€)', we get

(3 cos’a — 1)% [L2 - (1 — %L)] , (3.32)

~~

. &l

L
Il

1 3
= (35cos’a —30cos’a +3)— |3L2-5(1->L
283 3
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4 2 1 2 3
+ (9cos*a — 6 cos a+1)§—2L L — I_EL
4 2 2 |2 3
+ (cos*a — cos a)g L -{1- EL . (3.33)

These expressions, when introduced into

Mg zZ0\' 1
21+ (5) o+ g

!

2 (Z)] .
= — | = 3.34
Z-(2) ] e
yield the first terms of the desired weak-anisotropy expansion of the magne-
tization.

Some relevant particular cases are those where the field points along the

anisotropy axis, perpendicular to it, and when the anisotropy axes are dis-
tributed at random. In the first two cases we find

" i .
Bl o pge) 4+ 2 L2—(1—%L> o
3
L _

: {}M(l—?ﬂ)] rerfi-(1-2)] )o@

3
o-r-(- 3]

+ glg {g [3L2 —5 (1 - %L)] +¢L [L2 — (1 — gL)]}oz , (3.36)

while (MB)ran is obtained by introducing the averages (2.64) into Egs. (3.32)
and (3.33), getting?

i (-39 - (29 o

Naturally, one can also obtain this result by taking the &-derivative of the
o-expansion of (F)ran [Eq. (2.73)]. As was anticipated there, for anisotropy
azxes distributed at random, the corrections to the Langevin magnetization due
to the magnetic anisotropy begin at second order.

In order to estimate the range of validity of the weak-anisotropy expan-
sion of the magnetization, this has been compared with the exact analytical
formula (3.29) for the longitudinal magnetization. It is shown in Fig. 10 that

4
+ —

1R

4Note that (3cos?a — 1)ran = (35cosa — 30cos?a + 3)ran = 0, the terms into the
brackets being proportional to the second and fourth Legendre polynomials, respectively
[see Eq. (3.68) below].
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FIGURE 10. Magnetization vs. longitudinal field £ = mB/ksT [Eq. (3.29); solid
lines], along with the weak-anisotropy formula (3.35) (left panel, dashes) and the as-
ymptotic formula (3.39) (right panel, dashes), for various values of the dimensionless
anisotropy parameter o = Kv/kgsT.

the approximate (3.35) works reasonably well up to o ~ 2. Considering that
the expansion has been performed by assuming ¢ as the small parameter, the
range of validity obtained is quite wide.

The effect of the orientation of the field with respect to the anisotropy
axis is shown in Fig. 11. In contrast to the longitudinal-field case, where the
anisotropy energy favors the alignment of the magnetic moment in the field
direction, in the transverse case the anisotropy hinders the magnetization
process, and the magnetization curve goes below the Langevin curve. In addi-
tion, for an ensemble of spins with anisotropy axes distributed at random, this
phenomenon slightly dominates the favored alignment of the longitudinal-field
case, so that the corresponding magnetization is slightly lower the Langevin
magnetization.

The anisotropy-induced contribution to the magnetization, Mg (§)—mL(§),
has been isolated in the lower panel of Fig. 11. This representation neatly
shows that the random orientation of the anisotropy axes significantly re-
duces the anisotropy-induced contribution to the magnetization process. In
the range of low fields, moreover, that significant reduction becomes an exact
cancellation. This is due to the fact that the linear susceptibility is indepen-
dent on the anisotropy energy when the anisotropy axes are distributed at
random. This result, which was advanced when considering such an average
of the field expansion of the free energy [Eq. (2.69)], is not restricted to the
weak-anisotropy range (see Subsec. I11.D).

We finally remark that for easy-plane anisotropy (¢ < 0), the results
described are only slightly modified. Here, the longitudinal- and transverse-
field cases, interchange in some sense their roles. For B || 7 and o < O,
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FIGURE 11. Upper panel: Magnetization vs. longitudinal field [Eq. (3.35)] and
transverse field [Eq. (3.36)], and for anisotropy axes distributed at random [Eq.
(3.37)]. Lower panel: Anisotropy induced contribution to the magnetization.

the magnetic anisotropy hinders the magnetization process, whereas this is
naturally favored in the transverse field case. However, for anisotropy axes
distributed at random, the net magnetization curve again goes slightly below
the Langevin curve.

b. Asymptotic expansion of the magnetization for strong aniso-
tropy. We shall now derive the magnetization from the asymptotic expan-
sion of the free energy for large o0 = Kv/kgT'. In this way, we shall obtain an
analytical formula that contains the first corrections to the Ising-type magne-
tization due to non-infinite magnetic anisotropy.

We proceed by differentiating the 1/0-expansion of In Z [Eq. (2.74)] with
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respect to the field. The ¢-derivative of the coefficient of 1/0, reads

cos af| ]
cosh? é| ’

[(2 + Ei) — 25” tanh EH]I =-2 [ —sinaé, + cos atanh E” +

where d§/d¢ = cosa and d¢; /d§ = sina have been used. The {-derivative
of the coefficient of 1/0? is taken similarly, yielding

[5+ 28 + &) — (4 + )¢ tanh & — & tan® )|

= Tcosatanh {4 3L -2 [tanh = cosfl||2 fll] }
&

cosh? §| ’

+2sinag; — cosaf?

On collecting these results and using Mp = m(91n Z/0¢), the approximate
magnetization can finally be written as

Mp 1 2¢) 1 sinh(2¢)) — 2¢)
= cosatanhgn{l—% [l+m] 57 |4 ”W

3 Sinh(2£”) +2§ 1
cosh® | 1602

) 1 1
+ sinaf <% + E) —cosaf? (3.38)
This formula extends the asymptotic result of Garanin (1996, Eq. (3.13)) in
the longitudinal-field case (| = &, {1 = 0) to an arbitrary orientation of the
field.

Let us explicitly write down the above approximate expression when the
field points along the anisotropy axis and perpendicular to it, namely

My tanh.f{l L [HL] L[Ll_gsinh(zs)—zs]}’

é

m T2 sinh(26)| 802 cosh? ¢
(3.39)
Mg, 11
m ~ ¢ (g + @) . (3.40)

Note that in the transverse-field case the leading (Ising) result is identically
zero and one gets a linear increase of the magnetization with £. On the other
hand, the occurrence of a in the arguments of the hyperbolic functions in
Eq. (3.38), precludes the obtainment of a simple formula for Mp when the
anisotropy axes are distributed at random.
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As we did when studying the magnetization for weak anisotropy, we may
estimate the range of validity of the asymptotic expansion of Mg, by compar-
ing it with the exact analytical formula for Mp ). Figure 10 also displays such
a comparison showing that, for the field range considered, the approximation
derived works reasonably well down to quite small values of o. There is how-
ever an important difference with the weak-anisotropy formula for Mp, the
accuracy of which was not significantly sensitive to the magnitude of the field.
Here, all the approximate curves depart from the exact results at a certain
value of the field, which decreases as the anisotropy does. The breaking down
of the asymptotic expansion at high fields is apparent in the transverse-field
case (3.40), which yields a linear dependence of Mg on &£, whereas at high
fields the magnetization must saturate.

These limitations occur because of the o > 1 expansions have as leading
terms Ising-type results (i.e., they correspond to a potential with two deep
minima), and the next-order terms are corrections associated with the finite
curvature of the potential at the bottom of the wells. However, at sufficiently
high fields the two-minima structure of the potential disappears (for example,
for B = Bk in a longitudinal field), and the expansion breaks down. In fact,
already for B ~ Bk /2, which corresponds to £ ~ o [see Eq. (2.6)], the upper
potential well is quite shallow (see Fig. 1) and the inverse of the potential
curvature at the minimum is large, so the expansion must already fail. This
is consistent with the asymptotic results shown in Fig. 10: the approximate
Mp departs from the exact one at £ ~ 3 for 0 = 3, at £ ~ 4 for 0 = 5, at
& ~ 8 for o = 10, and so on.

We finally mention that, as Fig. 10 suggests, the use of the weak-anisotropy
formula, swapped at some point between ¢ = 2 and ¢ = 5 by the asymptotic
expression, yields a reasonable approximation of the exact magnetization,
except for the discrepancies discussed of the asymptotic £ 2 o results. In this
connection, as the ¢ = 3 curve suggests, one can replace the asymptotic
expansion for £ 2 o by the weak-anisotropy formula in order to improve the
overall approximation.

c. Field expansion of the magnetization. Let us finally discuss the
low-field expansion of the magnetization (H = B/puo),

Mp =x1H + xsH® + xsH° + -+, (3.41)

which defines the linear, x; (or simply x), and non-linear, x2,4+1,n =1,2,3,...,
susceptibilities.
In order to derive general expressions for the susceptibilities, we can take
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TABLE V. Combinations of the coefficients C; occurring in the first terms of the ex-
pansion (3.42) of the magnetization in powers of the magnetic field, in the isotropic,
Ising, plane-rotator, and longitudinal-field cases.

| ||a=0| o — 00 J—)—oo| B n
T
20, 1 cos?a : sina %
1 1 4 1 a4 1(1R" R"\2
2(Ca—C2) -2 | —3costa | —& sin*a ;13% - (%)
s 2| 2 angb 1 gin® L|LR” _1R'R | (R)3
C3—3C2C1+2C4 945 | 15 COS @ 96 S | [30 T -iEE+(E)

the ¢-derivative of the low-£ expansion of In Z [Eq. (2.65)], getting
Mp=m [ 2016 + 2(Cy — C2)E8 + (C5 — 3CHCy + 203)€5
+1(C4 —4C5Cy = 3C35 +12C,CF —6CHE™ + -+ - | (3.42)

where the coefficients C; are given by Egs. (2.36) or (2.39). One also arrives
at Eq. (3.42) by expanding in powers of ¢ the inverse of the denominator of
the general formula (3.31), and multiplying this expansion by the first terms
of the series in the numerator.

The expansion (3.42) embodies x, x3, x5, and x7; in general, x2,41 can
be obtained by inserting the appropriate C; into the expression for the nth-
order cumulant. The coefficients of the first three terms at ¢ — 0, +00, and
for B || i, are given in Table V (they can be obtained from the expressions
of Table IV). On inserting those coefficients into the above expansion of Mg,
one gets the approximate formulae

1 1 2
MBiLan = Y S < BT - B R 4
pim = m[gE- €+ et | (3.43)
1 3 2 5
MB,Ising = Mmcosu §||—§€”+1—5£”+ ) (344)
: 1 1 3 1 5
Mproy = msina §£J__E£J_+%£J_+"' ) (3.45)
R . 1[1R" [R\?| 4
Mg, = m{f“i 5?‘(?) ¢

11 Rp™ 1R" R R 3
T1|30R "2RR (E)

§5+---}. (3.46)
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Note that, in the first three cases xan41 depends on T with a T~ +D law.
This is the translation to linear and non-linear susceptibilities of the B/T
superposition of the corresponding magnetization curves. Qutside these limit
ranges, however, the temperature dependence of C;(o, ) through o, provokes
that x2n41(T) no longer satisfies such a simple 7~ (2"+1) law. This is already
illustrated by the above expansion of Mp |, in which it can be recognized
the extra dependence of the susceptibilities on T, provided by the functions
R¥(0)/R(0) via o.

These points will be further investigated in the following two subsections
devoted to the linear and non-linear susceptibilities, respectively.

III.D Linear susceptibility

We shall now study the linear susceptibility of classical spins with axially
symmetric magnetic anisotropy. The linear susceptibility, x, can be defined
as the coeflicient of the linear term in the expansion of the magnetization
in powers of the external field. On comparing the H-expansion of Mp (3.41)
with the {-expansion (3.42), and using £ = uomH/kpT, one gets the following
expression for x ,

X = ‘;;":; 201 (0,0) , (3.47)
which involves the first coefficient in the expansion of the partition function
in powers of £. Recall that « is the angle between the anisotropy axis 7 and
the field, while ¢ = Kv/kgT.

1. Linear susceptibility: particular cases

Let us first consider the expressions that emerge from Eq. (3.47) when one
inserts the particular cases of 2C, into it (Table V).

a. Isotropic case. For o0 — 0, 2C; = 1/3, whence one gets the Curie law
for the susceptibility

pom?®
3ksT

For classical spins, this result naturally follows from the absence of anisotropy.

XLan = (348)

b. Ising regime. For o — 0o, 2C; = cos?a, so that

2
m
Xlsing = 'L]L:? COSQO‘ 5 (3'49)
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which is analogous to the susceptibility of an Ising spin. Thus, when the
field points along a direction perpendicular to the “Ising axis” (cosa = 0), x
vanishes.

c. Plane-rotator regime. For 0 — —oo, 2C; = sin’a/2, so that the
plane-rotator linear susceptibility is given by

2
Xrot = 22 gin2q . (3.50)
B

In this case the response is identically zero when the field points perpendicular
to the easy plane.

d. Longitudinal-field case. On introducing 2Ci|,=0 = R'/R in Eq.
(3.47) one gets the longitudinal susceptibility

_ pom? E
XI= 3T R

(3.51)

where the factor R'/R induces an extra dependence on T via o, “interpo-
lating” between the isotropic (R'/R|,=0 = 1/3) and Ising (R'/R|s—00 = 1)
results.

2. Formulae for the linear susceptibility

When the general expression (2.66) for C; is introduced into Eq. (3.47), the
linear susceptibility emerges in the form

2 ' _ pt
X = 'lZJBT; (% cos’a + RzRR sin2a> . (3.52)

It is convenient to introduce the longitudinal and transverse components of x
(which are related with the diagonal elements of the susceptibility tensor; see
below)

2 i 2 '
pom® R pom® R— R
= - = 3.53
X ksT R ) XL keT o°R ) ( )
so that x can be written as
X = X|| cos’a + x sin’a . (3.54)

The quantities x| and x . characterize, respectively, the equilibrium response
to a longitudinal (parallel to #) and transverse (perpendicular to ) probing
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field. Due to the linearity of the response, when the probing field points along
an arbitrary direction, the projection of the response along the probing-field
direction in given by the weighted sum (3.54) of the longitudinal and trans-
verse responses.

Other derivations of the equilibrium linear susceptibility of a dipole mo-
ment in the simplest axially symmetric anisotropy potential were carried out
by Lin (1961), Raikher and Shliomis (1975) (see also Shliomis and Stepanov,
1993), Shcherbakova (1978), and Chantrell et al. (1985).

a. Average of the linear susceptibility for anisotropy axes dis-
tributed at random. For an ensemble of equivalent magnetic moments
(i-e., with the same characteristic parameters) whose anisotropy axes are dis-
tributed at random, one finds

0 _pom® (R'1  R—R'2\ _ pom’
Xlran = 3 \R37 "2R 3)  3kgT’

(3.55)

which is merely the Curie law for the linear susceptibility. This equation entails
that, irrespective of the magnitude of the magnetic anisotropy as compared
with the thermal energy, the linear susceptibility of the randomly oriented
ensemble is equal to the susceptibility of isotropic magnetic moments. This
also holds in the extreme anisotropy cases: for an ensemble of Ising spins,
with Ising axes distributed at random, (Xising)ran = pom?/3ksT; likewise, for
an ensemble of plane rotators, with axes of rotation distributed at random,
(Xrot)ran 18 given by the Curie law (3.55).

We shall see below that Eq. (3.55) is in fact rather general; it holds when-
ever the Hamiltonian of the spin (in the absence of the probing field) has
inversion symmetry (17 <> —1).

b. Reduced linear susceptibility. An informative quantity is the re-
duced linear susceptibility defined as x**¢ = x(kgT/puom?) = 2C}, whence

! ) R—R
0,0) = — cos“a +

red(
R 2R

sina . (3.56)

X

This quantity has the property that isolates the temperature-dependence of
x induced by the magnetic anisotropy. Besides, it embodies the angular de-
pendence of x. Figure 12 shows x™9 as a function of the angle between the
anisotropy axis and the probing field (cf. Lin, 1961). As expected, the larger
the |o|, the more anisotropic the x**¢ curves, becoming rather different from
circles already for |o| ~ 5.
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7

FIGURE 12. Polar plots showing the angular dependence of the reduced linear
susceptibility x*¢ [Eq. (3.56)] for various values of the dimensionless anisotropy
parameter 0 = Kv/kgT. (a) Easy-axis anisotropy. (b) Easy-plane anisotropy.

Figure 13 shows x™®¢ for the longitudinal and transverse components of
the linear susceptibility (in this representation (x**);an would take the con-
stant value 1/3). Both curves coincide for o = 0, where the orientation of
the field plays no role, taking the Langevin value 1/3. It can also be seen
that the maximum variation of x™4 with o, occurs when the probing field is
parallel to the anisotropy axis. Note also that, qualitatively, the longitudinal-
and the transverse-field cases interchange their roles when the sign of the
anisotropy is reversed. This statement, which is supported by Fig. 12, is as-
sociated with the qualitatively “equivalent” magnetization behavior in the
easy-axis and easy-plane anisotropy cases when the probing field points in the
“easy-magnetization region” or in the “hard-magnetization region,” regions
that interchange themselves when the sign of the anisotropy is changed.

3. Generalizations

a. Probing-field derivative of the magnetization. The definition of
the linear susceptibility as the coefficient of the linear term in the expansion of
the magnetization in powers of the external field, of course agrees with that
in terms of the field derivative of the magnetization at zero field, i.e., x =
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FIGURE 13. Reduced linear susceptibility (3.56) in the longitudinal, xﬁed, and

transverse, x4, field cases vs. the dimensionless anisotropy parameter o = Kv /ksT

(cf. Fig. 6).

po[O(r - B)e /6B]| p_o- This definition suggests the immediate generalization

& - b)

X = Ho m ’
AB=0

(3.57)

where AB = ABb is an external probing field (13 stands now for the unit
vector in the direction of the probing field). The absence of the subscript “e”
in the thermal-equilibrium averages is used to indicate that they are taken
with respect to the total energy (system plus perturbation). The unperturbed
system can already be subjected to a constant (bias) field, B', not necessarily
collinear with AB.

Indeed, the calculation of the linear susceptibility can be carried out by
starting from a total Hamiltonian Ht = H —m - AB , where the knowledge of
the actual form of # is not required. Let us calculate first

A{(m - b)™) & [dQ(m-b)reFHr

8(AB)  9(AB) [dQe AHr
Z [dQ (- b)nHle=BHT — [dQ (7 - b)"e~PHT [dQ (7 - b)ePHT
Z2 ’

= B

where as usual [dQ(-) = (1/27) f_lld(cos ) fozwdgo (+). From the above result
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we get the general relation

d{(m - b))

3(AB) = B[(6a- By = (G- ) m b)) (3.58)

the n = 1 particular case of which merely reads

o(m -b . .
ﬁ = B [(am-5)%) - (m-b)’] | (3.59)
and holds irrespective of the magnitude of AB. When this equation is eval-
uated at AB = 0 and inserted in Eq. (3.57), one gets the celebrated ex-
pression for the linear susceptibility in terms of the statistics of the thermal-
equilibrium fluctuations of the magnetic moment in the absence of the probing
field, namely

x = o ({6 5), — (-5 (3.60)

where (). denotes the equilibrium average in the absence of the perturbation.

The relation (3.60) is valid for any form of the Hamiltonian. When H is
given by H = —(Kv/m?)(m - 7)? [cf. Eq. (2.2)], the above averages in the
absence of the probing field are in fact zero-field averages, which are directly
related with the coefficients C; by Eq. (2.42). Thus, by inserting

(- ),

el B=0 = 0 ? <(’I’?L ) 8)2>e|B=0 = m2201 ’

into Eq. (3.60), one recovers the expression (3.47) for x.

b. Tensor structure. The linear susceptibility is in fact a tensor defined
by

_ 9 (m;)

ij = Mo 6(AB )

. (3.61)
AB=0

Note that the diagonal elements are given by Eq. (3.57) when b points along ,

7, and 2. By a derivation analogous to that leading to Eq. (3.60), one arrives
at the result 0

Xij = 35 [(mimy), = (mi), (my),] - (3.62)

Owing to the fact that x;; is a symmetrical second-rank tensor, it can

be diagonalized by a suitable change of coordinates. Let us assume that this

diagonalization has already been carried out. Then, if a probing field AB =

ABbis applied, the projection of the average magnetic moment onto bis given
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in the linear response range by (we use po(m;) =~ po{mi)|ap=0+>_; Xi;AB; +

o A(Y b ~ (xae c0S2a + Xyy 0823 + X2 c0s>y) AB,, (3.63)

where (a, 3,7) are the direction cosines of b (in the coordinate system that
diagonalizes x;;). The quantity into the brackets defines an effective linear
susceptibility x, which is in fact what we have been calling linear susceptibility
throughout.

c. The average of the linear susceptibility for anisotropy axes dis-
tributed at random revisited. On the basis of the above expressions, we
can derive the result mentioned for the linear susceptibility of an ensemble of
equivalent dipole moments whose Hamiltonian has inversion symmetry and
their intrinsic axes are distributed at random.

For an ensemble of independent dipole moments, the contribution of each
dipole to x is analogous to that occurring in Eq. (3.63), with (in principle)
different direction cosines and diagonal elements x;; for each dipole. However,
if these elements are equal we can write the total effective susceptibility as

X = Xaa {COS°Q) + xyy (c05*B) + X2 (cos®y) , (3.64)

where () denotes average over the ensemble of dipoles. Note that for the
assumption about the equality of the tensor elements to hold, the dipole mo-
ments must be equivalent (in the sense of having the same characteristic
parameters) and the orientation of the intrinsic axes (which diagonalize the
linear susceptibility tensor for each M) with respect to the main reference
frame, must be irrelevant in determining the y;;; this excludes, for instance,
the occurrence of an external (bias) field. Then, if those intrinsic axes are
distributed at random, the effective linear susceptibility (3.64) reads

(ran = 3 Ote + X + Xe2) = g 4 [mae + my)2 + (ma)Z] }

where Eq. (3.62) has been used to express the y;;. Finally, if the Hamiltonian
of each dipole has inversion symmetry ((m;"*")e = 0), one has (m;)e = 0,

i =x,y, z, so that the above formula reduces to

_ Hom”

(X)ra,n - 3kBT )

(3.65)

(note that presence of a bias field could as well be excluded on the basis of the
inversion-symmetry condition). Equation (3.65) is the announced result: for
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an ensemble of equivalent dipole moments whose Hamiltonian has inversion
symmetry, the effective linear susceptibility is given by the Curie law when
their intrinsic azxes are distributed at random.

d. General formula for any axially symmetric Hamiltonian. We
shall now calculate the linear susceptibility of a magnetic moment with an ar-
bitrary axially symmetric Hamiltonian. The corresponding equilibrium prob-
ability distribution of z = m,/m is given by [cf. Eq. (2.26)]

Poj(2) = 2 exp[-BH(2)], 2= [ 1dz exp[-BH(2)] (3.66)

where we have assumed that the symmetry axis points along 2. In such a
reference frame, the susceptibility tensor is diagonal and the diagonal elements
are given by

Xii = kl;—OT [(mf)e - (m,)z] , i=u,y, and z . (3.67)

Besides, due to the axial symmetry of the Hamiltonian, the susceptibility

tensor has only two independent elements x| = x.. and X1 = Xzz = Xyy-
Let us introduce the averages of the Legendre polynomials p,(z),

p]_(Z) = 2z, p2(z) = %(3‘22 - ]‘) ) (3 68)
ps(z) = 3(52°—3z2), pa(z) = (352" —302%+3),... )
with respect to the equilibrium probability distribution P, (z), namely
1
Sp & (pn(2)), = / dz pn(2)Ps(2) - (3.69)
-1
In terms of these quantities, we can write x| and x 1 as
2 2
_ pom?® (1428, 5 _ pom”1— S
X| = 3oT ( 3 St XL=T-F "3 (3.70)
for the writing of which we have employed
(mz)y = mSi, (m?), = m*(1+25,)/3,
<m$7y)e = 0 ’ <mi,y>e = (m2 - <mz>e) /2 :

The above expressions for x are valid, for example, for any axially symmet-
ric anisotropy potential in a longitudinal bias field. For the simplest uniaxial
anisotropy in a longitudinal bias field

—BH =02*+¢&z, (3.71)
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one can derive the following explicit expressions for S; and S

[

Si = ———sinh¢—h, (3.72)
o2
3| e 1 1
= 2 h¢ — hsinh 2_ |- .
S 2|07, (cosh& — hsinh &) + h 25 5> (3.73)

where h = B/Bg = {/20 and Z| is given by Eq. (2.25).5

In the K = 0 case, the linear susceptibility is more easily obtained directly
from the definition (3.69) of the S,, with help from Egs. (2.46)—(2.51). On
doing so, one obtains

_ pom? 1

r = -
kBT ) XL kBT § )

2
Hom
X|| =

(3.74)

where L(£) is the Langevin function. Note that, since L(§) = £/3+- - - for low
fields [Eq. (3.43)], both components of the above formula merge on the Curie
law x = pom?/3ksT as the bias field goes to zero.

For B = 0, the linear susceptibility is sometimes found written in a number
of alternative forms. Note first that in this case one has S; = 0. Therefore,
on introducing the notation Sy = Sz(a,£)|¢—o, one gets from Eq. (3.70) the
following formulae

u0m2 1+ 2g2 u0m2 1-— 5’2

XI= 9T 3 X7 kT 3 (3.75)

(The quantity S, is sometimes written as S or merely Ss.) In order to directly
check Eqs. (3.75) against Egs. (3.53) one only needs to use

R f_lldz 22 exp(o2?)
R fildz exp(0z2)

1 1 ~
= <22>e|B:0 ~3 (14285)|p—o = 5(1 +257) .

(3.76)

5The formula for S1 = (2)e, is essentially Eq. (3.29) for the longitudinal magnetization.
In order to derive the formula for S2, we can take advantage of some previous results. Note
first that the thermodynamical energy in the longitudinal-field case can be written as

U = (~Kvz® — mBz)e = —~Kv ((2*)e + 2h{z)e) = —Kv[(1+ 2S2)/3 + 2hS1] .

Then, on using Eq. (3.19) for |, taking Eq. (3.72) into account, and recalling that J =
2(cosh € + hsinh &), one gets

(1 + 252)/3 = *(MH/K’U) — 2hS1 = (e"/aZ”)(cosh§ — hsinhﬁ) + h? - 1/20’ y
from which Eq. (3.73) follows. Q.E.D.
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Alternative expressions for y at B = 0 can also be written in terms of Kummer
functions. Thus, on introducing C; from Eq. (2.41) into Eq. (3.47), one directly
gets (cf. Coffey, Crothers, Kalmykov and Waldron, 1995b)

_ ,u0m2 M( o) ¥ = H0m2 M(%a
3keT M(L,3;0)° * 7 3ksT M(L,

X|| (3.77)

?

[T NN
oo len

4. Approximate formulae for the linear susceptibility

We shall now derive approximate formulae for y with the aim of by-pass, when
possible, the use of expressions involving non-elementary functions. The for-
mulae obtained, based on weak- and strong-anisotropy expansions, reasonably
compare with the exact results in whole temperature range.

We find it convenient to rewrite first the exact expression (3.52) for x as

follows 21 LR
_ Hom”— 1 L a 2
X="7 73 [1 +3 (3R 1) (3cos”a 1)] , (3.78)

where the factor multiplying (3cos?a — 1) is precisely Sy [see Eq. (3.76)].
In order to derive approximate formulae for x in the unbiased case we shall
use the approximate results for R'/R derived in Appendix A. We can also
get most of the following results (up to second order) if we start from the

expansions of Mp in powers of o [Eq. (3.34)] and the asymptotic expansion
(3.38).

a. Weak-anisotropy range. In order to obtain an approximate formula
for x valid in the |o| < 1 range, we insert the approximate R'/R from Eq.
(A.24) into Eq. (3.78), getting

2
Lo 2 4 , 8 3 9
UL Y (AP S S “l. @
Xljoj<1 kT [ + (150+ 3157~ 7725° (3cos’a —1) (3.79)

This equation yields a good approximation of the exact x for |o| < 2. Note
that, as it should, when the anisotropy axes are distributed at random, the
corrections to the leading (isotropic) result vanish at all orders.

b. Strong-anisotropy ranges. Similarly, to obtain approximate formu-
lae for x valid in the |o| > 1 ranges, we shall use the corresponding approxi-
mate expressions for R'/R derived in Appendix A.

For 0 « —1, we insert R'/R from Eq. (A.27) into Eq. (3.78), getting

2
pom” (1 | 1
Xlge1 = —kOBT 3 sina — yy (3cos’a—1)| . (3.80)
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An approximate formula for the extreme easy-axis case can be derived in a
similar way. On substituting the o >> 1 result (A.29) for R'/R in Eq. (3.78),
we obtain

2 1 1
g1 =~ % [cosza - (% + 102 + 8?7) (3cos’a — 1)] . (3.81)
Again, when the anisotropy axes are distributed at random, all the correc-
tions to the leading plane-rotator and Ising results vanish identically. These
approximate formulae compare well with the corresponding exact results for
|o| > 5, so that, on complementing Egs. (3.79), (3.80), and (3.81) one can
cover the entire o-range reasonably. This merely follows from the patching
(shown in Fig. 34 of Appendix A) of the exact R'/R provided by the approx-
imate formulae with which the above approximate results for y have been
constructed.
For future reference, we finally write down the longitudinal and transverse
components of x for strong anisotropy to order 1/|o|, namely

2 2 2
Mo Homm Mom
~ — ~ K>0 3.82
X|| kT Ko ' XL oKv ( > )a ( )
and
2 2 2
Mom Mo Mo
~ ~ — K . .
XNI=5gy =T aqkpe K <O (3.83)

Note the qualitative interchange of the réles of x| and x 1 with the transfor-
mation K — —K.

c. Formulae in the presence of a longitudinal bias field. We can also
obtain high-barrier approximations of the exact equilibrium susceptibilities in
the presence of a longitudinal bias field. Those equations, which will be valid
for h <« 1, can be obtained by starting from the approximate expression (2.28)
for the partition function. Thus, on applying the relations [readily obtainable
from Egs. (3.66) and (3.69)]

1 32” 1 1 BZ”
S1 = Z“ BT , 3(1+252)— Z“ 90 (384)

to the approximate 2 mentioned, one gets from Egs. (3.70)

pom? 1
kT (cosh & — hsinh £)?

Xl
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11 1+ 6h% + At
4h(1 + h?)

n msinh(2§)]} , (3.85)

pom® 1 (1+h?)cosh& — 2hsinh§
kT 20 (1 — h?)(cosh & — hsinh&) -

X1 (3.86)

For B = 0, these formulae duly reduce to Eqgs. (3.82). Finally, on taking
formally the K — oo limit in these formulae (i.e., 0 = oo and h = £/20 — 0),
one gets the “Ising-type” equilibrium susceptibilities in a longitudinal bias
field [cf. Eq. (3.49)]

2
Hom 1

. ~0. 3.87
ksT cosh®¢ Xt (3.87)

X|| =
Equations (3.85), (3.86), and (3.87) will be used in Section V.

5. Temperature dependence of the linear susceptibility

Figure 14 displays the linear susceptibility in a longitudinal bias field. Con-
cerning the longitudinal component, this decreases with increasing B for a
given T, since x| (T, B) is the slope of the longitudinal magnetization curve
at B (see Fig. 9). As regards the temperature dependence of x|, because
x|(T, B = 0) is the initial slope of Mp |, it always increases as the thermal
agitation is reduced. In contrast, x| (7, B # 0) has a maximum as a func-
tion of the temperature and tends to zero at low temperatures. This is also
a result of x| (T, B # 0) being the slope of Mp | at B # 0. Indeed, at high
temperatures (£ < 1), x| also increases with decreasing thermal agitation.
However, at low temperatures (§ > 1), the slope of Mp || vs. B decreases as
T is lowered—“high-field” magnetization approaching a straight line due to
the saturation of (1) (cf. Fig. 9). Therefore, in the intermediate tempera-
ture range x| (7, B # 0) exhibits a maximum at the temperature where the
“shoulder” of the magnetization curve passes through B. Note finally that,
for this maximum to exist the anisotropy is secondary, whereas a non-zero
bias field is essential. Indeed, the longitudinal component of Eq. (3.74) for an
isotropic spin also exhibits a maximum in | vs. T if B # 0.

Concerning the transverse susceptibility, it exhibits a maximum as a func-
tion of T even for B = 0, so it cannot be attributed to the presence of the bias
field. This maximum is to be interpreted in terms of the anisotropy-induced
crossover from the free-rotator (isotropic) regime at high T' to the discrete-
orientation regime as 7' is lowered. Indeed, at low temperatures the transverse
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FIGURE 14. Longitudinal and transverse components of the linear susceptibil-
ity vs. T in the unbiased case and in the presence of longitudinal bias fields [Egs.
(3.70)]. The anisotropy is assumed to be of easy-axis type (K > 0) and the suscepti-
bilities are measured in units of pom/Bx = pom?/2Kv [the transverse equilibrium
susceptibility at T' = 0 in the unbiased case; see Eq. (3.82)].

probing field competes with the anisotropy energy in aligning the magnetic
moments, which are concentrated close to the potential minima. Then, the
increase of the thermal agitation permits 17 to (statistically) separate from
the poles and the (transverse) response increases. However, if the temperature
is further increased 7 becomes progressively unfastened from the anisotropy
and the transverse field competes mainly with the thermal agitation in align-
ing m; the response then exhibits a maximum and decreases as T is increased.
In this transverse probing-field case, is the anisotropy, not the bias field, the
essential element for the appearance of the maximum in the response. Indeed,
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the transverse component of Eq. (3.74), i.e., x. = (uom?/ksT)L/&, starting
from the non-zero value pom/B at T' = 0, decreases monotonically with T in
the whole temperature range [as x1 =~ (uom/B)(1 — kT /mB) for £ > 1 the
decreasing is linear at low 7).

III.LE Non-linear susceptibilities

We shall now consider the non-linear susceptibilities of classical spins with
axially symmetric magnetic anisotropy. Part of the motivation to study the
non-linear susceptibilities is the suitability of these quantities in the study of
collective phenomena in glassy systems, together with the glassy-like features
exhibited by interacting magnetic nanoparticles (see, for example, Jonsson
et al., 1995). Most of the following results were obtained by Garcia-Palacios
and Lazaro (1997), while the extension of the theory to the dynamical case
was done by Raikher and Stepanov (1997).

The non-linear susceptibilities are defined as the coefficients of the non-
linear terms in the expansion of the magnetization in powers of the external
field. To our knowledge, these quantities had never been derived from the
available expressions for the magnetization that take the magnetic anisotropy
into account. In fact, these formulae are either not expressly suitable to ex-
tract the non-linear susceptibilities, because they are not expressed as series of
powers of the field (see Chantrell’s formula in Williams et al., 1993), or would
yield the non-linear susceptibilities as series of powers of the anisotropy pa-
rameter (Lin, 1961).

Here, some of the parallel properties of the non-linear susceptibilities of
non-interacting classical spins will be illustrated with the first one of the series,
x3- The basic expression for this quantity can be obtained by comparing the
H-expansion of Mp (3.41) with its £-expansion (3.42), to get

_ _pmgm?
X3 = (ks T)?

2(Cy - C}), (3.88)

which involves the first two coeflicients of the field-expansion (2.35) of the
partition function.

1. Non-linear susceptibilities: particular cases

Let us first write down the expressions that emerge from Eq. (3.88) when one
considers various particular cases of the combination 2(Cy — C%) (see Table
V).
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a. Isotropic case. For ¢ — 0, one has 2(Cy — C?) = —1/45, so that the
Langevin x3 reads
3,4
HoTh
h=— . 3.89
X3,La 45(ksT)? (3.89)
b. Ising regime. For 0 — oo, the combination of the C; required reads

2(Cy — C?) = — cos*a/3; accordingly, the Ising x3 is given by

ugm?* cos*a

X3,Ising = BT OERE (3.90)

which vanishes when the field points along a direction perpendicular to the
anisotropy axis.

c. Plane-rotator regime. Foro — —oo, we have 2(Cy—C?) = —sin*a/16,
whence s 44
pom* sin®a
ot = ———— 3.91
X3,rot 16(kBT)3 ( )

Here, the non-linear susceptibility vanishes when the field points along the
direction perpendicular to the plane of the rotator.

d. Longitudinal-field case. Finally, when the field is parallel to the an-
isotropy axis, one has 2(Cy — C?) = [R" /3R — (R'/R)?]/2, so that the corre-
sponding non-linear susceptibility reads

1R" (R’
3R (E)
As occurs with the linear susceptibility, the magnetic anisotropy induces an

additional dependence of x3 on T via the functions R(® /R, with the conse-
quent departure from the T2 dependences of the above limit cases.

pgm* 1

X3, = (kBT)3§ (3.92)

2. Formulae for the non-linear susceptibility

On introducing the complete expression for 2(Cy — C?) obtained from Eq.
(2.67) into Eq. (3.88), we get the following general formula for y3

_ogmtfOL[LRT (RN
X3_(kBT)3 23R R cos a

[(R/ 2 R s .o
E) _f] cos asin~ o
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1 R R 2 R" .
—|—-14+2— -2 — — | si . .
+16[ + R (R) +R]sm a} (3.93)

This expression can alternatively be written in terms of the averages of the
Legendre polynomials (3.69) evaluated at zero field (Raikher and Stepanov,
1997)

pem* 1
X3 = 3a1r
(ksT)3 315

[ (1254 — 7052 — 408, — 7) cos*a
— 2(1854 — 3552 + 108, + 7) cos?a sin’a

1 = ~ ~
+ 5(954 — 3552 + 408, — 14) sin*a| ,  (3.94)

where S, = Sp(0,&)|¢—0- These formulae simplify notably when averaged
over an ensemble of equivalent dipole moments with a random distribution of
anisotropy axes.

a. Average of the non-linear susceptibility for anisotropy axes dis-
tributed at random. When the expressions (2.64) for the averages of the
angular terms are introduced into Eq. (3.93), one gets the following formula
for (x3)ran [cf- Eq. (2.68)]

3,4 / Y\ 2
wom* 1 [ R R
X3)ran = (777 30 [ R 3( R) ] ’ (3.95)

or, by using the relation R'/R = (1 + 253)/3, the more compact form

(xs) __,ugm4 1+ 253
Xlran = T s T 45

(3.96)

Note that, unlike (x),,,, which is given by the Curie law, x3 depends on the
anisotropy energy even for anisotropy axes distributed at random. Indeed, we
had already seen in Fig. 11 that, while for low fields one has (Mp)ran ~ mL(§),
as the field is increased (Mp)ran bends downwards more rapidly than the
Langevin magnetization. Thus, not only (X3)ran # X3,Lan, DUt [(X3)ran| >
|X3,1an| (up to factors of 3 and 1.5 at low T for K > 0 and K < 0, respectively).

b. Reduced non-linear susceptibility. In analogy with the reduced lin-
ear susceptibility (3.56), we can define a reduced non-linear susceptibility iso-
lating the anisotropy-induced temperature dependence of x3 as follows

red (kB T)3

x5 (0, a) = x3(o, Q)W =2(C, - CY). (3.97)
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FIGURE 15. Polar plots showing the angular dependence of the reduced non-linear

susceptibility —x5¢ [Eq. (3.97)] for various values of the dimensionless anisotropy

parameter 0 = Kv/kgT. (a) Easy-axis anisotropy. (b) Easy-plane anisotropy.

Figure 15 displays —x5°¢ as a function of the angle between the anisotropy axis
and the external field. It is shown that the x5¢ curves become increasingly
anisotropic as |o| increases, being quite different from circles already for |o| ~
1. (The circles for the isotropic —x5¢|,—¢ correspond to the same radius
(1/45), but they have different sizes in the plots since the maximum value of
—x5d is 1/3 for K > 0 and 1/16 for K < 0.)

The upper panel of Fig. 16 shows x5 vs. o in the longitudinal and trans-
verse field cases, as well as for anisotropy axes distributed at random. The
three curves coincide at ¢ = 0, where the orientation of the magnetic field
plays no role, taking the Langevin value —1/45. It is noticeable the large vari-
ation of X9 with respect to o for anisotropy axes parallel to the field. Note
also that, although dramatically reduced, the anisotropy-induced temperature
dependence of x3 is kept for anisotropy axes distributed at random. On the
other hand, we can again remark that, qualitatively, the longitudinal and the
transverse field cases interchange their roles when the sign of the anisotropy is
reversed (see also Fig. 15). For instance, for easy-plane anisotropy xs,| rapidly
vanishes as |o| departs from zero. The analogous result for easy-axis aniso-
tropy occurs in the presence of a transverse field; then xs, 1 rapidly decreases
as o departs from zero. However, in this case x3 does not exactly vanish, but
it goes to a finite non-zero value for large o (which is not resolved with the
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FIGURE 16. Upper panel: Reduced non-linear susceptibility (3.97) in the longitu-
dinal, ng’l‘li, and transverse, Xffji_, field cases, and for anisotropy axes distributed at

random, (x5%)ran, vs. the dimensionless anisotropy parameter o0 = Kv/kpT. Lower
panel: Temperature dependence of the transverse component of the non-linear sus-
ceptibility [from Eq. (3.93)]. x3,. is measured in units of m(uo/Bx)>

scale used in Fig. 16). This will be discussed below.

c. The sign of the non-linear susceptibility. As the non-linear sus-
ceptibility is a measure of the departure of the magnetization from the linear
regime, and this departure usually consists of a bending downwards, one is
tempted to conclude that x3 is a negative quantity. Indeed, the above formula
for anisotropy axes distributed at random [Eq. (3.96)] clearly shows that this
is indeed the case for {x3)ran (in accordance with the downward bending of
the corresponding magnetization in Fig. 11). However, this result is not gen-
eral as will be illustrated now with x3, 1. Let us compute the low temperature
(¢ > 1) expression for xs, 1 by using the asymptotic methods of Appendix
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1 3,4 R R 2 R" 1 3md 1
DIt LS RV RN Y (o I L PO L
16 (kgT)3 R R R 16 (ksT)3 o
so that ) 3 T
~ 2P0\ 5B
X3.L =~ 2m(BK) g (3.98)

Therefore, we see that, not only is x3,1 positive at low temperatures, but it
indeed increases linearly with 7'. At higher temperatures the above expansion
must break down and the corresponding corrections bring x3 ; to the nega-
tive values that it must take at sufficiently high temperatures (xs3,1|s<1 =~
X3,Lan = —[ugm?*/45(ksT)?]). Thus, from the knowledge of the limit tem-
perature dependences (x3,1 o T and —1/T?) one concludes that x3, must
have two peaks and cross the temperature axis at a certain intermediate tem-
perature. This is precisely what it can be seen in the lower panel of Fig. 16,
showing that x3 < 0 is not a general result. As T" decreases, x3,1 has a nega-
tive minimum, increases, crosses zero, exhibits a secondary positive maximum,
and eventually tends to zero at low temperatures. These are the typical fea-
tures exhibited by the dynamical non-linear susceptibility x3(w,T’) (Raikher
and Stepanov, 1997), but their occurrence in the equilibrium susceptibility
is somewhat unexpected. This is another good example of the effects of the
magnetic anisotropy on the properties of superparamagnetic systems.

3. Generalizations

One can also derive the non-linear susceptibility by means of the relation
between the thermal-equilibrium fluctuations of 7, in the absence of a probing
field, and the actual magnetic response of the system, by-passing the explicit
expansion of the magnetization in a series of powers of the field.

On inspecting the definition (3.41), one realizes that x3 can be obtained
by differentiating the magnetization as x3 = § 30> (m - 13>e /0B3|p—o. This is
directly generalized to

o= Ly P0-0) (3.99)
3 6#0 6(AB)3 ) -
AB=0
6As the first non-vanishing term in 3, is of fourth order [see Eq. (A.30)], we need to
compute one more coefficient b; in the ¢ > 1 expansion of Appendix A. On doing this we
get by = —37/8, from which we obtain the fourth order term of R'/R, and from this we
can calculate the corresponding terms in (R'/R)? and R"/R.
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where AB = ABb is an external probing field and the averages are now taken
with respect to the total energy of the system in the presence of AB.

On calculating the above third-order derivative by making repeated use of
the Eq. (3.58), one arrives at the general result [cf. Eq. (3.60)]

_oomy 1 L i may e i arn g
xs= Gy | (08 D)), —4(-P) (), — 3 5)%);

+12((7 - D)%), (7 - B2 — 60 - B |

where the averages are finally taken in the absence of the probing field. Note
however that if a bias field is applied, there is also a non-zero term in (AB)?2,
which defines the corresponding susceptibility x2 (see, for example, Raikher
et al., 1997). Nevertheless, on assuming that no constant field is applied and
noting that, consequently, the above averages at zero probing field are then
zero-field averages, we can use {(17 - b)2"1)|p—o = 0, to get
301 Lo o o2
X0 = T (07D, = 30 7))
This relation between the non-linear susceptibility and the thermal-equilibrium
fluctuations of the magnetic moment in zero field, is valid for any form of
the magnetic-anisotropy energy provided that this has inversion symmetry
(M- b)>"+1)e = 0.
Finally, on returning to the simplest uniaxial-anisotropy case and recalling
that the zero-field averages of (1 -b)?* are directly related with the coefficients
C; by Eq. (2.42), specifically

{(m - b)? =m?2C,,  {(7-b)*

one gets

e (3.100)

=m*12C; ,

>e|B:0 >e|B=0

& [temby, —a(en 02| =mt2(c-c3)

so that the expression (3.88) for x3 is reobtained.

B=0

4. Approximate formulae for the non-linear susceptibility

We shall now derive approximate expressions for x3, with the aim of establish
simple approximate expressions valid in wide temperature ranges. Again, in
order to obtain the approximate formulae we shall use the corresponding ex-
pressions for R'/R and R" /R derived in Appendix A. (We could also proceed
from the weak- and strong-anisotropy formulae for Mpg.) The approximate ex-
pressions for the combinations of the functions R() /R entering in the general
formula (3.93) are given by Eqgs. (A.25), (A.28), and (A.30).
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a. Weak-anisotropy range. To obtain an approximate formula for y3
valid for weak anisotropy, we insert Eqgs. (A.25) into Eq. (3.93), gather the
terms with the same power of o, and express the trigonometric factors in
terms of cos?a and cos*« only, obtaining

3,4
o km* LI
X3|\¢7\<<1 = T 15(kaT)? 1+ 21(3005 a—1)o
8
+ ﬁ(él cos*a — cos’a)o? (3.101)
32 ) \ \
+ m(ﬂcos a — 18cos®a + 4)o”| .

This equation is a good approximation of the exact x3 for |o| < 2. Note that, in
contrast to x, only the first correction to the leading (isotropic) result vanishes
when the anisotropy axes are distributed at random [recall Eq. (3.37)].

b. Strong-anisotropy ranges. Let us first consider the o < —1 range.
If we insert Eqgs. (A.28) into Eq. (3.93) and gather the terms with the same
power of 1/0, we obtain

pim? sin*a

1 , 1
X3|0,<<71 ~ —W |:]. + ; + (16C0t a— ].)—:| . (3102)

402
This the desired approximate formula for 3 valid in extreme easy-plane range.
An approximate expression for o > 1 can be obtained in a similar way. On

inserting Egs. (A.30) into Eq. (3.93) and gathering the terms with the same
power of 1/0, we arrive at

puagm* costa

2 1 1
Xslos1 = = 3Ty [1_E+(3tan2a—1)—+(3tan2a—4)—

202 203
(3.103)
These strong-anisotropy equations match the corresponding exact results
for |o| > 5. In fact, with the combined use of Egs. (3.101), (3.102), and (3.103),
one can almost cover the exact xs in the whole temperature range. Again this
arises directly from the reasonable patching shown in Appendix A of the exact
R'/R and R" /R curves yielded by the approximate formulae employed.

5. Temperature dependence of the non-linear susceptibility

a. Theoretical results. We shall now study in more detail the tempera-
ture dependence of x3. Facing the subsequent particularization of the results
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to a number of systems of magnetic nanoparticles, we shall consider the oc-
currence of a distribution of particle volumes. We shall however take the ani-
sotropy constant K and the spontaneous magnetization M; = m/v as fixed,
i.e., neither distribution in particle shape, nor size effects on M, or K will be
considered. Then, if the anisotropy axes of the particles with the same volume
are distributed at random, one can write

X3 = /Ooodv 07 (X3)pan F(V) 5

where the factor v—! occurs since f(v)dv is taken as the fraction of the total
volume occupied by particles with volumes in the interval (v,v + dv).

In order to isolate the effect of the magnetic anisotropy on x3(7T), we
shall assume that M, is independent of 7. This condition, which is obeyed
at temperatures well below the ordering temperature of the magnetic mate-
rial constituting the particles, yields also temperature independent anisotropy
constants [this is apparent when the anisotropy is due to the magnetostatic
self-energy, see Eq. (2.5)]. The computed quantity will be the dimensionless
x3 = x3[K®/(udM2)] and we shall employ a logarithmic-normal distribution
for f(v), namely

1 In m 2

where vy, is the median of the distribution and p, is the standard deviation
of In(v).

Figure 17 displays x3 and the corresponding Ising and isotropic results vs.
the temperature. As the influence of the anisotropy decreases with increasing
T, x3 undergoes a smooth crossover from the low-temperature Ising regime
to the high-temperature isotropic regime. For o > 1 (0m = Kum/ksT') and
|om| < 1, the logarithmic slope dIn(—x3)/d1In(1/om) tends to —3, indicating
the limit 72 dependences. However, logarithmic slopes lesser than —3 emerge
in the transitional regime, where the departure of x3(7') from an inverse-
temperature-cubed law is sizable. As the width of the volume distribution
increases, the crossover region widens and shifts to higher temperatures. This
is due to the fact that the function v3f(v), which determines the particles
making the most substantial contribution to x3, broadens and moves to larger
volumes, the x3 of which is of Ising type over a wider interval of the displayed
temperature range.

The rate of change of x3(T), moreover, increases as the anisotropy axes
are aligned towards B (see Fig. 18). To illustrate, for a volume distribution



ON THE STATICS AND DYNAMICS OF MAGNETOANISOTROPIC NANOPARTICLES 81

din(-X3)
din(l/ a,,,)

-3.2

-3.4]

-
0.1 1 10

FIGURE 17. Upper panel: Log-log plot of —x3 vs. 1/om (= ksT/Kuvn) for a
system with randomly distributed anisotropy axes. The straight lines correspond to
the isotropic (thin solid) and Ising (dashed) non-linear susceptibilities. The numbers
mark the width p, of the volume distribution. The mean slope of the p, = 0.72 curve
between the arrows is compared with the experiment of Bitoh et al. (1993) in the
text. Lower panel: Logarithmic slopes.

with p, = 0.25, the maximum logarithmic slope changes from —3.53 for ani-
sotropy axes distributed at random (see the lower panel of Fig. 17) to —3.98
for axes collinear with the field. On the other hand, although less dramatic,
the discussed effects also occur for easy-plane anisotropy (K < 0), being then
magnified as B points towards the easy plane. Considering these significant
deviations of x3(T) from a T3 dependence, arguments discarding superpara-
magnetism based on this type of departure, such as those employed by Schiffer
et al. (1995), should be carefully scrutinized.
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FIGURE 18. Effect of the alignment of the anisotropy axes towards B on the
temperature dependence of the non-linear susceptibility. The width of the volume
distribution is p, = 0.25.

On the other hand, when observed over limited temperature windows (e.g.,
those imposed by the unavoidably finite measurement time), an increase of
the equilibrium y3(7') steeper than T2 could resemble the high-temperature
range of a quantity with a low-temperature divergence. This might mislead-
ingly suggest the presence of appreciable inter-particle interactions in the
ensemble and, consequently, one could try a fit of the non-linear susceptibility
to, for example x3(T) o< (T —T,.) "2, obtaining false “critical” temperatures. If
we do so with the x3(T") theoretically computed for the most diluted sample
of Jonsson et al. (1995) over 100K < T < 180K, we get the sizable value
T. ~ 17.3K (regression of the fit 0.99992). Note that, for w/27 ~ 1-10° Hz,
effects associated with the finite measurement time appear at T'< 40-100K,
below of which one cannot measure the equilibrium xs.

b. Comparison with experimental data. Bitoh et al. (1993; 1995)
measured the non-linear dynamical susceptibility, x3(w,T'), for cobalt parti-
cles precipitated in a Cug;Cogz alloy. From the equilibrium (high-temperature)
part of the x3 vs. T curve they obtained a mean logarithmic slope —3.17,
whose departure from —3 was not considered.

Their sample appears suitable to check the studied deviation of x3 from a
T3 law, since:

(i) The high Curie temperature of the particles (~ 1400 K) yields M, feebly
dependent on T in the range of the experiment (< 280K).
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(ii) The equilibrium linear susceptibility can be fitted to a Curie law with a
mean logarithmic slope (dInx/dInT) = —1.01, compatible with the ab-
sence of dipole-dipole interaction effects and anisotropy axes distributed
at random.

On the other hand, one can still argue that, due to finite size effects, the tem-
perature dependence of the spontaneous magnetization of the Co particles
could be larger than that of the bulk material, so that the measured temper-
ature dependence of x3 could be attributed to such phenomenon. However,
the ascription of the extra 7917 factor in x3(T) to M,(T)*, entails the oc-
currence of its square root in the Curie law [x o< M,(T)?], yielding a total
exponent —(1 + 0.17/2) = —1.085 for x, which is not consistent with the
measured one (—1.01).

Unfortunately, the high amplitude of the oscillating field employed in their
experiment (vm M;AB/kg ~ 17K) might have induced non-linear “satura-
tion” effects on the measured susceptibilities at low temperatures, moving the
volume distribution f(v) that they derived from the x(w,T) data, from the
actual one. Even so, we have specialized the above calculation of x3(T) to
the so-derived logarithmic-normal f(v). The temperature range of their ex-
periment, in the dimensionless units kg7 /Kvn,, is delimited in Fig. 17 by the
arrows. Our calculation yields a mean logarithmic slope —3.25 that is within
2.5% of the experimentally determined value —3.17. One must anyway con-
clude that the sizable departure of the theoretical exponent from —3, makes
mandatory the inclusion of anisotropy effects on the temperature dependence
of x3 to achieve a complete understanding of this kind of experiments.

c. Proposed experiments. In addition to search for deviations of x3(T")
from a T2 law, the dependence of x3 on the angle between the anisotropy
axis and the applied field could be measured in systems with oriented aniso-
tropy axes. (Molecular magnetic clusters and textured frozen magnetic fluids
are examples of systems with parallel axes where such experiments could be
performed.) In a polar plot (see Fig. 15), x3(a) will undergo an increasing
deformation from a circle at high temperatures (isotropic xs3) towards the
characteristic two-looped shape of the Ising regime (x3|msing costa) as T
decreases.

Other possible experiment could be to measure x3(7) in a magnetic fluid
through the freezing point of the solvent, T¢. Recall that, due to the physical
rotation of the particles in the fluid state, the magnetization is given by the
Langevin law for each particle, irrespective of the anisotropy energy (Krueger,
1979). On the other hand, at temperatures below the freezing point, the ani-
sotropy axes become immobilized; the magnetic anisotropy then takes reflec-
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tion in the equilibrium quantities and x3(7") would undergo a discontinuous
change at T:.” In contrast, if at Tt the anisotropy axes become immobilized in
a random pattern, the linear equilibrium susceptibility would be continuous
there (recall that (x)._._ does not depend on the anisotropy energy in a solid
dispersion).

The relative size of the discontinuity in the non-linear susceptibility Axs/xs
at the freezing temperature is determined by the value of T; in magnetic-
anisotropy units, so that the size of the jump also depends on the anisotropy
constants and the actual volume distribution. We have computed Axs/xs
with the parameters of two magnetic fluids in the literature. First, for most
diluted sample of Luo et al. (1991), Axs/xs would be small, because the freez-
ing point of the carrier liquid is close to the isotropic regime. On the other
hand, for the most diluted sample of Jonsson et al. (1995), Axs/x3 would be
about 90%. Once more, if the anisotropy axes are frozen collinear with E, this
effect will be even more dramatic.®

ran

IV  Dynamical properties: heuristic approach

IV.A Introduction

In this Section we shall briefly consider a heuristic approach to the dynam-
ics of classical magnetic moments in anisotropy potentials. We shall focus
on the linear dynamical response, i.e., the response of the system to a small-
amplitude, oscillating or constant, magnetic field. The responses to both types
of stimulus are related in a simple way, so that we shall merely employ the
language of the linear dynamical response in the frequency domain—the linear
dynamical susceptibility x(w). This quantity, in addition to supplying valu-
able information about the intrinsic dynamics of the spins, is of relevance for
general studies on magnetic nanoparticle systems. For instance, under certain
conditions x(w) can be used to approximately determine the distribution of
energy barriers (essentially particle volumes), occurring in assemblies of non-
interacting magnetic nanoparticles (Shliomis and Stepanov, 1994). Besides,
a rough estimate of the pre-exponential factor of the longitudinal relaxation
time in the Arrhenius regime can also be derived from the x(w) data.

The organization of this Section is as follows. In Subsec. IV.B various
heuristic expressions that have been proposed to describe the linear dynami-

"This jump could be smeared out around T due to effects related with the immediacy
of the critical point of the carrier.

8However, for oriented anisotropy axes, x(7') would also exhibit a discontinuity at the
freezing point of the magnetic fluid.
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cal response are discussed (they will be compared with exact numerical results
in Section V). In Subsec. IV.C, the most general of those expressions will be
analyzed in detail, illustrating how it can be used to get the energy-barrier dis-
tribution of magnetic nanoparticle ensembles. Finally, in Subsec. IV.D some
of the previous results will be illustrated with experiments performed on a
frozen magnetic fluid of maghemite (y—Fe,O3) nanoparticles. Part of the re-
sults of this Section were presented by Svedlindh, Jonsson and Garcia-Palacios
(1997).

IV.B Heuristic treatment of the linear dynamical re-
sponse

Let us commence by considering the expression (3.54) for the linear equilib-
rium susceptibility in terms of its longitudinal and transverse contributions,
namely

X = X| cos’a + x o sin’ar (4.1)

where « is the angle between the anisotropy axis and the probing field. The
term x| cos’a is proportional to the projection along the probing field direc-
tion of the response of the magnetic moment to the longitudinal component
(with respect to the anisotropy axis) of the field. Likewise, x 1 sin’a is propor-
tional to the projection onto the probing field of the response of the spin to the
transverse component of the field. As we know from Subsec. IIL.D, averaging
this equation with x; and x from Eq. (3.53), one gets (X)ran = pom?/3ksT.
Consequently, in a non-interacting magnetic nanoparticle ensemble with ani-
sotropy axes distributed at random, the linear equilibrium susceptibility in the
absence of an external bias field is independent of the magnetic anisotropy
(x is then identical with that derived in a naive superparamagnetic model
where the anisotropy is neglected). The main effect of the anisotropy is to
introduce energy barriers that the spins need to overcome before equilibrium
is reached, implying that the ensemble could, depending on the measurement
time, display magnetic relazation.

The relaxational mechanism consists of an orientational redistribution of
the magnetic moments according to the conditions set by the magnetic ani-
sotropy, temperature, and external field. The relaxation can be envisaged as
a two-stage process: first, the dipoles redistribute inside the potential wells,
with a characteristic time 7, related with the inverse of the precession fre-
quency of the magnetic moments in the anisotropy field (~ 10719-107125s);
then, the equilibration between the potential wells, which is a thermally ac-
tivated process, proceeds. This second mechanism can result in exceedingly
slow magnetic relaxation since its characteristic time 7, which essentially fol-
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lows an Arrhenius law [see Eq. (2.1)], ranges from picoseconds to geological
time scales depending on the magnetic anisotropy, temperature, and external
field.

A rigorous theoretical derivation of the linear dynamical susceptibility
of classical magnetic moments in anisotropy potentials, as well as other dy-
namical quantities, is hindered by a number of mathematical difficulties (see
Section V). Thus, in order to describe the linear dynamical response of non-
interacting magnetic nanoparticles, various simple expressions have been pro-
posed in the literature. We shall mainly consider the expression suggested,
on the basis of the two-stage relaxation process mentioned, by Shliomis and
Stepanov (1993) to describe x(w) at frequencies below the ferromagnetic-
resonance frequency range. Besides, we shall show that this model contains
as particular cases some models previously proposed.

Shliomis and Stepanov model

In a study of magnetic fluids these authors suggested that x(w) could be
described as a sum of two independent Debye-type relaxation mechanisms:
one for the response to the longitudinal component of the probing field and
the other for the response to the transverse component (see also Raikher
and Stepanov, 1997). The expression proposed can be generalized in order to
describe the effect of a longitudinal bias field by merely writing

T,B T,B
_XTB) o, x1(TB)

. 2
- 4.2
1+ iwr 14w, 0% (42)

XShS
where x| and x 1 are the exact equilibrium susceptibilities (3.70).

Various expressions can be used for the characteristic times appearing in
the above formula (see Subsec. V.C). However, for the purposes of this Section
it is sufficient to consider that in the high-barrier range 7| can be written in the
Arrhenius form 7 = 79 exp(AU/kgT), where 7y is assumed to be a constant
~ 1071910125 (that is, we disregard the dependences of the pre-exponential
factor on the temperature, external field, and the parameters of the particles
in comparison with the dependences of the exponential term). Concerning the
transverse relaxation time, for not very high frequencies (say, w < 106 Hz), the
condition wr; < 1 holds (Subsec. V.C). One can then approximate 1/(1 +
iwT1 ) by unity in Eq. (4.2), to get the low-frequency equation

Xl

Tiuﬁ” cos’a + x sin’a . (4.3)

XshS|yr, «1

The approximation used is equivalent to assume from the outset that the
response to the transverse components of the probing field is instantaneous.
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In fact, very short measurement times, such as those obtained in neutron
scattering or ferromagnetic resonance experiments, are required to probe the
intra-potential-well dynamics (see Table I).

From now on Eq. (4.2) with the ezact equilibrium susceptibilities, will
be referred to as the Shliomis and Stepanov equation. Further, the formula
obtained when in the low-frequency Eq. (4.3) one uses the high-barrier approx-
imations (3.85) and (3.86) of the equilibrium susceptibilities, will be called
the Gittleman, Abeles, and Bozowski (1974) equation, since it properly gen-
eralizes their formula to B # 0 and an arbitrary anisotropy-axis orientation.
Indeed, on introducing Egs. (3.85) and (3.86) evaluated at B = 0 [that is,
Egs. (3.82)] into Eq. (4.3), one first gets

m? m? ., . , m? 1
l;:BT cos?a + _Mlo(v (3sin’a — 1) + iwn l;OKv sin?a TS o
(4.4)
which, when averaged over an ensemble with randomly distributed anisotropy
axes (the second term in the square brackets then vanishes), reduces to the
equation proposed in by the authors mentioned. Finally, the expression ob-
tained when one introduces the Ising-type Egs. (3.87) into Eq. (4.2) [or Eq.
(4.3)], namely

XGAB =

pom? 1 cos?a
kT cosh®¢ 1+ iwr’

is called the discrete-orientation or Ising dynamical susceptibility.

Xlsing = (4.5)

IV.C Analysis of the low-frequency Shliomis and Stepanov
model

We shall now analyze the low-frequency Eq. (4.3) for an ensemble of non-
interacting magnetic nanoparticles where there exists a distribution in particle
parameters.

If the distribution occurs mainly in one of the parameters, say, the volumes
of the particles, and one assumes that the contribution of each particle to the
linear susceptibility is given by an expression like the low-frequency (4.3), one
can write the linear susceptibility of the ensemble as

M2 1 R' (cos’a R—-R, .
X(w, T) _N]:BT K/ dEf(E [R1<+zw7'>||+ o ine)| - (46)

In this equation the functions R(Y) are evaluated at 0 = E/kpT, FE = Kuv (with
K assumed equal for all particles) and f(E)dE is the fraction of the total
“magnetic” volume occupied by those particles with energy barriers in the
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interval (E, E +dE). Note that the square of the magnetic moment has been
written in terms of the spontaneous magnetization M, as m? = M2v? and,
since we are using the “occupied volume” representation of the dlstrlbutlon
one v is already incorporated into f(E).

In the above formula, the orientational averages are taken with respect to
the particles in (£, E+dE) and could, in principle, depend on E. We shall not
study this situation but merely consider that (cos?a) and (sin’a) are the same
for each energy interval. One could also consider the cases where, due to finite
size effects, Ms and K depend on v. Although this could be incorporated in
the following considerations, we shall not take those dependences into account
explicitly.

1. The out-of-phase linear dynamical susceptibility and the energy-
barrier distribution

The out-of-phase component (imaginary part) of Eq. (4.6) reads

" /,L()M cos’a) R’ o wT
dE 4.
V) = PR L [ap e B ETT e 4D

to which the response to the transverse components of the probing field (with
respect to the different anisotropy axes) does not contribute due to the low-
frequency assumption (w < 106 Hz).

The term w7 /[1 + (w7))?] in the integrand of Eq. (4.7), has a maximum
at the energy barrier, B}, for which wr = 1 (see Fig. 19). On assuming a
simple Arrhenius form for the relaxation time, 7| = 79 exp(E/kgT), one finds
Ey, = —kgT In(wrp), which explicitly depends on the temperature and the
frequency. Besides, due to the ezponential dependence assumed for 7, it fol-
lows from the definition of B}, that: (i) 7(E) < 7(Ep) = 1/w, if E < Ey,
whereas (ii) 7(E) > 7(Ep) = 1/w, if E > FEy. In virtue of these properties,
and considering that 1/w is the measurement time in a dynamical experi-
ment, E, is called the blocking barrier (recall the considerations in Section
I). Similarly, one can define the corresponding dimensionless blocking barrier
op = Ey/ksT, whence

Ey, = —kT In(wTy) , op = —In(wmy) . (4.8)

For these two quantities one has, by definition, w7 = 1.

We shall not consider the finite height and width of the function wr)/[1 +
(w7))?], but we shall take this function as a (unnormalized) Dirac delta cen-
tered at op. This replacement works when the remainder terms in the inte-
grand of the formula for x"(w) (e.g., the energy-barrier distribution) change
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FIGURE 19. Real and imaginary parts of the Debye factor 1/(1 + iwr) vs. the
energy-barrier height F/kgT. The relaxation time is given by the Arrhenius law
T” =170 exp(E/kBT).

slowly enough in the interval about o1, where wry/[1 + (w7))?] differs appre-
ciably from zero. Concerning the term R'/R, when oy, 2 15-25, its changes
are not very large, because

d (R R' (R\’Bq s 1 1 ; 90
w\R) ™ R R = 2T N 0T

Values of o1, 2 15-25 are typical for probing fields with w < 10 Hz.

Under the conditions mentioned, w /[1 + (w7))?] plays the role of a func-
tion proportional to a Dirac delta. In order to calculate the proportionality
factor, one integrates that function over the entire energy range by means of
the substitution dry = (7 /kgT)dE

/ dE —__ :kBT/ dn ———— ~ DT,
0 1—}—(&17'”) . 1+(w7'[|) 2

0

where, on considering the low-frequency assumption (w < 10® Hz) and taking
the tiny value of 79 (~ 10719-107!25) into account, we have used the approx-
imation arctan(wry) < arctan(107*-107%) ~ 0. Therefore, when integrating
functions slowly varying about E, = —kgT In(wTo), one can make use of the

a ppI ()XiIIla‘ i()ll
”
~

T e = SheT 6(E — Ey) . (4.9)
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Thus, on calculating the integral in Eq. (4.7) by means of Eq. (4.9), one
obtains (cf. Eq. (41) by Shliomis and Stepanov, 1994)

¥ T) = 5P costa) 1 ) (B B (4.10)

which directly relates the energy-barrier distribution and the out-of-phase
linear dynamical susceptibility. Note that, even if we consider the weak tem-
perature dependence of 79, this is further weakened when occurring inside the
logarithm In(wTp), so that op = — In(w7g) and thus the factor R'(ov)/R(ob),
are almost independent of T'. Then, because R'(0,)/R(op) is also weakly de-
pendent on w, Eq. (4.10) shows that, approximately, all the dependence of
X" on T and w enters via the combination E;, = —kpT In(w7p).? Therefore,
if we plot x” vs. —kpT In(wTy), all the x"(T) curves corresponding to differ-
ent frequencies collapse onto a single “master” curve [proportional to f(E)E
and with maximum at Ey]. Conversely, by fitting the frequency-dependent
temperature of the maximum of x"(T"), denoted by Ty (w), to the “Arrhenius
law” En = —kpTm(w) In(wTg), one can get Ey and 7.

Note however that the parameter Eyr, which is sometimes called “average
energy barrier”, is merely the maximum of the function f(E)E. Therefore, it
is not necessarily related with a characteristic parameter of the energy-barrier
distribution (incidentally, for the gamma and logarithmic-normal distributions
Ey; is equal to the mean and the median of the distribution, respectively).

2. The in-phase linear dynamical susceptibility

The in-phase component (real part) of Eq. (4.6) is given by

. M2 1 /°° R' {cos?a) R—R 6 _,
= — [ dEfB)E|X 411
X =T K J, HE)E |7 1+ (wr))? g e, (410

where, because of the low-frequency assumption (w < 10® Hz), the response to
the transverse components of the probing field contribute to x'(w) with its
thermal-equilibrium value.

The term 1/[1 + (w7))?] as a function of 0 = E/kgT has the form of
a smooth step about op, whose width is of the order of the width of the
peak of wr)/[1 + (w7))?] (see Fig. 19). However, when that term is under the
integral sign and multiplied by functions that vary slowly around oy, we can

9We are also implicitly assuming that d(M2/K)/dT ~ 0. For instance, for the “shape”
anisotropy of ellipsoids of revolution, M2/K is in fact a geometric term [see Eq. (2.5)].
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approximate 1/[1 + (wT||)2] by a step function, namely

1 N{l for £ < Ey (412)

I+ (wn)? | 0 for E>E,

Thus, on introducing Eq. (4.12) into Eq. (4.11) and rearranging the inte-
gration limits, one gets the approximate result

' _ NOMgl B E’ 2 -R
X (w) = &l K Jo dE f(E)E 7 ({cos“a) + R (sin”a)
MZ21 o[ ~R .
MkOB—TSE | ap 1B EE=E (n2ay (4.13)

which can be interpreted as follows. Note first that only the particles with
E < Ey, i.e., those obeying 7(E) < 7(Ep) = 1/w, contribute to the first
term. However, 1/w is the measurement time in a dynamical experiment, so
that those particles are the superparamagnetic particles (7] < 1/w), and the
first term is indeed their contribution to the linear equilibrium susceptibility.
On the other hand, the particles with E > Ej,, which are those contributing
to the second term, satisfy 7|(E) > 7(Ep) = 1/w, so that the over-barrier
rotation process is not effective for them. These are the blocked particles, and
contribute to x'(w) via the fast rotations of their magnetic moments inside
the potential wells towards the transverse components of the field. In fact,
the second term in Eq. (4.13) is (sin?a) times the equilibrium transverse
susceptibility of the blocked particles.

We finally note that, since Ey, = —kpT In(wTp), the second term in Eq.
(4.13) is small in comparison with the first one at sufficiently high tempera-
tures, so that x’ is then approximately equal to the equilibrium susceptibility.
In addition, for anisotropy axes distributed at random we can write

/,LoM2 1 /oo C
= g dE f(E)E = = 4.14
T K ), EFEE=7 (4.14)

!
(X ran|hign 7
where C' is the Curie constant.

3. The 7/2-law

We shall now explicitly derive, starting from the low-frequency Shliomis and
Stepanov equation (4.6), a celebrated relation between 9x'/0lnw and x”
known as the m/2-law.
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First, on rearranging the integration limits in Eq. (4.13), we can write
X'(w) as

, poM2(cos?a) 1 [Fo R
= — - Ef(E)E—
X @) o) L[ s@ynl
poM2(sin’a) 1 /°° R—-R
—_— E f(E)E 4.1
Y L (CIL=CNaat

where the last term, which is (sin) times the transverse equilibrium sus-
ceptibility of the whole ensemble, does not depend on w. Then, on using
OE,/0Inw = —kgT and the Leibniz formula

4 [ , | o
. /g(gc) dt F(z,t) = {F[z, h(z)]h' (z) — F[z, g(x)]g (m)}+/g(z) dt - F(a,1)
(4.16)

one gets / , .
O?rfw - _Mojjg—[s (cosa) R((Z:))f(Eb)Eb : (4.17)

Finally, on comparing this equation with Eq. (4.10), we get the desired relation
between 0x'/0lnw and x", namely

n_ _T 6XI
© 290w’

For systems with a sufficiently wide distribution of relaxation times, the
m/2-law is in fact a quite general result and independent of the dynamical
model used, since it can then be derived from the Kramers-Kronig relations.
These relations are merely based on general principles as the linearity of the
response, and causality (i.e., the response at time ¢ only depends on the values
of the stimulus at times ¢' < t). For the sake of completeness, we shall repeat
here one such derivation of the 7/2-law by Bottcher and Bordewijk (1978,
p. 58).

On writing one of the Kramers—Kronig relations in the form

2 [ ox" (@) 2 [ . X'(®)
! _ _ A
X(w)_XS-'-;/O dwwz_wz _XS+;/;ood(lnw) &4)2_{“)2 Y

(4.18)

where xs is the adiabatic (w — o0) susceptibility (x1 in our case), and
approximating in the last integral the factor @?/(®? — w?) by a unit step
function (with step at w), one obtains
2 oo
X W) =xs+= [ d(nw)x"(®).
T Jinw
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Then, on differentiating this equation with respect to lnw by means of the
Leibniz formula (4.16) one finally gets the m/2-law.

The assumption of broad relaxation-time spectrum enters implicitly when
approximating the factor ©?/(@? — w?) by a step function: the broad spec-
trum entails flat curves for x"(w), so that the replacement mentioned does
not introduce a significant error. This approximation is equivalent to the as-
sumptions made above concerning the change of the functions appearing in
the integrand of the equations for x(w), in the range where the Debye factor
has its maximum variation.

4. 9(Tx')/0T and its relation with x" and the energy-barrier dis-
tribution

Wohlfarth (1979), when studying spin glasses in the context of the superpa-
ramagnetic cluster model, proposed a method to obtain the energy-barrier
distribution from the derivative (Tx')/0T. He considered a distribution of
“blocking temperatures,” which in our notation are Ty, = Ey/kp (“block-
ing energies” in temperature units), and disregarded the contribution of the
blocked clusters, and wrote

T
X(T) ~ & JRLSSE (4.19)

Here C is the Curie constant, and the susceptibility is the non-equilibrium
susceptibility obtained in a dc experiment with a typical measurement time
~ 100s. Then, by means of the inversion procedure [see Eq. (4.16)]

s =22

he expressed the distribution of blocking temperatures in terms of the linear
susceptibility.

Note that Eq. (4.19) can be considered as the particular case of Eq. (4.13)
where the anisotropy axes are distributed at random (the term in the square
brackets in the first integral then equals 1/3) and the second integral (the
x. of the blocked clusters) is neglected (Ising-type case). Besides, in order to
establish this correspondence we must assume that his f(73,) incorporates the
extra energy factor, i.e., that f(Ty) < Ef(E).

Lundgren, Svedlindh and Beckman (1981) derived a relation between x"
and 9(T'x") /0T for the following model

(4.20)

In Tmax
x(w) = / d(In7) g(r)x(r) —— , (4.21)

N Toin 1 +iwr



ON THE STATICS AND DYNAMICS OF MAGNETOANISOTROPIC NANOPARTICLES 94

where x(7) is the equilibrium susceptibility and g(7) the distribution of re-
laxation times. They assumed x(7) o< 1/T and an Arrhenius dependence for
T, getting
w__m_ 1 9TxX)

X =73 In(wrg) 6T (4.22)
Because in the model (4.21), x" is also directly related with the distribution of
relaxation times, the above relation yields an inversion procedure analogous
to that of Wohlfarth.

We shall now calculate 9(Tx')/OT for the low-frequency (4.6). In this
way, we shall take into account the effect of the finite width and depth of the
anisotropy potential wells.

Let us begin by taking the T-derivative of T'x’, with x' given by Eq. (4.13)
[or Eq. (4.15)]. Since the integrals in those equations also depend on T via
the integration limits, the required T-derivative can be taken by dint of the
Leibniz formula (4.16). On doing so, we get after the rearrangement of the
integration limits,

! 2 !
8(;;)1() = —ln(wro)uoljé/[s (cosza)};((::))f(Eb)Eb
N0M32 ) oo R R 2
+ W(sm%z) Edef(E) [f - (E) ]02
Ey 7 1\ 2
+"g—]‘[§3 [3(cosa) — 1] [ amj(m) [% - (%) ]02,

(4.23)

where we have assumed that neither My nor K depend on T, and used
OEy, /0T = —kg In(wTy) as well as (E/kg)0o /0T = —o>.

Note that the first line on the right-hand side of Eq. (4.23) is directly
related with the energy-barrier distribution. If the remainder terms were ab-
sent, this equation would give the inversion procedure of Wohlfarth (4.20).
However, since the last two lines contain information about f(E) in integral
form, we see that the quantity O(T'x")/OT does not directly scan the energy-
barrier distribution. Note in this connection that, unlike x" (or dx'/d1nw)
the quantity [1/1n(w7o)]0(Tx") /0T does not properly scale when represented
against —kgT In(wrg) due to the presence of the mentioned integral terms.

Next, on taking Eq. (4.10) into account we get the following relation be-
tween x" and 0(T'x")/0T

n_ _T 1 6(TXI)_NOM32 ) * R_” E 2 2
X T T ln(wn) { ar ok e [ AEE) | =R ) |°
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2 Ey

I ey 1 [ a5 ] () o).

which is the counterpart of Eq. (4.22) in the low-frequency Shliomis and
Stepanov model. Furthermore, since the angular factor in the last term on
the right-hand side vanishes for anisotropy axes distributed at random, the
above relation simplifies in that case to

" T 1 6(T (X')ran) ,quf o0 R R! 2
<X >ran__§ln(w7_0){ aT - 3K Edef(E) [f_(ﬁ) :|0'2} )

(4.24)
Finally, since o > oy, ~ 20-25, if E > E}, one can replace R /R — (R'/R)? in
the above integral by its high-barrier approximation (A.31), to get

1" _orm 1 0 / M Ms2 *
X ran = —§m{a—T(T (X ran) — g—K . dE f(E)} . (4.25)

This is an interesting result: in spite of the differences between x" and (T'x') /0T
being reduced upon averaging for anisotropy axes distributed at random, some
of them remain. These differences, and accordingly those of 9(Tx')/0T with
respect to the energy-barrier distribution, are again due to the presence of the
second term on the right-hand side, which contains information about f(F)
in integral form. In addition, the lower the temperature, the larger the differ-
ences mentioned, because the lower integration limit in Eq. (4.25) decreases
with T' (recall that Ey, o kgT).

Note finally that, by using the high-barrier formula x ~ pom?/2Kv per
particle [Egs. (3.82)], the integral in Eq. (4.25) can alternatively be written
in terms of the approximate transverse susceptibility of the blocked particles
(at the temperature and frequency considered), namely

T 1 0 2
<X”>ran — _am {Q_T(T <Xl)ran) _ EXJ-,bIO} . (4.26)
Therefore, we find the T- and w-dependent criterion (2/3)x 1,10 € O(TX")/0T,
for the quantity d(Tx')/0T scanning the energy-barrier distribution as prop-
erly as x” (for anisotropy axes distributed at random only). Recall that no
restriction of this type exists for the obtainment of the energy-barrier dis-
tribution from x" (or Ox'/0lnw). Note also that, not only X i is the
transverse susceptibility of the blocked particles but, when multiplied by
(sin20¢)ram = 2/3, is their total contribution to the susceptibility, because
the over-barrier relaxation mechanism is indeed “blocked” for those particles.



ON THE STATICS AND DYNAMICS OF MAGNETOANISOTROPIC NANOPARTICLES 96

IV.D Comparison with experiment

To conclude, we shall briefly illustrate some of the results of the previous
subsection with experiments performed on a frozen magnetic fluid containing
nanometric maghemite (y—Fe;Q3) particles.

The degree of dilution of the sample studied was ~ 0.03% by volume,
in order to avoid dipole-dipole interaction effects. This illustrates one of the
advantages of the use of frozen magnetic fluids for fundamental studies on sys-
tems of magnetic nanoparticles: by simple dilution and subsequent freezing
of the magnetic fluid, one can get a series of solid dispersions of nanoparti-
cles where the strength of the interactions is tuned almost as desired. (This
method also guarantees that all the samples have the same distribution in par-
ticle parameters.) Another advantage of these systems is that by means of the
application of magnetic fields when freezing the samples, one can produce sys-
tems with different anisotropy-axis distributions. The sample considered here
(Svedlindh et al., 1997) was frozen in zero field, so that a random distribution
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FIGURE 20. Temperature dependence of the in-phase (upper panels) and out-of-
phase (lower panels) components of the dynamical susceptibility of a frozen magnetic
fluid of maghemite particles. Left panels: solid lines computed with the Ising-type
model where ) = pom?/ksT and x. = 0 (per particle). Right panels: solid lines
computed with the low-frequency Shliomis and Stepanov equation (4.6).
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FIGURE 21. x"(T) (open symbols) and —[7/2 In(w70)]0(Tx") /0T (filled symbols)
vs. —T'In(w7o) of a frozen magnetic fluid of maghemite particles at the frequency
w /2 = 320 Hz.
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of the anisotropy axes is to be expected.

1. Comparison with the Ising-type and Shliomis and Stepanov
models

Figure 20 displays the measured dynamical susceptibility and the Ising-type
theoretical curves computed with the energy-barrier distribution derived from
x". While the calculated and experimental out-of-phase susceptibilities com-
pare to a high degree of precision (by construction), the matching of the
in-phase curves is comparatively poor. One may guess that the reason for this
poor matching is the absence of the transverse response in the model em-
ployed.'? In order to check this hypothesis, Fig. 20 also displays the same ex-
perimental results together with the curves computed with the low-frequency
Shliomis and Stepanov equation. One can see that the description of the ex-
perimental curves provided by this model has improved significantly.

2. Comparison of x"” with 8(Tx')/0T

Equation (4.24) suggests that a joint plot of x" and d(T'x')/0T could be an
alternative means to show the necessity of including the transverse response
of the nanoparticles. When this contribution to the total response is negligi-
ble, those two curves should trace out the same energy-barrier dependence,

10We use the terms “take the transverse response into account” to abbreviate “take
the finite width and depth of the anisotropy potential wells into account”, since the lack of
response to the transverse components of the probing field is perhaps the most characteristic
feature of the Ising-type response.
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whereas one would expect (7/20p)0(Tx') /0T being larger than X" otherwise.
Moreover, one would also expect that, the lower the temperature, the larger
the differences between the two curves, because the lower limit in the integral
of Eq. (4.24) decreases with T'. This is what is indeed observed in Fig. 21, giv-
ing further evidence of the necessity of including the transverse contribution
to the total response of the studied magnetic nanoparticle system. The figure
also confirms the point that 0(T'x") /0T does not determine the energy-barrier
distribution as accurately as x" does.

V Dynamical properties: stochastic approach

V.A Introduction

In this Section we shall study the dynamics of classical spins in the context
of the theory of stochastic processes.

In order to study the properties of classical magnetic moments, numerical
simulation techniques can also be used, with most of the studies that have been
performed being based on the Monte Carlo method. Although this method is
a rigorous and efficient tool to compute thermal-equilibrium quantities, the
interpretation of the dynamical properties derived by means of Monte Carlo
techniques, especially for non-Ising spins, is not free from criticism (Ettelaie
and Moore, 1984; Binder and Stauffer, 1984). On the contrary, when using
stochastic methods based on Fokker—Planck or Langevin equations, time does
not merely label the sequential order of generated states when sampling the
phase space, but is related with physical time.

For classical spins, the basic Langevin equation is the stochastic Landau—
Lifshitz (-Gilbert) equation introduced by Brown (1963) (see also, Kubo and
Hashitsume, 1970). The multiplicative fluctuating terms occurring in this Lan-
gevin equation were treated in Brown’s work, as well as in the subsequent
theoretical developments, by means of the Stratonovich stochastic calculus.
In this context, Brown constructed the celebrated Fokker—Planck (diffusion)
equation for the time evolution of the non-equilibrium probability distribution
of magnetic moment orientations.

In order to solve Brown’s Fokker—Planck equation (a partial differential
equation of parabolic type) a number of techniques have been used, such as
direct solution techniques (Rodé, Bertram and Fredkin, 1987) or more elabo-
rate approaches involving continued-fractions techniques or the numerical cal-
culation of the eigenvalues and amplitudes of the relevant dynamical modes
(Aharoni, 1964; Bessais, Ben Jaffel and Dormann, 1992; Coffey, Crothers,
Kalmykov, Massawe and Waldron, 1994; Raikher and Stepanov, 1995b; Cof-
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fey, Crothers, Kalmykov and Waldron, 1995a).

An approach equivalent to solving a Fokker—Planck equation is to con-
struct solutions of the underlying stochastic equation of motion of the system.
This Langevin-dynamics approach by-passes the Fokker—Planck equation as
it directly generates the stochastic trajectories of the variables of the sys-
tem, from which averages can be computed. This is a relevant point since
the solution of the Fokker—Planck equation for multivariate systems, either
numerically or analytically, is usually a formidable task.

In this Section we shall integrate the stochastic Landau-Lifshitz—Gilbert
equation numerically in the context of the Stratonovich stochastic calculus.
This is undertaken taking account of the underlying subtleties of the stochas-
tic calculus as compared with the deterministic calculus. As the Langevin-
dynamics method employed generates the selfsame stochastic trajectories of
each individual magnetic moment, it provides much insight into the dynamics
of the system. In addition, the theoretical study of single-particle phenomena
is of special interest because dynamical measurements of individual magnetic
nanoparticles have recently been performed (Wernsdorfer et al., 1997).

Concerning the response of an ensemble of classical magnetic moments
(averaged quantities), the Langevin-dynamics method allows one to compute
any desired quantity, e.g.: hysteresis loops, field-cooled and zero-field-cooled
magnetization curves, relaxation times, linear and non-linear susceptibilities,
thermal quantities, and, with appropriate relationships between line-shapes
and correlation functions of the system, even spectroscopic quantities. We
shall restrict our study to the linear dynamical response, which is chosen since
it is a probe that enables one to examine the intrinsic dynamics of the system.
In addition, because some relevant parameters of nanoparticle ensembles can
be extracted from the analysis of the dynamical response data (see Section
IV), an assessment of the accuracy of the heuristic equations employed in such
analyses is necessary.

We finally note that, when studying averaged quantities, the Langevin-
dynamics method requires an extensive computational effort and is then less
efficient than numerical methods especially suitable for non-interacting mag-
netic moments, such as those based on the Fokker—Planck equation mentioned
above. However, with a significant increase of the computational effort, the
Langevin-dynamics technique can also be used to study assemblies of inter-
acting spins.

The organization of this Section, which is an extended version of the re-
sults presented by Garcia-Palacios and Lézaro (1998), is as follows. In order
to provide the necessary background to undertake the study of the stochastic
dynamics of classical spins, we begin in Subsec. V.B with the study of the
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deterministic Landau—-Lifshitz equation. Then, the Brown—Kubo—Hashitsume
model for the stochastic dynamics of classical magnetic moments is discussed
in Subsec. V.C. The numerical method used to solve the stochastic Landau—
Lifshitz (—Gilbert) equation is discussed in Subsec. V.D. Finally, the results
of the numerical integration of this Langevin equation are presented in sub-
sections V.E and V.F. Specifically, Subsec. V.E is devoted to the study of the
trajectories of individual magnetic moments, while the dynamical response of
the spin ensemble is studied in Subsec. V.F.

V.B Deterministic dynamics of classical spins

To begin with, we shall study some aspects of the deterministic dynamics of
classical magnetic moments.

1. The Gilbert and Landau-Lifshitz equations

Let us start by considering the Gilbert equation of motion for a classical
magnetic moment 7 (unpublished work, mentioned in Gilbert, 1955)

dm . - _1.dm

E =ym A Beff - (’Ym) IAE 5 (51)
where 7 is the gyromagnetic ratio and A is a dimensionless damping coefficient
(the coefficient appearing when one writes the equation for the magnetization
M=m /v is equal to the one used here multiplied by v). The effective field
in Eq. (5.1) is given by

. OH
By = ——= y
T " om

where H is the Hamiltonian of 7 and 0/0m stands for the gradient operator
[0f /0m = (O0f /0mg)E + (8f /0my)§ + (0f JOm)Z]. For the justification of
the occurrence of the expression (5.2) in the dynamical equations the reader
is referred to Subsec. VI.B. Anyway, note that for H = —m - B one indeed
has Beg = E, while in a more general situation Bt incorporates the (deter-
ministic) effects of the magnetic-anisotropy energy, the interaction with other
spins, etc., on the dynamics of m.

To illustrate, if the magnetic anisotropy is assumed to have the simplest
axial symmetry (with symmetry axis ) and m is subjected to an external
constant field, B, and a low probing field, AB(t), the Hamiltonian reads [cf.
Eq. (2.2)]

(5.2)

(5.3)
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In terms of Bx = 2Kv/m [Eq. (2.6)], the effective field associated with this
Hamiltonian can be written as

Beg = B + AB(t) + (Bx /m) (i - ) . (5.4)

Note that the quantity |Bk| is the magnitude of the maximum anisotropy
field

B, = (Bg/m)(m -n)i ,

which occurs when 77i = £m 7i. The anisotropy field decreases as 1m approaches
the equatorial region (M L 71), where it vanishes. Recall finally that for easy-
axis anisotropy in a longitudinal bias field (B || ), the Hamiltonian has two
minima at m = £mn for |B| < |Bk]|, with a potential barrier between,
whereas the upper (shallower) potential minimum disappears for |B| > |Bk]|
(see Subsec. IL.B).

An equation of Gilbert type can be cast into the archetypal Landau-
Lifshitz form (1935) as follows. Take the vector product of 77 with both sides
of Eq. (5.1)

L odm o AL/, dm 5 dm
mA —— =ymA (m/\Beﬁ‘) — E[m(mﬁ) —-m E] ,
——
0
where the triple vector product m A [ A (dmi/dt)] has been expanded by using
the rule . L L L
AA(B/\C):B(A-C)—C(A-B), (5.5)

and 1 - (dm/dt) = 0 (conservation of the magnitude of m) follows from the
starting equation (5.1). On introducing the above result for m A (dni/dt) in
the right-hand side of Eq. (5.1), passing —A?ds/dt to the left-hand side, and
introducing the “renormalized” gyromagnetic ratio ¥ = v/(1+ A?), one finally
gets the desired Landau-Lifshitz form of the Gilbert equation
47 _ S A B — 52 A (m/\éeﬁ) . (5.6)
dt m
The celebrated Landau-Lifshitz relaxation (damping) term proportional to
—1 A (11 A Beg) drives 1 to the direction of Beg, while A measures the
magnitude of the relaxation term relative to the gyromagnetic term in the
dynamical equation.
Conversely, one can start from Eq. (5.6) with 4 replaced by v and then
write down its Gilbert equivalent equation. This is like Eq. (5.1) with v being
replaced by a different “renormalized” gyromagnetic ratio: 5/ = v x (1 + A\2).
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There exist some controversy concerning which equation (Gilbert or Landau—
Lifshitz) is more basic, or, equivalently, when one must use a renormalized ~.
However, on recalling that both equations are anyway phenomenological ones,
we can consider 4 (or 4') to be a given constant for each magnetic moment.
In addition, when A2 < 1 (weak damping), which is the common situation
at least for bulk magnets, one has 4’ ~ 4 ~ ~, so that one does not need to
worry about whether the gyromagnetic ratio occurring in a given formula is
a bare or renormalized one.

Henceforth, we shall merely use the symbol « in the dynamical quantities
(as if we would have started from the Landau-Lifshitz equation). If one wishes
to consider the Gilbert form as the commencing equation, one just needs to
substitute v/(1 + A?) for « in the corresponding formulae.

2. General solution for axially symmetric Hamiltonians

We shall now investigate solutions of the deterministic Landau-Lifshitz equa-
tion

(Z—T = 417 A Bege —7%7?”\ (71 A Begr) (5.7)
restricting our attention to the case in which H(m) is axially symmetric. In
this case, the effective field Beg (1) = —0H /01 is parallel to the symmetry
axis, which can be chosen as the 2 axis, Beg = Beg(m)2. Then, on introducing
the m-dependent “frequency” weg (M) = YBeg (111), we can explicitly write the
deterministic Landau-Lifshitz equation (5.7) as a system of coupled ordinary
differential equations:

dmg - _ w, (m - im m )

dt - eff Yy m xziltz |
dmy, A

at = (/Jeﬁ‘< — My — Emymz) y
dm, A, 9

o west — (M~ — m5)

Next, on introducing spherical coordinates m, = mcosd and m, + im, =
msin ¥ exp(—ip) (we measure here the azimuthal angle clock-wise), the above
system of differential equations can equivalently be written as

% = —Awegsind , (5.8)

¥ - osid (or dp/dt = wesr) - (5.9)
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Equation (5.9) can be solved by separation of variables, to get

o(9) ~ p(do) = — In [tan(9/2)/ tan(io/2)] (5.10)

where [dz /sinz = In[tan(z/2)] has been used and ¥¢ = ¥(to), to being the
initial time. Concerning the equation (5.8) for ¢, since weg = wes(¥), we can
also separate the variables to obtain the following implicit expression for ¥(¢)

At —ty) = /ﬂ(t)diﬂl (5.11)
o) 9o Wer(¥)sind '

Equations (5.10) and (5.11) are the solution of the deterministic Landau—
Lifshitz equation (5.7) for any axially symmetric Hamiltonian H ().

Weak damping case. An important case is that in which A <« 1. Note
first that Eq. (5.9) can also be written as d = —Asinddyp, which, for weak
damping yields |d¥| < |sin¥dy|. Then, the “displacement” of the tip of 171
along the polar direction (Ad) in a time interval At is much smaller than the
displacement along the tangential direction (sint?Ay). It makes then sense
to introduce a “position-dependent” frequency of rotation about Z, which is
precisely given by werr = YBenr [see the alternative form of Eq. (5.9)].

3. The simplest axially symmetric Hamiltonian

Let us now specialize the above general solutions to the Hamiltonian obtained
by the sum of the simplest axially symmetric anisotropy potential plus a
longitudinal Zeeman term. Then [cf. Eq. (5.4)]

Beg = B3 + (Bx /m)m.3 , (5.12)
and wegr = YBegr can be written as
wert(¥) = wp + wi cos wp=9B, wk =Bk . (5.13)

On the other hand, the integral in the solution (5.11) is now given by

dd 1
/(WB+chos19) sin ¢ WB + Wk n [tan(d/2)]
WK WB — WK )
+w123—w}< ln[ + (wB+wK>tan (9/ )]
WK

+7lnw +w
w%_w%{ (B K)a
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as can be checked by differentiation of the right-hand side. Therefore, from
the general result (5.11) we get the still implicit solution

K
Ce~M@p+wi)t — tan(9/2) [1 + (M) tanz(ﬁ/2)] L (514)
WB t+ WK
where the constant of integration C' involves the terms evaluated at t = #g.

4. Particular cases

The above implicit solution for 9¥(t) turns into an explicit solution in various
particular cases.

a. Dynamics in the isotropic case. Here wg = 0, so that Egs. (5.10)
and (5.14) reduce to the celebrated results (see, for example, Chikazumi, 1978,
Ch. 16)

tan(19/2) = tan(y/2)e BIE0) | (1) — o = wp(t —to) -

Thus, the motion of 7} consist of a precession with frequency wp = vB about
Z and a spiralling towards this axis with a characteristic time constant

1 1

Awp /\’YB (5 5)

TB
Note that this is the characteristic decay time of tan(¥/2); for m, = mcos ¢
in the vicinity of the minimum [tan(9/2) ~ ¥/2 and cosd ~ 1 — 9¥?/2], the

characteristic time constant is 75 /2. Note also that, for B < 0, one haswp < 0
and therefore lim;_, o, tan(¥/2) = oo, that is, ¥ — 7 as t = 00, as it should.

b. Dynamics in the zero-field case. Here wp = 0, so that, by using
tan® = 2tan(9/2)/[1 — tan®(¥/2)] in Eq. (5.14), one gets

tan® = tan gpe Ax (t=to) | (5.16)

Thus, the spiralling towards the minima has for K > 0 a characteristic time

constant
1 1

" Mk MBg’
or its absolute value if K < 0. In this easy-plane case one has Bg,wg < 0, so

that lim;_, o tan? = oo, that is, 9 — /2 as t — oo, and the magnetic mo-
ment eventually rests in the equatorial plane. This behavior upon the change

TK (5.17)
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Bi — —Bg is different from the behavior upon the transformation B — —B
in the isotropic case (where m then falls into the —2 minimum), and it is
mathematically reflected by the occurrence of tand in the solution of the
unbiased case, whereas tan(1¥/2) appears in the solution of the isotropic case.

Note that for both signs of K, Eq. (5.16) yields ¢ € [0,7/2] if ¥y € [0,7/2]
and ¥ € [n/2,w] when J¢ € [7/2,7n]. This expresses that, during the time
evolution, ¥(t) remains in the same hemisphere in which it was initially. For
instance, m does not surmount the anisotropy-potential barrier when K > 0,
as it should in a deterministic damped dynamics, while for K < 0, 7 does
not oscillate about (cross) the equatorial circle when spiralling towards the
easy plane.

Concerning the azimuthal angle, by expressing tan(¥/2) in terms of tan 9,
one gets from Eq. (5.10)

1 1+ secdy
t) — = W t—ty) — —1In )
@(t) — o K ( 0) b\ 1+ \/1 + tan2 ¥ge—2Awx (t—to)

where the plus sign corresponds to ¢ € [0,7/2] and the minus sign to ¢ €
[7/2,7]. From this equation it follows that the asymptotic Awg (t — to) > 1
behavior of the azimuthal angle for K > 0 is

Ap(t) ~ Twi(t —to) ,

which corresponds to a precession close to the bottom of the corresponding
potential well with an angular velocity wxZ in the 2z > 0 well and —wg?Z in
the z < 0 well. For easy-plane anisotropy, one has tan(4J/2) b2ge 1, so that we
find from Eq. (5.10) that the magnetic moment finally rests in the equatorial
plane at ¢ = ¢(¥) + A~!In[tan(dy/2)] (unless it starts at 99 = 0,7 which
are unstable equilibrium points).

c. Dynamics close to the potential minima. The implicit solution
(5.14) for ¥(t) can also be explicitly written in the general case (both wx
and wp different from zero) for the dynamics close to the potential minima
(we only consider the case Bx > 0). Let us initially assume ¢ ~ 0 [i.e.,
tan(¥/2) < 1]. Then, on retaining terms of order tan(?/2) in Eq. (5.14),
we get tan(d¥/2) ~ tan(dg/2) exp[-A(wp + wk)(t — to)] and @(t) — o ~
(wp + wk)(t — to) by Eq. (5.10). However, within the same approximation
(¥ < 1) we can replace the tangents by their arguments, getting

I(t) = Do~ Aemtes=lo) | o(t) — g = (wp +wi)(t —to) -
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Thus, m precesses with frequency wp + wg when spiralling towards the 4 = 0
potential minimum and the time constant of the decay of ¥ is 1/[A(wp+wk)] =
787K [(TB + TK ). Note that the characteristic decay time of m, o« cos¥ ~
1 —9%/2, is a half of this result.

From the above equations we see that the approximation used (¢ < 1)
is self-consistent if wp + wg > 0, that is, for any positive B and also for
negative external fields of magnitude less than the anisotropy field |B| < Bg
(i-e., inasmuch as the ¥ = 0 potential minimum exists; recall the discussion
in Subsec. IL.B).

On the other hand, in the ¥ ~ 7 case one has ¥/2 ~ 7/2 and, hence,
tan(¥/2) > 1. Then, we can use [(wp — wk)/(wp + wk)]tan?(¥9/2) > 1
in Eq. (5.14) to get tan(¥/2) ~ tan(dg/2) exp[A(wx — wp)(t — to)], whence
o(t) — o ~ —(wk —wg)(t —to) by Eq. (5.10). However, when tan(d/2) > 1,
we can use the approximation tand ~ —2/tan(?/2), so that on expanding
tand about ¥ = 7, we finally get

I(t) — 7~ (¥ — m)e” MNex—wB)t=to) (1) — g ~ —(wx — wr)(t —to) -

Therefore, 7 precesses with frequency wx —wp (about —2) when spiralling to-
wards the ¥ = 7 minimum, while ¥ decays with a characteristic time constant
1/[Mwg —wB)] = 787K /(7B — TK) (and m, with a half of this value).

Note finally that the approximation used (7 — ¢ < 1) is self-consistent if
wr —wp > 0, that is, for any negative B and also for positive B of magnitude
less than the anisotropy field (B < Bg). Thus, in this case, and exhibiting a
natural symmetry with the 9 ~ 0 case, the motion is stable inasmuch as the
¥ = 7 minimum exists.

V.C Stochastic dynamics of classical spins
(Brown—-Kubo—Hashitsume model)

Due to the interaction of a spin with the surrounding medium (phonons, con-
ducting electrons, nuclear spins, etc.) its T # 0 dynamics is quite complicated.
The complexity itself, however, permits an idealization of the phenomenon,
by replacing the effect of the environment by a magnetic field randomly vary-
ing in time. Nevertheless, in order to describe the environmental effects prop-
erly and to attain a thermodynamically consistent description, the fluctuating
terms must be supplemented with the analogue of a relazation (damping or
dissipative) term, to which must be linked by fluctuation-dissipation relations.

We shall begin with a survey of how this general programme is special-
ized to the study of the stochastic dynamics of classical magnetic moments.
This was done by Brown (1963), in the context of the small-particle mag-
netism, and by Kubo and Hashitsume (1970), who studied generic classical
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spins. The subsequent developments based on each of these works have taken
place separately in the literature. Nevertheless, both approaches are essen-
tially equivalent and we shall present here a unified discussion of them.!!

1. Stochastic dynamical (Langevin) equations

In the Brown-Kubo-Hashitsume model the starting dynamical equation is
the Gilbert equation (5.1) where the total field acting on 17 is obtained by
augmenting the deterministic effective field Beg by a fluctuating or stochastic
field bg(t), namely

dm R - > dm
E =ym A Beﬁ' + bﬁ(t) — (Wm)fl)\ﬁ . (518)

This equation, which is technically a non-linear stochastic differential (Lange-
vin) equation, is called the stochastic Gilbert equation. It suggest a heuristic
analogy with the Langevin equation for ordinary Brownian motion since the
“friction field” is proportional to minus the “velocity,” —(dm/dt). However,
the analogy ends here; in the dynamical equation for a Brownian particle
[see, for example, Eq. (6.25)], a friction term proportional to minus the veloc-
ity enters in the Newton equation (i.e., in the equation for the acceleration),
whereas —(dr7i/dt) enters in the equation for the “velocity” itself. Besides, the
fluctuating terms enter in Eq. (5.18) in a multiplicative way (see below).

As has been mentioned, the fluctuating field ba (t) accounts for the effects
of the interaction of m with the microscopic degrees of freedom (phonons,
conducting electrons, nuclear spins, etc.), which cause fluctuations of the mag-
netic moment orientation. Those environmental degrees of freedom are also
responsible for the damped precession of 77, since fluctuations and dissipation
are related manifestations of one and the same interaction of the magnetic
moment with its environment (see Section VI).

The customary assumptions about ba(t) are that it is a Gaussian “sto-
chastic process” with the following statistical properties

(ba,(t)) =0, (ba x(t)ba,o(t')) = 2D (t — t') (5.19)

(the first two moments determine a Gaussian process), where k and £ are
Cartesian indices, the constant D measures the strength of the thermal fluc-
tuations (assumed isotropic), and () denotes an average taken over different
realizations of the fluctuating field. (The constant D is determined on the

1 Notice that Kubo and Hashitsume say in their article that the main part of their work
was done in the summer of 1963, so that both approaches are in addition contemporary.
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grounds of statistical-mechanical considerations; see below.) The Gaussian
property of the fluctuations arises because they emerge from the interaction
of m with a large number of microscopic degrees of freedom with equivalent
statistical properties (Central Limit Theorem). On the other hand, the Dirac
delta in the second Eq. (5.19) expresses that above certain temperature the
auto-correlation time of ba(t) (of microscopic scale) is much shorter than the
rotational-response time of the system (“white” noise), while the Kronecker
delta expresses that the different components of ba (t) are assumed to be un-
correlated. Finally, it is also customarily assumed that the fluctuating fields
acting on different magnetic moments are independent.

On starting from the stochastic Gilbert equation (5.18), the discussed
transformation to the equivalent Landau-Lifshitz form yields (recall our con-
vention for the gyromagnetic ratio)

‘Z—T = 17 A [éeﬁ + Eﬂ(t)] - 7%m A {m A [éeﬁ + Eﬂ(t)] } . (5.20)
which will be called the stochastic Landau—Lifshitz—Gilbert equation. As will
be shown below, the thermodynamical consistency of the approach entails that
|ba| ~ A/2. Therefore, for weak damping (A < 1) we can drop the fluctuating
field from the relaxation term of Eq. (5.20), to arrive at

drit _ 1 A [Eeff + Eﬂ(t)] - 717?1 A (rﬁ A Eeg) . (5.21)

dt m
This equation, which was in fact the equation studied by Kubo and Hashit-
sume (1970), will be called the stochastic Landau-Lifshitz equation, since in
accordance with the spirit of its original deterministic counterpart, it describes
weakly damped precession. Equation (5.21) is besides a Langevin equation
more archetypal than Eq. (5.20), because the fluctuating and relaxation terms
are not entangled.

On the other hand, one can by-pass the reasoning employed to obtain Eq.
(5.21) from Eq. (5.20), and consider the former as an alternative stochastic
model. It will be shown below that, when the condition of thermodynamical
consistency is applied, the average properties derived both from Egs. (5.20)
and from (5.21) are completely equivalent.

The multiplicative noise terms. Apparently, for a given D, Egs. (5.20)
or (5.21), supplemented by Eqs. (5.19), fully determine the dynamical prob-
lem under consideration. Nevertheless, due to the vector products of m and
ba(t) occurring in those equations, the fluctuating field ba(t) enters in a multi-
plicative way. This fact gives rise to some formal problems because, for white
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multiplicative noise, any Langevin equation must be supplemented by an in-
terpretation rule to properly define it (see, for example, van Kampen, 1981,
p- 246).

Two dominant interpretations, which lead to either the It6 or the Strato-
novich stochastic calculus, are usually considered, yielding different dynamical
properties for the system. For instance, depending on the stochastic calculus
used, disparate Fokker—Planck equations for the time evolution of the non-
equilibrium probability distribution are obtained. The It6 calculus is com-
monly chosen on certain mathematical grounds, since rather general results
of probability theory can then be employed. On the other hand, since the
white noise is an idealization of physical noise with short auto-correlation
time, the Stratonovich calculus is usually preferred in physical applications,
since the associated results coincide with those obtained in the formal zero-
correlation-time limit of fluctuations with finite auto-correlation time (see, for
example, Risken, 1989).

Both the seminal works of Brown (1963) and, Kubo and Hashitsume
(1970), as well as all the subsequent theoretical developments, are based,
implicitly or explicitly, on the Stratonovich stochastic calculus.

2. Fokker—Planck equations

We shall now consider the Fokker—Planck equations governing the time evo-
lution of the non-equilibrium probability distribution of magnetic moment
orientations. Brown (1963) derived the Fokker—Planck equation associated
with the stochastic Landau-Lifshitz—Gilbert equation (5.20). By a different
method and starting from the stochastic Landau—Lifshitz equation (5.21),
Kubo and Hashitsume (1970) arrived at an equation for the probability dis-
tribution, which, when the auto-correlation times of bg (t) are much shorter
than the precession period of m, coincides with the Fokker—Planck equation
of Brown in the absence of the anisotropy potential (they studied the case
Beg = E) (for an alternative derivation starting from Eq. (5.21) see, for ex-
ample, Garanin, 1997). We shall begin by giving a unified derivation of the
Fokker—Planck equations associated with Eqgs. (5.20) and (5.21).

a. Derivation of the Fokker—Planck equations. Let us consider the
general system of Langevin equations

dy;

d_tz = Ai(y,t) + Y Bu(y, ) Li(t) , (5.22)
k

where y = (y1,...,yn) (the variables of the system), k runs over a given

set of indices, and the “Langevin” sources Li(t) are independent Gaussian
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stochastic processes satisfying
(L(t))y =0, (L (t)Le(t")) = 2D6ked(t — t') . (5.23)

When the functions By (y,t) depend on y, the noise in the above equations
is termed multiplicative, whereas for 0B;;/0y; = 0 the noise is called additive
(here the It6 and Stratonovich stochastic calculi coincide).

The time evolution of P(y,t), the non-equilibrium probability distribution
of y at time ¢, is given by the Fokker—Planck equation (see, for example,
Risken, 1989)

oL (e ] o ()]

(5.24)
where the Stratonovich calculus has been used to treat the (in general) mul-
tiplicative fluctuating terms in the Langevin equations (5.22) [when using the
It6 calculus the noise-induced drift coefficient D ) ik B, (0B;), /0y;) is simply
omitted]. On taking the y;-derivatives of the second term on the right-hand
side (the diffusion term), one alternatively gets the Fokker—Planck equation
in the form of a continuity equation for the probability distribution, namely

e DR P

(5.25)
where term within the curly brackets defines the ith component of the current
of probability J;(y, t).

Next, on considering the stochastic Landau—Lifshitz (-Gilbert) equation,
supplemented by the statistical properties (5.19), the following substitutions
cast them into the form of the general system of Langevin equations (5.22):
(Y1,Y2,Y3) = (Mg, my,m;), Li(t) = ba,x(t), and

Ai = ’7 |:T?L A éeﬁ' - im A (T?L A Eeﬂ')] 3 (526)
m

i

By,

A
7[ E €55k +QE(m25z’k - mimk)] ; (5.27)
J

where €5, is the antisymmetrical unit tensor of rank three (Levi-Civita sym-
bol)!2 and we have expanded the triple vector product —m A (7 Abg) by using

12This tensor is defined as the tensor antisymmetrical in all three indices with €zy. = 1.
Therefore, one can write the vector product of A and B as (A A B) z ke €ij xA;jBg. In

addition, one has the useful contraction property Zk €ijk€irjr = 0431050 — 0y51 0551 -
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the rule (5.5). The parameter g enables us to deal with both equations simul-
taneously: to obtain the stochastic Landau-Lifshitz—Gilbert equation (5.20)
we put g = 1, whereas the stochastic Landau-Lifshitz equation (5.21) is re-
covered if g = 0, since in this case gﬂ(t) only enters in the precession term.
Note that the B;; depend on 71 in both cases, i.e., the noise terms in the
stochastic Landau—Lifshitz (—Gilbert) equation are multiplicative.

Next, on using dm;/0m; = &;;, one first gets

OBjy,
amj

A
=7 |k — 9 (0smp + Okjms)| (5.28)

where the terms dependent on m = (3°;m2)!/2 have not been differentiated
due to the conservation of the magnitude of 77i. (One can indeed check that dif-
ferentiating those terms by using 0m/0m; = m;/m and repeating the follow-
ing calculations we arrive at the same final results.) Then, on taking €;;; = 0
into account one finds ). dB;,/0m; = —4gy(A\/m)my,. From this result and
Eq. (5.27) we get >, Bik(zj 0Bji/0m;) = 0 by using ij €ijpmimy = 0
(due to the contraction of a symmetrical tensor with an antisymmetrical ten-
sor) and ) k(m26,-k —mymy)my, = 0. Therefore, the second term on the right-
hand side of the general Fokker-Planck equation (5.25) vanishes identically
in this case. In order to obtain the third term we need to calculate first

1
5 2 BuBjt
v k

A A
= Z [Z €irkMy + ga(mQ(Sik — mimk)] [Z €jskMs + gE(m%jk — mjmk)]

k r s

Z((si]’(srs - 6i36rj)mrms

—€irj

A 2 =
+ga m E (eirjmr+ €jri mT‘) —m; E EirkMrMME —MNy E €jskMsT

: Y CA I
0 0
A\ 2
4 2 2
+g (E) [m dij — m*(mim; + mjim;) + mym; E mk]

k
= (1 + g/\2)(m25ij - mimj) s

where we have taken into account that g2 = g and employed the mentioned
contraction rule of €;;;. Then, on introducing the Néel time,

1 A
— =2D*(1+ g\?), (5.29)
™
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which is the characteristic time of diffusion in the absence of potential (free-
diffusion time; see below), we get for the third term in Eq. (5.25)

-DY_ BikBjka—P 1 [m A (m A a—P)] : (5.30)
ik i

om; 2w o

On introducing these results into Eq. (5.25) one finally arrives at the
Fokker—Planck equation
opP 0 ~ A = 1 0
— =———=" |YM A Beg —y—m A B —mA|(MA—=]||P
ot~ om [7"”\ ar =70 A (1 e“)+2mm (m am)] ’
(5.31)
where (8/0m)- stands for the divergence operator [(8/9m)-J = >_,(8J;/0m;)].
Thus, the Fokker—Planck equations associated with the stochastic Landau—
Lifshitz—Gilbert equation (5.20) and the stochastic Landau-Lifshitz equation
(5.21) are both given by Eq. (5.31), the only difference being the relation
between the Néel time and the amplitude of the fluctuating field:
1 1
— =2D+*(1+ A\?) (LLG), — =2D+* (LL).
™ ™
Equation (5.31) is equivalent to the Fokker—Planck equation derived by Brown
(1963) (see below).

b. Stationary solution of the Fokker—Planck equation and compar-
ison between the stochastic models. In order to ensure that the station-
ary properties of the system, derived from the Langevin equations (5.20) or
(5.21), coincide with the correct thermal-equilibrium properties, the Fokker—
Planck equation associated with these Langevin equations is forced to have
the Boltzmann distribution

Pe(m) o< exp[—fH(m)] ,

as stationary solution.

To do so, note first that, by means of Beg = —O0H /Om, one can write
OP./0m as
OP, _
—87?: = BBeg P, . (5.32)

From this result one can easily show that mABeg P, is divergenceless (solenoidal).!?

13This result follows from the general one

9 - e 0A . Ie] o
%.(m/\A) —Z(Zeijkmja—mj> :7m-(%/\14) s

i ik
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Therefore, on taking these results into account when introducing the Boltz-

mann distribution in the Fokker—Planck equation (5.31), one gets

N
ot Om

A . .
[—7—m A (m A Beff) Pt in (m A Beﬁ) Pe] .
m 2TN
One then sees by inspection that, in order to have the Boltzmann distribution
as stationary solution of the Fokker—Planck equation (5.31), it is sufficient to

put
A_ B
—=—_— 5.33
Vo = o (5.33)
from which one gets the following expression for the Néel time

1 m

™

Note that, since this result does not depend on the actual form of the Hamil-
tonian H, it also holds for assemblies of interacting magnetic moments.

Therefore, as the thermodynamical consistency of the approach determines
7~ completely, we arrive at the important result that, once that the consis-
tency condition is applied, the Fokker—Planck equations associated with the
stochastic Landau—Lifshitz—Gilbert and stochastic Landou—Lifshitz equations
result to be identical.'*

As 7 is related with the amplitude D of the fluctuating field by different
expressions [Eq. (5.29)], the only difference between the two stochastic models
lies in the relation among D, A, and T', namely

A ksT

Let us also write this result explicitly

A kBT kBT

Dirg = —— B2 p =B
LLG = 7300 o LL )\’Ym,

so that we can compare with Brown’s (1963) result. He wrote the right-hand
side of the first of these equations as (n/v)kgT, since he began with the Gilbert
equation [y — /(1 + A?)] and our \/ym is equivalent to his n/v.

when applied to A= Eeg Pk, since éeg P, can be written as the gradient of a scalar by Eq.
(5.32) and, thus, its rotational is zero. Q.E.D.

MSince the stochastic Gilbert equation (5.18) is equivalent to the stochastic Landau-
Lifshitz—Gilbert equation (5.20) with v — /(1 + A2), the Fokker-Planck equation asso-
ciated with the former is also given by Eq. (5.31) with 7y from (5.34) after substituting
/(1 + A2) for . As 7'1;1 o 7y this gives a global time-scale factor.
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The above Einstein-type relations between the amplitude of the thermal-
agitation field and the temperature, via the damping coefficient, ensure that
the proper thermal-equilibrium properties are obtained from the stochas-
tic Landau-Lifshitz (—Gilbert) equation. They also ensure that the average
dynamical properties associated with each one of these stochastic models
are identical with each other (those properties are determined by the same
Fokker—Planck equation), even though the stochastic trajectories for a given
realization of the fluctuating field l;ﬂ(t) are in principle different.

Later on we shall integrate the stochastic Landau-Lifshitz—Gilbert equa-
tion (5.20) numerically. Nevertheless, the above considerations ensure that, if
we integrate the stochastic Landau-Lifshitz equation (5.21) instead, we shall
obtain the same results for the averaged quantities.

c. It6 case. It is to be noted that the relations (5.35) between the temper-
ature and the amplitude of the fluctuating field [or equivalently Eq. (5.34)],
being derived from Brown’s Fokker—Planck equation (5.31), pertain to the
Stratonovich stochastic calculus. Indeed, after constructing the corresponding
Fokker-Planck equation by using the Ité calculus, one finds that Eq. (5.34)
does not ensure that the Boltzmann distribution is a solution of such an equa-
tion. Let us prove this.

Let us first calculate the so-called noise-induced drift coefficient of the
Fokker—Planck equation, namely D 3", B;r(0Bir/9y;), which is the extra
term accompanying A; in Eq. (5.24). On introducing Eq. (5.27) for B;;, and
the partial derivative (5.28) in the definition of the noise-induced drift, one
finds

0jibej—8;;00i

%ZBjk gi:k = Z (ZejékGijk) my
ik J k

Lj
/\ 2
-9 (E) Zk(m25jk — mgmy) (§iymi + kjmi)
J
)\ 2

= Z(&e —30ie)me — g (E) m; Z(m26kk — mpmy)

4 k
= _2(1+g/\2)m1 )

where all the terms linear in A have cancelled out due to the contraction
of symmetrical tensors with antisymmetrical ones. Therefore, on using the
unified expression (5.29) for the Néel time, we can write the noise-induced
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drift coefficient as OB )
ik

The It6 case of the Fokker—Planck equation is readily constructed by omit-
ting the noise-induced drift coefficient in Eq. (5.24). As Eq. (5.36) shows, this
term yields a contribution —7 Ly P to the ith component of the current of
probability J;. However, in the Stratonovich case, that contribution is can-
celled by a term 7y Lm; P originating from the second-order derivatives in the
Fokker—Planck equation [this is a restatement of the vanishing of the second
term on the right-hand side of the general Fokker—Planck equation (5.25) for
the stochastic Landau-Lifshitz (—Gilbert) equation]. Thus, the absence of the
noise-induced contribution in the It equation yields a term 7 'm; P added to
the Stratonovich J;. Therefore, the Fokker—Planck equation associated with
the stochastic Landau—Lifshitz (—Gilbert) equation when this is interpreted
in the It6 sense, can be written as [cf. Eq. (5.31)]

oP 0 _ A .
or __ 9. AN B — v 3 A B
ot a ym N Beg fymm/\ (m/\ eg)
1 1 0
—m 4+ —m nA—| |P. .
+ TNm-i— 2TNm/\ (m/\ 8%)] (5.37)

Again, for the equilibrium distribution 7 A Beg P, is divergenceless and, if
7n is given by Eq. (5.34), the second and fourth terms in the square brackets
of Eq. (5.37) cancel each other (by construction). Therefore, the It6 Fokker—
Planck equation yields for P = P,

0

0= — -
o

(MP,) = (3 + pifi - Beg) P , (It case)

which is not necessarily satisfied by a general form of the Boltzmann distri-
bution Pe(m) (that is, by a general form of the Hamiltonian). The simplest
example is that of the dynamics in a constant potential. Then geﬁ = 0 and the
equilibrium distribution — P, (171) uniform— is not a solution of the It case
of the Fokker—Planck equation. Therefore, the stochastic Landau—Lifshitz (-
Gilbert) equation, when interpreted in the Ito sense, does not yield the correct
thermal-equilibrium properties.

We can give an even stronger argument against the interpretation of Egs.
(5.20) and (5.21) as It stochastic differential equations, based in the non-
conservation of the magnitude of the magnetic moment. The deterministic
counterpart of those equations [Eq. (5.6)] yields 0 = ni-(di/dt) = 1d(m?)/dt,
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so that the magnitude of m is preserved during the time evolution. Neverthe-
less, when passing from ordinary to stochastic differential equations, specific
rules of calculus (integration and differentiation) are required. In the con-
text of the Stratonovich calculus, such rules are formally identical with the
rules of the ordinary calculus. Therefore, 0 = 71 - (dm/dt), which always fol-
lows from Egs. (5.20) and (5.21), also entails d(m?)/dt = 0. However, when
using the specific rules of differentiation of the Itd calculus, one finds that
m - (di/dt) # 1d(m?)/dt for those equations, which therefore do not con-

serve the magnitude of m.1%

d. Fokker—Planck equation in spherical coordinates. For future use,
let us write the Fokker—Planck equation (5.31) in a spherical coordinate sys-
tem, as was originally presented by Brown (1963).
First, on using yYA/m = 3/2m [Eq. (5.33)], the Fokker-Planck equation
(5.31) can be written as
op 0 {wm/\éeﬂ— L [m/\ (,Béeﬂ— i_,)]}P. (5.38)
28 om

ot om

Then, on introducing the dimensionless effective field f_;ff = ﬂmﬁeﬁ and using
again the expression (5.33) for 7y, we can rewrite Eq. (5.38) in the form

oP 3] 1, = 1 . - 0
ZTNE__%'{X /\é‘eﬁ’_am/\[m/\(é‘eﬁ’_m%)]}f)' (5.39)

On using now the formulae for the gradient and divergence operators in spher-
ical coordinates (7= 1)

ou Ou +10u 1 Ou

= = = 4+ 4
a7 = "or "Vrae T Prenoap (5.40)
9 - 19, o 1 0A,
oF A4 = r? ar(r Ar)+rsim9 819(Sm19A19)+rsin19 Ay ’ (5.41)

along with the result 1 A A = m( — Ay0 + Ag¢), one can write Eq. (5.39) in
a spherical coordinate system as

oP 1 0 ,. .= 0~
218 B sind |90 (sindJy) + g (Jo)| (5.42)
15This can be demonstrated by using the Stratonovich equivalents of Eqs. (5.20) and
(5.21) when they are interpreted as Ité equations. Those Stratonovich equivalent equations
are obtained by augmenting the (now It6) Egs. (5.20) and (5.21) by TglfﬂP, so that the
stated result directly follows from the application the ordinary rules of differentiation to
the resulting equations.
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where the spherical components of the reduced current of probability [j, =
(275 /m)J;] are given by

~ 1 OH 1 1 OH oP
Ts = _[kB—T (%‘Xsmﬁ%)”%] ) (543)
. _[ 1 (16% 1 aa)P 1 ap]

Jo % \X 39 T sind 9y S0 9 (5-44)

To get these expressions we have also taken into account the definition (5.2)
of the effective field in terms of the Hamiltonian (), which, together with
Eq. (5.40), has allowed us to write the components of £ as

¢ _ 1 oH fopo = —— L oH
o0 T T kRT 99 e = T kpTsind 0p

(5.45)

Finally, when Eqs. (5.43) and (5.44) are introduced in (5.42), Brown’s Fokker—
Planck equation emerges in its original form (1963).

e. The axially symmetric Fokker—Planck equation as a Sturm-—
Liouville problem. In an axially symmetric situation, that is, for Beg,, =
0 and Besr,y = Besr,9(1), and restricting ourselves to solutions with axial
symmetry OP/8¢ = 0 (the ones of interest when, for example, determining
the steady-state solution in the presence of a longitudinal probing field), the
Fokker—Planck equation (5.42) reduces to

oP 1 0. oH oP

Then, if we introduce the substitution z = cos ) and use the relation (0 f /0¥) =
—sin¥(0f/0z), the axially symmetric Fokker—Planck equation (5.46) can be

written as op 5 op

where we have used the shorthand Q(z) = 1 — 2% and the prime denotes
differentiation with respect to z. Note that, in this axially symmetric case,
the gyromagnetic terms [those multiplied by A~! in Eq. (5.39) or in Egs.
(5.43) and (5.44)] are absent from the Fokker—Planck equation. This entails
that the effect of the damping parameter A on the averaged quantities enters
via the Néel time (5.34) only. Note that this no longer holds in non-axially
symmetric situations (for example, in the presence of a transverse field).

2
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The current of probability is defined by writing the Fokker—Planck equa-
tion (5.47) as a continuity equation for the probability distribution, namely
21w (0P/0t) = —(0J,/0%z), whence

J. = —Q(z) (6—P + ,BH’P) . (5.48)
0z
Note that this expression can also be obtained from Eq. (5.43) for Js, by using
jz = —jﬂ sin .
On the other hand, by assuming a solution of Eq. (5.47) of the form
P(z,t) = T(t)F(z) (separation of variables), one gets T'(t) o« exp(—At), while
F(z) then satisfies

d

= {Q(z)e—ﬁmz)diz [eﬂH<Z>F(z)]} = —@emA)F(z2),  (5.49)

for the writing of which we have used the identity

d dF
—BH(Z) _ BH(Z) = — !
e o [e F(z)] P + BH'F . (5.50)
Further, on introducing the function ¢(z) = e’ F(z), Eq. (5.49) can equiv-
alently be written as

% [Q(z)e_ﬁmz)%] = —(2mA)e M g(z) . (5.51)
Therefore, to solve the Fokker—Planck equation in the axially symmetric case
is transformed into the Sturm-Liouville problem of finding the eigenvalues
Ay, and eigenfunctions ¢ (2) of Eq. (5.51).1¢

In order to prove that the problem defined by Eq. (5.51) is in fact a
Sturm-Liouville problem, note first that Q(z)e #%(*) £ 0 inside the relevant
interval (—1,1). The same holds for the function e #(*) multiplying ¢(z2)
on the right-hand side of Eq. (5.51). In addition, the differential operator on
the left-hand side is self-adjoint, since, when expanding it, the coefficient of
d¢/dz is equal to the derivative of the coefficient of d?¢/dz2. This completes
the proof of that Eq. (5.51) defines a Sturm-Liouville problem.

On the other hand, we must also check that the common boundary con-
dition in Sturm-Liouville problems (see, for example, Arfken, 1985, p. 503)

< I O C kI 6:52)

z=—1 z=1
160ne can also define the more customary dimensionless eigenvalues by A\ = 27nA.
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is satisfied. Here, ¢ (2) and ¢=(z) are two solutions of the differential equation
being considered, ()* stands for complex conjugation, and p(z) = Q(z)e A## ()
for the Sturm-Liouville problem (5.51). The proof is based on the fact that
Q(2)e=PM(2)d¢/dz is proportional to .J,, as can be checked by using the def-
inition (5.48) and the identity (5.50). However, the current of probability is
tangent to the unit sphere, so that J, must vanish at the poles. Therefore
Jz|s=+1 = 0, from which Eq. (5.52) follows, the two sides of the equation
being equal to zero.

The property (5.52) is very important since from self-adjointness plus that
boundary condition it follows the Hermitian character of the differential oper-
ator in the Sturm-Liouville problem. Hermitian operators have the following
three important properties:

(i) The eigenvalues Ay are real.

(ii) The eigenfunctions ¢ (z) are orthogonal with respect to a suitably cho-
sen scalar product.

(iii) The eigenfunctions ¢y (z) [and therefore the F(z)] form a complete set.

Therefore, by using the completeness property (iii), the general solution of
the Fokker-Planck equation, P(z,t), can be expanded in terms of the (basis)
functions Fy(2) = e P2 ¢ (2) as

P(z,t) = Z ' exp[-BH(2)] + Y _ ek Fir(2) exp(—Axt) (5.53)
k>1

where Z~1 exp[—AH(z)] is the equilibrium (¢ — 00) solution (associated with
the eigenvalue A9 = 0) and the coefficients of the expansion ¢ depend on the
“initial conditions” (initial probability distribution).

In general, the eigenvalues and eigenfunctions of the Sturm-Liouville prob-
lem discussed above must be computed by means of numerical techniques.
However, analytical results can be obtained for certain quantities without
solving the full Sturm-Liouville problem (see below).

3. Equations for the averages of the magnetic moment

Let us now consider the dynamical equations for the averages of the magnetic
moment with respect to the non-equilibrium probability distribution P(r7,t).
(As these equations involve averaged quantities, they will be identical for the
stochastic Landau-Lifshitz—Gilbert and stochastic Landau-Lifshitz models.)
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The dynamical equations for the first two moments of a stochastic variable
y = (y1,--.,yn) that obeys the Fokker—Planck equation

oP o 1 0
= Z B [ag1> (y,t)P] +3 Z 30, [agf) (y,t)P] ,
i L)

are given by (see van Kampen, 1981, p. 130)

Cw) = (" .0) (5.54)
S = (@@0) + @ .0) + (a(,0) . (65.59)

On comparing with the Fokker—Planck equation (5.24), taking Eqs. (5.26) and

(5.27) into account, and using Eq. (5.36) for the noise-induced drift coefficient,
(1) (2)

we get for the functions a; ' and a;;" associated with the stochastic Landau-
Lifshitz (—Gilbert) equation
~ A . 1
aVm,t) = [m A Bog — 27 A (m A Beﬂ)] — —m;,
m i ™
. 1
(J,g) (m,t) = — (m25ij - mimj) .
™

Thus, the dynamical equation for the first moment (m;)(t) = flml:md% P(m, t)ym;
reads

d — — =4 A — — =1 1 —

E(m) :’y<m/\Beﬁ‘> 7 <m/\ (m/\Beﬂ:)> - E(m) , (5.56)
where the results for the Cartesian components have been gathered in vector
form. Note that the term — () /7n is analogous to the relaxation term in a
Bloch-type equation (Garanin, Ishchenko and Panina, 1990). Analogously, for
the second-order moments (m;m;)(t) one finds

%(mimj) = —% ((mz’my‘)—%m%w)
ol (0 i) ) 22 (s i (5]
tieg, (5.57)

where i <> j stands for the interchange in the entire previous expression of
the subscripts ¢ and j.
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Equations (5.56) and (5.57) show that, for a general form of the Hamil-
tonian, no closed equation exists for the time evolution of the averages of
the magnetic moment. For instance, even if B.g does not depend on m, for
example, for By =B , the Landau—Lifshitz-type relaxation term introduces
(m;m;)(t) in the equation (5.56) for (m;)(t). Therefore, an additional differ-
ential equation for (m;m;)(t) is required [i.e., Eq. (5.57)], however that equa-
tion involves (m;m;my)(t), and so on. The absence of such a closed dynamical
equation is a major source of mathematical difficulties in the theoretical study
of the dynamical properties of classical spins.

Free-diffusion case. A situation in which the equations for the averages
are not coupled and can in addition be explicitly solved, is that where the
Hamiltonian is constant (independent of 7). Then, one has Eeﬂ = 0 so that
the equations for the first two moments reduce to

d 1 d
a("ﬁ)—‘a(mi)a E< Mil =T
Note that, because 7' oc kgT' [Eq. (5.34)], this apparently academic case can
be a reasonable approximation for sufficiently high temperatures, where the
terms multiplied by 75" in Egs. (5.56) (the mentioned Bloch-type term) and
(5.57) dominate the remaining terms.
The solution for the first moment is

(ma)(t) = (m)(to)e(I=to)/m (5.59)

which justifies to call the characteristic time constant 7 the free-diffusion
time. Similarly, on using d (m;m;) /dt = d({m;m;) — +m?4;;)/dt, one gets for
the second-order moments

1
(mimy) () = 3m?0y + <m,-mj)(t0)—%m25,.j =3t/ (5.60)

For (t — to) > 7, one therefore finds (m;)(t) — 0 and (m;m;)(t) = +m?8;;.
Thus, the initial correlations between different components of the magnetic
moment are lost for long times, while (m?)(t) = m?, Vi (random distribu-
tion of 17) as it should for the diffusion in a constant orientational potential or
at very high temperatures. Note finally that these natural results are not ob-
tained when one interprets the stochastic Landau-Lifshitz (—Gilbert) equation
a lo Tto.
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4. Relaxation times

We shall finally review various expressions for the relaxation times of in-
dependent classical magnetic moments in the context of the Brown—-Kubo—
Hashitsume stochastic model.

a. Longitudinal relaxation time. The longitudinal relaxation time is
associated with the response to a field applied along the anisotropy axis.
Therefore, the very definition of this quantity requires a previous discussion
of the relaxation under such conditions.

Let us assume that the Hamiltonian A has uniaxial symmetry, so that the
transformation discussed above of the Fokker—Planck equation into a Sturm-—
Liouville problem holds. Let us also assume that H contains, among other
terms, a (longitudinal) Zeeman term —BHzeeman = B(m,B) = z£, where £ =
BmB is the customary dimensionless magnetic field parameter. By averaging
m,(t) with respect to the non-equilibrium probability distribution (5.53), the
relaxation curve, after a sudden infinitesimal change on the applied field B
by AB at t =0, reads

(m(00)) — (m. (1)) = pg ' ABx) Y ar exp(—Axt) . (5.61)
E>1

Here x| = po0 (m), /OB is the longitudinal equilibrium susceptibility [{-)e
denotes the thermal average in the absence of the perturbing field AB, i.e.,
with respect to the initial distribution P, = Z;* exp(—fHo)].' In Eq. (5.61)
the Ay are the eigenvalues of the associated Sturm-Liouville problem and the
ap, are the corresponding amplitudes, which are related with the constants
¢ of Eq. (5.53) and also involve integrals of the form f_lldz Fy(2)z. Those
amplitudes, by construction, obey the sum rule )", ., ar = 1, as can be seen
by considering that at ¢ = 0 the system was in thermal equilibrium, so that
po {m(c0) —m;(0)) = ABx-

The eigenvalues are usually sorted in increasing order 0 = Ag < A1 <
Ay ---. The first non-vanishing eigenvalue, A1, is commonly associated with
the inter-potential-well dynamics, while the information about the intra-pot-
ential-well relaxation appears in the higher-order eigenvalues Ag, £ > 2. In
some cases, however, A1 corresponds to a “long-lived” mode and characterizes
reasonably well the relaxation (except for its earliest stages).

On defining the longitudinal relaxation time as 7y = A;', Brown (1963)

17We omit the subscript || in the equilibrium distribution function and in the correspond-
ing partition function.
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derived the approximate results

™ [1—%0—}-8478502(1—}—%h22)]71 , oK1
LS R exp [o(1 + h?)] el (5.62)
2 (1 — h2)(cosh& — hsinh§) ’

where 0 = Kv/kpT is the dimensionless barrier-height parameter, h = £/20,
and 7y is the Néel time (5.34). To get these formulae Brown solved the Fokker—
Planck equation perturbatively in the low potential-barrier case and with the
use of Kramers transition-state method in the high-barrier limit.

Cregg, Crothers and Wickstead (1994) proposed a simple expression for Ay
that is remarkably close to the exact A; in the entire ¢ range. It is essentially
a formula that interpolates between the above limiting results of Brown and
reads (7'”_1 =A;)

2 32
-1 o —-11 _ 12 —0o
o= W a(l h)(ﬁ1+1/g+‘72 )

1-h 1+h
" {exp o1~ AP~ 1 " explo(1 — h)?] - 1} - (663)

Nevertheless, when the relaxation comprises different decay modes, a more
useful characterization of the thermo-activation rate is provided by the inte-
gral relazation time, Ting, which is in general defined as the area under the
relaxation curve (normalized at ¢ = 0) after a sudden infinitesimal change at
t = 0 of the external control parameter. A general expression for the integral
relaxation time associated with any one-dimensional Fokker—Planck equation
was obtained by Jung and Risken (1985). Moro and Nordio (1985), in the con-
text of the thermo-activation phenomena in chemical-physics problems, also
derived a similar expression.

In the context of the Brown—Kubo—Hashitsume model for classical spins,
Tint Was calculated for systems with uniaxial anisotropy in a longitudinal mag-
netic field by Garanin, Ishchenko, and Panina (1990). Here, the relaxing quan-
tity is the average magnetic moment (m,(t)}), and the external control param-
eter is the magnetic field. Thus, the above general definition reduces in this

case to o :
7mt=(/‘dt<"“(“”>_<"”()>. (5.64)
0 (mz (OO)) - <mz (0)>
For a single exponential decay, i.e., [(m.(00)) — (m,(t))] «x exp(—t/7), the
above definition indeed yields 7, = 7, whereas for a multi-exponential decay,
Tint 1S given by the average of the corresponding relaxation times weighted by
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the associated amplitudes. Indeed, when (m,(00)) — (m,(t)) from Eq. (5.61)
is substituted into the above definition, 73, emerges in the form

Tin a dt exp(—At) aA1 5.65
e k/ ) = T et (5.65)

where we have used the sum rule ), ar = 1.

In order to calculate 7,y without finding the eigenvalues and amplitudes
of the Sturm-Liouville problem, Garanin, Ishchenko, and Panina (1990) used
the relation between 7, and the low-frequency longitudinal susceptibility to
get (see also Garanin, 1996, and Appendix B)

= gy [ reer G (5.66)

where the function ®(z) is given by

: / “der Pu(21) [(2), — 1] - (5.67)

Equation (5.66), which is valid for any axially symmetric Hamiltonian, can
readily be computed by means of the numerical integration of a double definite
integral. Moreover, explicit expressions for ®(z) can be derived for particular
forms of the Hamiltonian (see Appendix B).

In the absence of a constant magnetic field (unbiased case), the integral
relaxation time yields the results for A1_1 of Brown in the appropriate limiting
cases (Garanin, Ishchenko and Panina, 1990; Garanin, 1996). However, Ting
depends on the whole set of eigenvalues Ay, and is therefore more informative
than A;. Indeed, in the presence of a bias field, the higher-order modes can
make a substantial contribution to the relaxation, and A1_1 can largely (expo-
nentially) deviate from i, in the low-temperature region (Coffey, Crothers,
Kalmykov and Waldron, 1995a; Garanin, 1996). Besides, in contrast to Aj,
the integral relaxation time is, by its very definition, a directly mensurable
quantity (for a comprehensive review including the comparison of different
definitions and methods for the calculation of relaxation times, see Coffey,
1998).

b. Transverse relaxation time. The formula usually employed for the
transverse relaxation time is that yielded by the effective eigenvalue method
(see, for example, Coffey, Kalmykov and Massawe, 1993)

od __ 92 1-— 52 (U, £)

¢ = TN2+S2(0_7€) , (5.68)
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where S is the average of the second Legendre polynomial with respect to the
thermal-equilibrium distribution [Eq. (3.69)]. This equation, although valid for
any axially symmetric Hamiltonian, does not take gyromagnetic effects into
account [Eq. (5.68) only holds in the overdamped case, A > 1].

On noting that from Eq. (3.76) one gets the relation

~ 1/ R
= — _— ]_
2= 3 (3 R > ’
between Sy = Sa(0,&)|¢=o and R'/R, one sees that Eq. (5.68) reduces in the

unbiased case to
1-R'/R

1+R'/R’
Now, if we employ the small and large o approximations for R'/R (see Ap-
pendix A), we find

1-R/R  1/o

79 e=0 = 27n (5.69)

1-R/R _2-40/15

~ 1 ~ 1
T R/E-2-1/ Y T RERZivaem O
whence one gets the limit behaviors of 794 ¢—¢
1/(\yB asT — 0
Tj)_d|§:0 — { /t g ) as T — oo (5.70)

Thus, as it should, 794|¢—o goes to zero at high temperatures, whereas it tends
to the constant deterministic result 7 for T'— 0 [Eq. (5.17)].

Finally, it is shown in Fig. 22 that, in contrast to the longitudinal relax-
ation time, which may increase exponentially at low temperatures, Tj)_d|§:0 is
bounded from above. Indeed, from the graph one concludes that this trans-
verse relaxation time is, at most, of the order of 7 (specifically, 79%|¢=o <
]..5TK) .

On the other hand, we have mentioned that the expression (5.68) for the
transverse relaxation time does not take the effects of the gyromagnetic terms
into account. In order to investigate the effects of these terms on the transverse
response, Raikher and Shliomis (1975; 1994) studied the transverse dynamical
susceptibility for B = 0, by a decoupling ansatz for the infinite system of
differential equations for the averages of the magnetic moment [recall the
discussion after Eqs. (5.56) and (5.57)]. They derived an expression for x (w)
and studied mainly the ferromagnetic-resonance frequency range. If one is
interested in the low-frequency range, their x (w) can be expanded in powers
of w, and then cast into the Debye-type form

x(w, T) =~ x(T)(1 — iwT) ~

(wr k1),
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] transverse [
0.254 relaxation time — -

FIGURE 22. Transverse relaxation time, 79%¢=o [in units of 7x = 1/(AMyBx)], vs.

the temperature. Inset: 70%¢—o/7~ vs. 0 = Kv/ksT.

where the last step is done with help from the binomial expansion (1 + z)¢ =
1+ ex + ---. Then, the quantity multiplying iw defines a effective relaxation
time useful in the low-frequency range, which is given by (see Appendix B)

1-8; 1
—0=2 — , 5.71
e = N, T alo) /N 10
where = \o
plo) = (35) (5.72)

(24 5,)[2+ S5(1—6/0)]

Note that, in the absence of gyromagnetic effects (A — 00), Eq. (5.71) reduces
to the unbiased case (5.69) of the overdamped result (5.68).
Finally, on considering that

l—gz 1 1_52
T — < 27N - ~ = od =0 >
Not 8, 1+p(o)/x2 = " No1 3, Fle=o

Tile=o =2

we also find that 7, |¢—o is, at most, of the order of 7x = (\yBgk)~'. For
typical values of the quantities occurring in 7x one has

v 1.76 x 101 T 1s~ 1
Bg ~ 50mT — ! ~ 1081057t (5.73)
A~ 0.01-1
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Thus, for frequencies not very high (say, w < 10° Hz) the condition wr [¢=¢ <
1 is obeyed, justifying (admittedly, non-rigorously) the step leading to the
low-frequency Shliomis and Stepanov equation (4.3).

V.D Numerical method

In the remainder of this Section we shall study the 7" # 0 dynamics by solving
stochastic dynamical equations for classical spins numerically. To this end, we
shall now discuss some topics related with the numerical integration of those
Langevin equations.

1. Dimensionless quantities

Let us first introduce a number of dimensionless quantities. The maximum
anisotropy field Bx = 2Kwv/m provides a suitable reference magnetic-field
scale that yields the dimensionless fields (in what follows we shall only consider
easy-axis anisotropy K > 0)

- B -~ Bem - b (t)
h=— heft = ha(t) = —= .
BK ) eff BK ’ ﬂ( ) BK
uitable time scale is provided by 7x, the deterministic relaxation time at
= 0 [Eq. (5.17)], which yields the dimensionless time

(5.74)
A
B

t=t/tk, T =MBxk. (5.75)
Note that in terms of 7x and 0 = Kv/kgT, the Néel time (5.34) merely reads
TN = 07K - (5.76)

2. Dimensionless stochastic Landau-Lifshitz (—Gilbert) equation

On using the dimensionless quantities introduced, the stochastic Landau—
Lifshitz (-Gilbert) equation can be rewritten in a dimensionless form suitable
for computation, namely

de 1, r» - R SR -

7= 3N [hefr-l-hﬂ(f)] —e/\{e/\ [hefr+ghﬂ(f)]} ; (5.77)
where € = m/m is a unit vector in the direction of 7 and g = 1 for Eq. (5.20)
while ¢ = 0 for Eq. (5.21). The statistical properties of the dimensionless
fluctuating field Aq (), which arise directly from those of ba(t) [Eqs. (5.19)],
are given by

<hﬂ,k (f)) =0 5 <hﬂ,k(f)hﬂ,£(t7)> = QD(SM(S(E— 7?') ) (5.78)
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where, by using Eq. (5.35) for D and §(t) = 4(t)dt/dt = () /7x, we find for
the dimensionless coefficient D:

_ D A2 kT A2 kT
xkB% 14+ g\ mBg 1+ g)\?2Kv (5.79)

Let us finally cast the dimensionless Eq. (5.77) into the form of the general
system of Langevin equations (5.22):

dei

= =4 Birha k(2 )
5 +; kha k() (5-80)
where k runs over z,y, z, and [cf. Egs. (5.26) and (5.27)]
- 1
A = zk: [X 2]: €ijrej + (dir — €i€k)] het .k (5.81)
_ 1
By, = X ; eijre; + 9(6ik — eiex) - (5.82)

3. The choice of the numerical scheme

As has been mentioned, the stochastic Landau-Lifshitz (—Gilbert) equation
contains multiplicative white-noise terms [Eq. (5.27), or its dimensionless
counterpart (5.82) clearly depend on 7 both for g = 0 and g = 1]. Together
with difficulties at the level of definition, the occurrence of multiplicative
white noise in a Langevin equation entails some technical problems as well.
For instance, serious difficulties arise in developing high-order numerical in-
tegration schemes for this case (Kloeden and Platen, 1995). In general, the
simple translation of a numerical scheme valid for deterministic differential
equations does not necessarily yield a proper scheme in the stochastic case:

(i) Depending on the original deterministic scheme chosen, its naive sto-
chastic translation might converge to an It6 solution, to a Stratonovich
solution, or to none of them.

(ii) Even if there exists proper convergence of the scheme chosen in the con-
text of the stochastic calculus used, the order of convergence obtained
is usually lower than that of the original deterministic scheme.

Let us consider the stochastic generalization of the deterministic Heun
scheme, namely

yit+ At = i) + 5 [Ai(F .t + At + Ai(y, )] At
+ 157 [Bi(§,t + Ab) + B (y, )] AWy, (5.83)
k
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where At is the discretization time interval, y = y(t), the §; are Euler-type
supporting values,

Ji = yi(t) + Ai(y, )AL + Y Bup(y, ) AW, (5.84)
k
and the AW}, = :+Atdt’ Ly (t'") are Gaussian random numbers whose first

two moments are
(AWk) =0, (AWkAWg) = (2DAt)6kg . (5.85)

The Heun scheme converges in quadratic mean to the solution of the general
system of stochastic differential equations (5.22) supplemented by Egs. (5.23),
when interpreted in the sense of Stratonovich (see, for example, Riimelin,
1982).

On the other hand, if one uses the Euler-type Eq. (5.84) as the numerical
integration scheme [by identifying y;(t + At) = §;], the constructed trajectory
converges to the Ito solution of the same system of equations (5.22). A proper
Euler-type scheme in the context of the Stratonovich stochastic calculus is
obtained when the deterministic drift in Eq. (5.84), A;, is augmented by the
noise-induced drift, namely

OBy, ]
8y'7 (¥,%)

yi(t+At) = yi(t)+ [Ai+D > Bj At+ " By, ) AWy , (5.86)
ik k

(for an alternative Euler-type algorithm for multiplicative noise see Ramirez-
Piscina, Sancho and Herndndez-Machado, 1993). In order to use the scheme
(5.86), one needs to calculate the corresponding noise-induced drift. This was
already done yielding Eq. (5.36), which can readily be adapted to the dimen-
sionless Eq. (5.80):

_ _ 9By, 1 kT
D B; = — e = — €;
jzk ik 6€j TN/TK ! Kv B
where Eq. (5.76) has been used to write down the last equality.'®
However, in order to choose the numerical scheme to undertake the inte-
gration of Eq. (5.77), it is convenient to determine first the character of the

180n recalling that in Eq. (5.77) the time is measured in units of 75, one realizes that
the term —(7x /7n)e; corresponds to — (/) /7N in the averaged dynamical equation (5.56).
Indeed, by using (AW} ) = 0 for averaging Eq. (5.86) when particularized to the stochastic
Landau-Lifshitz (—Gilbert) equation, one gets the discretized version of Eq. (5.56).
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multiplicative noise in that equation. When the B;; fulfill the relation
0By 0B, .
B‘k— = B‘g— 5 Vi 5.87

(i-e., symmetry with respect to the subscripts k£ and £), the noise in the Lan-
gevin equations is said to be commutative. The condition of commutative
noise is rather general and includes additive noise, 0B;;/dy; = 0, diagonal
multiplicative noise, B (y,t) = ixBii(y;), and linear multiplicative noise,
Bix(y,t) = Bir(t)y; (see, for example, Kloeden and Platen, 1995, p. 348). In
addition, when Eq. (5.87) is satisfied, the stochastic Heun scheme (5.83) has
an order of convergence higher than the order of convergence of the Euler
scheme (5.86) (see, for example, Riimelin, 1982).

Unfortunately, not only the noise in the stochastic Landau-Lifshitz (-
Gilbert) equation is multiplicative, but is non-commutative as well. Indeed,
on calculating the right-hand side of Eq. (5.87) with By from Eq. (5.27), we
find

1 B 0By,

s ND
A2
t+g— | m€ig —me Z €ijkTMj — M Z EireMy —M; Z EkreMyr
m \ ~—~— .
A J T T
N ~ _ ~——
S A
A 2
2 2
—g9( =) (mmgdic+m*m; dre —2mimpmy)
m N——— N~ N——
ND S

where S, A, and ND, indicate, respectively, symmetry, anti-symmetry, and
not defined symmetry with respect to the subscripts k and £. Therefore, ow-
ing to the presence of these last two types of terms, the commutative noise
condition is mot obeyed by either the stochastic Landau—Lifshitz—Gilbert or
the stochastic Landau-Lifshitz equation.

For non-commutative noise the best order of convergence is attained (Riimelin,
1982) with the Heun scheme (5.83) but also with the simpler Euler algo-
rithm (5.86) or with the scheme of Ramirez-Piscina, Sancho and Herndndez-
Machado (1993). Although the Heun scheme requires the evaluation of 4; and
B;j; at two points per time step (at the initial and support ones), we have cho-
sen it to integrate the stochastic Landau-Lifshitz (—Gilbert) equation. This is
done because:
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(i) The Heun scheme yields Stratonovich solutions of the stochastic differ-
ential equations naturally, without alterations to the drift term.

(ii) The deterministic part of the differential equations is treated with a
second-order accuracy in At, which renders the Heun scheme numeri-
cally more stable than the Fuler-type schemes.

We finally emphasize that, in order to integrate the stochastic Landau—
Lifshitz (—Gilbert) equation numerically one cannot merely employ a bare
Euler-like scheme like (5.84), since this scheme yields It6 solutions of the
differential equations. Even the stationary properties derived by means of
such an approach would not coincide with the correct thermal-equilibrium
properties [recall the discussion after Eq. (5.37)].

4. Implementation

The integration of the stochastic Landau-Lifshitz (-Gilbert) equation is per-
formed by starting from a given initial configuration, and updating recursively
the state of the system, 7i(t) — 7i(t + At), by means of the set of finite-
difference equations (5.83). This generates stochastic trajectories from which,
when required, averages are directly computed. If one extrapolates the results
obtained to zero discretization time interval At, the only error in the averaged
quantities is a statistical error bar that can, in principle, be made arbitrarily
small by averaging over a sufficiently large number of trajectories. We usually
not carry out such At — 0 limiting procedure, but we employ a discretization
time interval small enough. Unless otherwise stated, the choice At = 0.017x
is made.

When computing average quantities, in order to minimize effects that are
not caused by the application of the probing field AB(t), the following sub-
traction method is used. Starting from the same initial configuration, the
equations of motion are solved for two identical ensembles, one in the pres-
ence of AB(t) and the other subjected to —AB(t), and the time evolution
analyzed is that of

My (t) = L {3 m[AB0)] - S [ - AB®)]} .

Moreover, we have found that this technique significantly diminishes the num-
ber of stochastic trajectories required to achieve convergence in the averaged
results. On the other hand, the subtraction technique automatically eliminates
the non-linear terms quadratic in the probing field that could emerge.
Finally, the Gaussian random numbers required to simulate the AW}, en-
tering in the above schemes, are constructed from uniformly distributed ran-
dom numbers by means of the Box—Muller algorithm. Thus, if r; and ry are
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random numbers uniformly distributed in the interval (0, 1) (as those pseudo-
random numbers provided by a computer), the transformation

wy —21n(ry) cos(27rs)
we = +/—2In(ry)sin(27rs) ,

outputs w; and ws, which are Gaussian-distributed random numbers of zero
mean and variance unity (if one needs Gaussian numbers with variance o2,
these are immediately obtained by multiplying the above w; by o). Owing to
the fact that the generation of the random numbers is the slowest step in the
recursive scheme, when computing an averaged quantity at various tempera-
tures we generate all the trajectories at once, by using the same sequence of
random numbers for the different temperatures.

V.E Stochastic trajectories of individual spins

We shall now study the T' # 0 dynamics of individual magnetic moments. To
this end, we shall integrate the stochastic Landau-Lifshitz—Gilbert equation
(5.20) numerically in the context of the Stratonovich calculus, by means of
the stochastic generalization (5.83) of the Heun scheme. If one wishes to have
a reference of the time scales involved, one can assume values like those of Eq.
(5.73), so that 7 ~ 10719-10"8s.

1. The over-barrier rotation process

Figure 23 displays the projection of the trajectory of a magnetic moment
with the simplest axially symmetric anisotropy onto selected planes. No mag-
netic field has been applied, so the graphs show the (in this sense) “intrinsic”
dynamics.

The projection of 77i(t) onto a plane containing the anisotropy axis 7 (defin-
ing the Z direction in Fig. 23), corresponds to a typical stochastic trajectory
that starts close to one of the potential minima (7 = m2) and, after some
irregular rotations about it, reaches the potential-barrier (equatorial) region,
where it wanders for a while, and eventually descends to the other potential
minimum. Concerning the projection of this motion onto a plane perpendic-
ular to the anisotropy axis, we have only shown the first stages, after the last
potential-barrier crossing, of the damped precession of M about the anisotropy
field when spiralling down to the bottom of the m, < 0 potential well.

These graphs reveal the important role of the gyromagnetic terms in the
stochastic dynamics of the magnetic moment. Thus, the projection of 7i(t)
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FIGURE 23. 2D projections of mi(t), as determined by integration of the stochastic
Landau-Lifshitz Eq. (5.20). The anisotropy energy is —AU(m./m)?, no field is
applied, and the damping coefficient is A = 0.1. Upper panel: Projection onto a plane

containing the anisotropy axis. Lower panel: Projection onto the plane perpendicular
to the anisotropy axis of the first stages of the damped precession down to the

—

m = —mZ potential minimum, after the last barrier crossing.

onto the equatorial plane shows some of the typical irregular features of or-
dinary Brownian motion, although the rotary character is clearly exhibited.
Concerning the projection of 7i(t) onto a plane containing the anisotropy
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axis, it can clearly be seen that crossing the potential barrier does not entail
an immediate descent to the other potential minimum, but the gyromagnetic
terms together with an appropriate sequence of fluctuating fields can produce
a rapid crossing back to the initial potential well.

For an ordinary, non-gyromagnetic system, i.e., a mechanical system with
inertia, the inertia guarantees that, unless the system reaches the potential
barrier with zero velocity, it will descend to the other potential well with a
large probability. Moreover, the forces, after the potential-barrier crossing,
accelerate the system downward. In contrast, in the gyromagnetic case the
dynamics is “non-inertial” (the equations of motion are of first order in the
time). Besides, the anisotropy field B, = (Bx /m)m.2 indeed drives 17 down
to the bottom of the potential well, but this is effected via a damped precession
about the anisotropy axis. Moreover, the effective precession “frequency” of
this motion wes o< M, is initially rather low because the anisotropy field is low
in the potential-barrier region (m, ~ 0). Consequently, in the beginning of the
spiraling down after a potential-barrier crossing, the magnetic moment rotates
(say, along a parallel of latitude) quite slowly not far from the potential-
barrier, so that an appropriate sequence of fluctuations can drive it back to
the initial potential well.

What is shown in Fig. 23 is precisely a multiple occurrence of this phenom-
enon; more than 10 potential-barrier crossings can be identified in the overall
excursion between the two potential minima. Besides, the magnetic moment
might also have eventually fallen into the original potential well. As will be
shown below, none of these processes is infrequent. The physical acumen of
Brown (1959) is noteworthy since, on considering the gyromagnetic nature of
the dynamics, he posed the possible occurrence of this kind of phenomena in
his criticism of the calculation of Néel (1949) of the relaxation time as the
inverse of the rate of equatorial crossings of the magnetic moment.

2. The effect of the temperature

In order to assess the effect of the temperature on the dynamics of the mag-
netic moment, we have displayed in Fig. 24 some typical time evolutions of
the projection of 7% onto the anisotropy axis.

As can be seen, at low temperatures (panel kgT /AU = 0.12), the dy-
namics merely consist of the rotations of the magnetic moment close to the
bottom of the potential wells (intra-potential-well relaxation modes), with the
over-barrier relaxation mechanism being “blocked.” As the temperature is in-
creased, the magnetic moment can effect over-barrier rotations at the expense
of the energy gained from the heat bath, and a number of them do occur dur-
ing the displayed time interval (panels kgT/AU = 0.18 and 0.28). Finally, at
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FIGURE 25. The same as in panel kg7 /AU = 0.4 of Fig. 24, but the trajectory
has also been plotted with a larger sampling time interval.

1.5



ON THE STATICS AND DYNAMICS OF MAGNETOANISOTROPIC NANOPARTICLES 136

higher temperatures (panel kg7 /AU = 0.4), the magnetic moment effects a
considerable number of over-barrier rotations during the observation time in-
terval, exhibiting almost the thermal-equilibrium distribution of orientations.

The curves of Fig. 24 resemble those of the experiments of Wernsdorfer
et al. (1997) on individual ferromagnetic nanoparticles (see Fig. 6 in that ref-
erence). Furthermore, if the same trajectory is plotted with a larger sampling
time interval, in order to mimic the finite resolution time of a measuring de-
vice, the resemblance is more apparent, since the curves then have less and
wider angles (Fig. 25). (Recall that the strong dependence of the appearance
of the time evolution curves on the sampling period is a typical feature of the
stochastic dynamics.)

Note finally that in Fig. 24 a number of potential-barrier crossings followed
by a rotation back to the original potential well can be identified (marked with
small circles): one for kgT /AU = 0.18; three for kgT/AU = 0.28, the one
occurring at ~ 360t¢/7x being a double crossing-back; and about seven for
kT /AU = 0.4 (not marked for the sake of clarity). It is also to be noted that
an apparent single (or double) crossing-back can be multiple instead. Indeed,
when the about 10 potential-barrier crossings of Fig. 23 are represented as m,
vs. t, they seem to be a mere double crossing-back of the potential barrier.

3. Projection of the magnetic moment onto the direction of a prob-
ing field

It is also illuminating to show the projection of the trajectories of individual
spins onto the direction of a probing field AB(t) = AB cos(wt). Figure 26
shows this kind of trajectories in the intermediate temperature range.

The projection onto the anisotropy axis direction (AB || 2) exhibits, as in
the corresponding case of Fig. 24, a well resolved bistability, and 7 “jumps”
from one well to the other a number of times during a cycle of the probing
field. Similar features are encountered when a longitudinal bias field is also
applied, the main difference being that the lower potential well is less fre-
quented by the magnetic moment. In contrast, the features of the stochastic
trajectory obtained by projecting 7i(t) onto a direction perpendicular to the
anisotropy axis (AB 1 %) are markedly different (for example, this projection
corresponds to plotting the trajectory of the upper panel of Fig. 23 as m vs.
t). Here, the response is dominated by the fast (~ 7x) intra-potential-well re-
laxation modes, and the transverse projection is a highly irregular sequence of
sharp peaks. Finally, the projection of mi(t) onto AB making an intermediate
angle with the anisotropy axis (7/4 for the displayed curve), shows the mag-
netic bistability of the longitudinal projection, but the fast intra-potential-well
motions are superimposed on it. This leads to a less well-resolved magnetic
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FIGURE 26. Projection onto the direction of a probing field AB(t) = AB cos(wt)
of m(t), as determined by numerical integration of the stochastic Landau-Lifshitz—
Gilbert equation (5.20). The magnetic-anisotropy energy is —AU(m,/m)? and all
the results are for kg7 /AU = 0.2 and A = 0.1. The displayed time interval cor-
responds to a complete cycle of the oscillating field (wrk /27 = 0.0025). In the
longitudinal probing field case, results in the presence of a longitudinal bias field are
also shown.

bistability.

Note finally that curves like those of Fig. 26 are the ones “analyzed” by the
probing field in a dynamical “measurement.” Recall also that the application
of the oscillating field hardly changes the overall features of the curves from
the free evolution ones. This is naturally so, since one applies a low enough
field in order to probe the intrinsic dynamics of the system.

V.F Dynamical response of the ensemble of spins

Keeping Figs. 24-26 in mind, we shall undertake the study of the dynamical
response of an ensemble of classical magnetic moments. As a suitable probe of
the intrinsic dynamics of the system, we shall compute the linear dynamical
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susceptibility, x(w), as a function of the temperature for various frequencies
and orientations of an external probing field AB(t) = AB cos(wt).

We compute the dynamical response for ensembles of 1000 magnetic mo-
ments. We integrate numerically the stochastic Landau-Lifshitz—Gilbert equa-
tion of each spin by means of the stochastic Heun scheme (5.83), and analyze
the time evolution of the total magnetic moment of the ensemble; the results
for the dynamical susceptibility have typically been averaged over 50-100 cy-
cles of the oscillating field. In addition, in order to reduce the statistical error
bars, we apply at each T the largest probing field without leaving the equilib-
riwm linear response range (specifically, we scale the amplitude of the probing
field with the temperature according to mAB = 0.3kgT).

The damping coefficient, A, the magnetic-anisotropy potential barrier,
AU = Kw, and the magnitude of the magnetic moment, m, are assumed
to be the same for each spin. For non-interacting entities the effects of a dis-
tribution in these parameters, as typically occurs in nanoparticle ensembles,
could be taken into account by an appropriate rescaling and summation of
the so-obtained results.

In all the figures which follow, the linear susceptibilities are measured
in units of pom/Bx = pom?/2Kw [the transverse equilibrium susceptibility
per spin at zero temperature in the absence of a bias field; see Eq. (3.82)].
Furthermore, when the statistical error bars of the numerical results are not
shown, their size is, at most, that of the plotted symbols. Finally, in order
to have a reference of the discussed time scales, we can use the values of
Eq. (5.73), so that 75" ~ 108-10'°s~! and the frequencies employed below
(wTk /2m ~ 1073-10"2) are then in the MHz range.

1. Dynamical response in the absence of a bias field

We shall first study the response of the spin ensemble in the absence of a
constant external field.

a. Longitudinal response. Figure 27 displays the results for the longi-
tudinal linear dynamical susceptibility vs. the temperature for an ensemble of
magnetic moments with parallel anisotropy axes (AB || 2). No bias field has
been applied and a damping coefficient A = 0.1 has been used.'®

At low temperatures, the longitudinal relaxation time obeys the condi-
tion 7 > 27 /w [tm(w) = 27/w is the dynamical measurement time]. Conse-

19Recall that, because of the axial symmetry considered, the effect of A on the averaged
quantities merely enters via the Néel time 7y = o7k [see the discussion after Eq. (5.47)].
Because we measure the time in units of 7x, the results presented for the longitudinal
response are independent of the A used.
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FIGURE 27. Longitudinal linear dynamical susceptibility x; vs. T in the absence
of a bias field. The symbols are for the numerically computed x| (w,T) and the thin
solid lines are Eq. (4.2) with 7| defined as integral relaxation time [Eq. (5.66)]. The
heavy solid line in the upper panel is the thermal-equilibrium susceptibility [Eq.
(3.53)]. Inset: Modulus and phase shift ¢ = arctan(x”/x’) for wrk /27 = 0.0025.

quently, during a large number of cycles of the probing field, the probability
of over-barrier rotations is almost zero; the response consists of the rota-
tions of the magnetic moments close to the bottom of the potential wells
(see the panel kgT /AU = 0.12 of Fig. 24), whose averaged (over the ensem-
ble) projection onto the probing-field direction is quite small (but non zero;
see the enlargement of the low-temperature range in Fig. 32). Moreover, as
these intra-potential-well relaxation modes are very fast (~ 7x), this small
response is in phase with the probing field [see the low-T" part of the phase
shift ¢ = arctan(x”/x') in the inset of Fig. 27].
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As the temperature is increased the magnetic moments can depart from
the potential minima by means of the energy gained from the heat bath. Con-
sequently, at a w-dependent temperature (kgT'/Kv ~ 0.1-0.2 for the frequen-
cies employed), it emerges a small probability of surmounting the magnetic-
anisotropy potential barrier during a number of cycles of the probing field
(this corresponds to the panel kgT /AU = 0.18 of Fig. 24). Accordingly, the
averaged response starts to increase steeply with 7. However, as the ther-
mally activated response mechanism via over-barrier rotations is not efficient
enough at these temperatures, the signal exhibits a considerable lag behind
the probing field (see the inset of Fig. 27). This is also reflected by the occur-
rence of a sizable out-of-phase component of the response Xﬁ (T) (in fact, the
response is mainly “out of phase”).

At higher temperatures, the mechanism of over-barrier rotations becomes
increasingly efficient (panel kg7 /AU = 0.28 of Fig. 24). Consequently, after
exhibiting a maximum, the phase shift starts to decrease, whereas the mag-
nitude of the response still increases steeply with T' (see the inset of Fig.
27). However, if the temperature is further increased, the very thermal ag-
itation, which up to these temperatures was responsible for the growth in
the magnitude of the response, reaches a level that: (i) efficiently produces
over-barrier rotations, allowing the magnetic moments to approximately re-
distribute according to the instantaneous probing field, but, simultaneously,
(ii) disturbs sizably the alignment of the magnetic moments in the probing-
field direction. Consequently, at a temperature above that of the phase max-
imum (kgT/Kv ~ 0.2-0.3 for the frequencies considered), the magnitude of
the response has a maximum and starts to decrease with increasing 7. The
frequency-dependent temperature at which this maximum occurs is called the
blocking temperature.

Finally, at still higher temperatures (kgT/Kv > 0.3-0.5 for the frequencies
considered) the inequality 7 < 27/w holds. Thus, in comparison with 7'”_1,
the rate of change of the probing field is quasi-stationary. Consequently, the
magnetic moments can quickly redistribute according to the conditions set by
the instantaneous probing field, almost being in the thermal-equilibrium state
associated with it (panel kgT /AU = 0.4 of Fig. 24). Then, the X1I (T) curves
corresponding to different frequencies sequentially superimpose on the linear
equilibrium susceptibility, x| (7"), and, correspondingly, Xill (T') goes to zero.

The occurrence of a frequency-dependent maximum in the response of a
noisy non-linear multi-stable system to a periodic stimulus as a function of
the noise intensity, is one of the features usually accompanying stochastic res-
onance. In this spin-dynamics case, the maximum in the magnitude of the
dynamical response as a function of 7' can be understood in terms of the
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FIGURE 28. Transverse linear dynamical susceptibility x1 vs. T for the frequen-
cies wtk /27 = 0.001, 0.0025, and 0.005. The damping coefficient is A = 0.1. Results
in the unbiased case (B = 0) and in the presence of the longitudinal bias fields
B/Bg = 0.1 and 0.2 are shown (for w7tk /2w = 0.005 only). The heavy solid lines
are the equilibrium susceptibilities [Eq. (3.70)]. X', (circles) and x'| (rhombi) have
intentionally been plotted with the same scale to show the relative smallness of the
latter.

quoted two-fold réle played by the temperature: (i) activating the dynamics
of over-barrier rotations, enabling the spins to (statistically) follow the instan-
taneous field, but, (ii) provoking the thermal misalignment of the spins from
the driving-field direction. The maximum in the response as a function of T’
emerges as a result of the competition between these two effects.

b. Transverse response. We shall now study the transverse dynamical
response of an ensemble of magnetic moments with parallel anisotropy axes
(AE L 2). Figure 28 displays the transverse dynamical susceptibility for var-
ious frequencies of the probing field (curves labelled 1; results in the presence
of a bias field, to be discussed below, are also shown).

For this transverse probing-field geometry, the mechanism of inter-potential-
well rotations plays a secondary dynamical role, since it mainly pertains to
the components of the magnetic moments perpendicular to the probing field,
whereas the response in the probing-field direction is the one analyzed. This
consists of intra-potential-well rotations, which are very fast (~ 7x) in com-
parison with ¢, = 2m/w (see the panel m, vs. t of Fig. 26). Consequently, the
dynamical susceptibilities obtained are close to the equilibrium susceptibil-
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ity in the whole temperature range. Indeed, the x', (T') curves corresponding
to different frequencies are very close to one another (they visually coincide)
and almost describe the equilibrium susceptibility x (T') (heavy solid line),
while the out-of-phase component x| (T') is small. Furthermore, x'| is not only
small in comparison with x| but it is also much smaller than the out-of-phase
longitudinal susceptibility Xi\l (cf. Fig. 27). Nevertheless, x| provides an in-
teresting information concerning the dynamics of 771, which will be discussed
below.

For the transverse response, the maximum of x| vs. T is due to the
crossover from the free-rotator regime (¢ = Kv/kgT < 1) to the discrete-
orientation regime (¢ > 1), induced by the bistable magnetic-anisotropy po-
tential. This is essentially a thermal-equilibrium effect (see Subsec. IIL.D),
with a markedly different character from the dynamical maxima exhibited by
the longitudinal susceptibility x| (w,T).

c. Response for anisotropy axes distributed at random. Owing to
the linearity of the response, when a distribution in anisotropy axis orienta-
tions occurs, x(w) in the absence of a bias field is merely given by the weighted
sum of the longitudinal and transverse dynamical susceptibilities, the weight
factors being (cos?a) and (sin’a), respectively. Here, a is the angle between
the anisotropy axis and the probing field, and the angular brackets enclosing
functions of a or susceptibilities, stand for average over the anisotropy axis
distribution of an ensemble with the same parameters A, AU = Kv, and m.

The linear dynamical susceptibility for anisotropy axes distributed at ran-
dom ((cos?a) = (sin’a)/2 = 1/3) is displayed on Fig. 29. The out-of-phase
component, (x"),.., is overwhelmingly dominated by the responses to the
components of the probing field along the different anisotropy axes, and it
is almost %Xh’ (w,T) (cf. Fig. 27). On the other hand, the in-phase compo-

nent, (x') is approximately %Xfl (w,T) plus a non-uniform upwards shift

ran’
of magnitude % x.L(T), where x| (T) is the equilibrium transverse susceptibil-
ity. This occurs in such a way that: (i) at high temperatures, the Curie law
(X)yan |B=0 = pom?/3ksT is obeyed (see Subsec. IIL.D) and, (ii) at temper-
atures well below the blocking temperatures, the response consists mainly of
the projection in the probing field direction of the rotations of the magnetic
moments close to the bottom of the potential wells towards the transverse
components of the probing field (2x1|r~o0). Due to the short characteris-
tic time of these intra-potential-well motions (~ 7x; see Fig. 26), this low-
temperature response is nearly instantaneous and in phase with the probing
field (see the inset of Fig. 29).

Note that the large value of the effective 79 (~ 10781077 s) in the Arrhe-
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FIGURE 29. Linear dynamical susceptibility vs. T for anisotropy axes distributed
at random, B = 0, and A = 0.1. The symbols are for the numerically computed
(X),an and the thin solid lines are Eq. (4.2) with 7, defined as integral relaxation
time [Eq. (5.66)], and 7, given by the effective transverse relaxation time (5.71).
The heavy solid line in the upper panel is the thermal-equilibrium susceptibility [Eq.
(3.55)]- Inset: Modulus and phase shift ¢ = arctan(x”/x’) for wrk /27 = 0.0025.

nius law 7 ~ 79 exp(AU/kgT), encountered in molecular magnetic clusters
having high spin in their ground state, entails that experimental conditions
with w/27 ~ 103-10* Hz already correspond to the frequency range consid-
ered here (the MHz range if 7 ~ 10710-10785). Indeed, these systems clearly
exhibit the qualitative features of the linear dynamical susceptibility found
at “high” (but below ferromagnetic resonance) frequencies: wide maxima in
X(w,T) vs. T for only one potential barrier (relaxation time), sizable x'(T')
at temperatures well below the blocking temperatures, and flattening of the
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peak of x"(T) with increasing w (Barra et al., 1996; Gomes et al., 1998).

2. Dynamical response in a longitudinal bias field

We shall now study the effects of a constant magnetic field, B , applied along
the common anisotropy axis direction of a spin ensemble with parallel aniso-
tropy axes (B || 2).

a. Longitudinal response. Figure 30 displays the longitudinal (AB ||
2| E) linear dynamical susceptibility of the system for various values of the
bias field. The qualitative features of the susceptibility curves are similar to
those encountered in the unbiased case (B = 0), and can be interpreted in
terms of the same processes:

(i) At low temperatures the response consists of the fast rotations of the
magnetic moments close to the bottom of the potential wells, with the
over-barrier relaxation mechanism being blocked.

(ii) As T is increased the magnetic moments can depart from the potential
minima by means of the energy gained from the heat bath, and the
response starts to increase steeply with T' (with a sizable lag behind the
probing field).

(iii) If T is further increased the system reaches the regime dominated by
inter-potential-well rotations, exhibiting dynamical maxima first in the
phase shift and subsequently in the magnitude of the response.

(iv) In the high-temperature range, the magnetic moments are almost in
the thermal-equilibrium state associated with the instantaneous probing
field and, hence, Xil (T, B) approaches to the linear equilibrium suscep-

tibility while Xil’ (T, B) tends to zero.

Thus, the dynamics is qualitatively similar to the dynamics in the unbiased
case, the main difference being that the system now consists of bistable non-
symmetrical entities (recall the panel B/Bg = 0.1 of Fig. 26).

We remark in passing that the simple idea that the application of a con-
stant magnetic field reduces the potential barriers, so that the relaxation rate
increases and the blocking temperatures shift to lower temperatures, should
be viewed with caution. The location of the maximum of the dynamical re-
sponse do depend on the potential-barrier heights, but also on the form of the
equilibrium response, which is markedly different from that of the unbiased
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FIGURE 30. Longitudinal dynamical susceptibility x; vs. T, for A = 0.1,
wTk /2 = 0.005, and various values of the longitudinal bias field. The symbols
are for the numerically computed x| (w, T, B) and the thin solid lines are Eq. (4.2)
with 7 defined as integral relaxation time [Eq. (5.66)]. The heavy solid lines in the
upper panel are the corresponding equilibrium susceptibilities [Eq. (3.70)]. Inset:
Modulus and phase shift ¢ = arctan(x”’/x’) for B/Bx = 0.1.

case.? Indeed, for the frequencies and bias fields considered, the location of
the maxima of x“’ (T) is not very sensitive to the bias field, while the maxima
of Xfl (T") shift slightly to higher temperatures as B increases.

20In a bias field, because x”(T, B) is the slope of the magnetization vs. field curve at B,
instead of the initial slope of the unbiased case, the equilibrium response already exhibits
a maximum as a function of T' (see Subsec. ITL.D).
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b. Transverse response. We shall finally consider the transverse dynam-
ical response in the presence of a longitudinal bias field (AB 1 2 || B). Figure
28 also displays x vs. T for various values of the bias field at w7k /27 = 0.005
(curves labelled 2 and 3). The qualitative features of the response are again
similar to those encountered in the unbiased case:

(i) The mechanism of inter-potential-well rotations plays a minor dynamical
role, with the response being dominated by the fast intra-potential-well
rotations.

(ii) The x' (T, B) curves obtained are rather close to the corresponding
equilibrium susceptibilities (heavy solid lines).

(iii) x'L(T, B) is small in comparison with both x/, (T', B) and x|/(T, B).

3. Comparison with different analytical expressions

We shall now compare the linear dynamical susceptibility, obtained by nu-
merical integration of the stochastic Landau-Lifshitz—Gilbert equation, with
the heuristic models discussed in Subsec. IV.B and rigorous expressions. In
this comparison no adjustable parameter will be employed.

We shall sometimes use the word ezact when referring to the numerically
computed quantities. Along with the feasible diminishing of the statistical
error bars of the computed quantities by averaging over a sufficiently large
number of trajectories, we also implicitly mean that the numerical results are
exact in the context of the Brown-Kubo-Hashitsume stochastic model.

a. Longitudinal response. Figure 31 shows the computed x| (w) in the
unbiased case and in the bias field B/Bg = 0.1. The results of the heuristic
discrete-orientation equation (4.5); Gittleman, Abeles, and Bozowski model
[Eq. (4.2) with the approximate Eq. (3.85)]; and Shliomis and Stepanov equa-
tion (4.2) are also shown. The longitudinal relaxation time, 7, defined as the
integral relazation time Ting, has been used in the three equations.

It is apparent that Eq. (4.5) fails to describe the numerical results; nei-
ther is the equilibrium (high-temperature) susceptibility properly described.
Actually, the overall failure of this expression could mainly be attributed to
the rough approximation used for its equilibrium part [Eq. (3.87)]. The prob-
ability that m makes a finite angle with the anisotropy axis is completely
neglected in such a discrete-orientation equation.

Concerning the Gittleman, Abeles, and Bozowski equation, it is more suit-
able than the discrete-orientation equation, especially for the matching of
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FIGURE31. x| vs. T for B = 0 and B/Bk = 0.1 with w7k /27 = 0.005 (symbols).
The small dashing is for Eq. (4.5), the medium dashing for Eq. (4.2) with the
approximate Eq. (3.85), and the solid lines for Eq. (4.2). 7 defined as integral
relaxation time [Eq. (5.66)] has been incorporated in the three equations.

x||(T, B), although it fails to describe x| (T, B). Again, not even the equi-
liLrium susceptibility is correctly described; the high-barrier approximation
for x| (T, B) occurring in this model [Eq. (3.85)], although better than the
discrete-orientation approximation, is still not accurate enough at the rele-
vant temperatures. Furthermore, for bias fields B/Bg 2, 0.15, the divergence
of this model from the exact results becomes dramatic (results not shown).
In contrast, Eq. (4.2) approximates the numerical results reasonably. This
is in agreement with the comparison carried out by Raikher et al. (1997) of
the exact x| (w) with what they called the “effective time approximation”
[which is indeed equivalent to the use of the longitudinal component of Eq.
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(4.2) with 7 = 7in]. Nevertheless, the exact analytical expression for | (w)
comprises an infinite number of Debye-type relaxation mechanisms, namely
(see Appendix B)

> ax(T, B)

x| (w, T, B) :XII(T’B); T+ iw/A(T,B) ’

(5.88)

where ay, is the amplitude corresponding to the eigenvalue Ay of the Sturm—
Liouville equation associated with the Fokker—Planck equation. (Recall that
the first non-vanishing eigenvalue, A1, is associated with the inter-potential-
well dynamics, whereas the higher-order eigenvalues, Ag, k > 2 are related
with the intra-potential-well relaxation modes.) However, the mentioned agree-
ment could be expected in the unbiased case since, as was shown numeri-
cally by Coffey et al. (1994): (i) a1(B = 0) > ax(B = 0), Vk > 2 and (ii)
AT (B = 0) ~ Tine (B = 0). Indeed, Coffey, Crothers, Kalmykov and Waldron
(1995b) shown that an expression equivalent to the longitudinal component
of Eq. (4.2), together with the interpolation formula (5.63) for AT", well de-
scribes the longitudinal dynamical polarisability of the congeneric nematic
liquid crystal with (unbiased) Meier-Saupe potential. (The longitudinal relax-
ation in this system is mathematically identical with that of classical magnetic
moments.) On the other hand, in a constant longitudinal field the higher-
order modes can make a substantial contribution in the low-temperature region
(o0 > 1),and then A; L largely deviates from 7, while a; >> a no longer holds
(Coffey, Crothers, Kalmykov and Waldron, 1995a; Garanin, 1996). Neverthe-
less, for the frequencies employed here, the relevant dynamical phenomena
occur in the range o ~ 2-10, so that in the bias fields applied a; > a; and
A7 ~ 7y still hold approximately, and hence Eq. (4.2) describes the exact
results reasonably.

However, one could expect, even for B = 0, a significant contribution of
the intra-potential-well relaxation modes to the longitudinal response when
the over-barrier dynamics is blocked at low T' (w/A; > 1). Indeed, on scru-
tinizing Figs. 27 and 30, one sees that Eq. (4.2) predicts, both for B = 0
and B # 0, a smaller Xfl when departing from zero at temperatures well be-
low the blocking temperatures than the exact Xfl' In contrast, because the
intra-potential-well modes are very fast (~ 7x), their contribution to the out-
of-phase susceptibility is comparatively smaller, so that x| is still described
reasonably by the Debye-type term associated with the inter-potential-well
dynamics (x| ~ x| (w/A1)/[1 + (w/A1)?)).

These considerations are substantiated by comparing the numerical results
with the asymptotic (¢ > 1) expression for the longitudinal dynamical sus-
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ceptibility of the nematic liquid crystal derived by Storonkin (1985), namely

pom? 1 3 1 1 1 1
X| = - |l t+t = +
kgT o 402 1+iw/A1 802 1+iw/A3 1+iw/A5 ’

~ /

inter-potent;;l-well mode intra-potenti‘a,rl-well modes
(5.89)
where [cf. Eq. (5.62) at B = 0]
-1 VT 5 1 7

AT =~ NGO /2 exp(o) (1 + p + m) , (5.90)

— — 1 ™ 5 41
AP~ A~ (14 = —) . 91
3 5 20 ( 20 + 402 (5:91)

Note that (uom?/ksT)(1 -1/ — 3/40?) ~ x| (T) + O(1/0?) [see Egs. (3.53)
and (A.29)], while the correction terms in A" agree with those derived by
Brown (1979) (see also Cofley et al., 1994). Figure 32 shows that Eq. (5.89)
remarkably describes the B = 0 numerical results at low temperatures. Note
that, because Azs ~ 7n/0 = 7k [Eq. (5.76)] and wrx < 1 for the fre-
quencies considered, it follows that 1/(1 + dw/As5) ~ 1 — iw/A3 5. There-
fore, since (uom?/kgT) x (1/802) o kgT, Storonkin formula (5.89) yields
the low-temperature linear increase of Xil with T due to the intra-potential-

0.5
] X'” X“(T,B)
Storonkin

0.5
11-B=0
]2-BB=0.1

FIGURE 32. Detail of the low-temperature part of Fig. 31 showing the effect of
the intra-potential-well relaxation modes. The heavy solid line is the equilibrium
susceptibility for B/Bgk = 0.1, the thin solid lines are for Eq. (4.2), and the dashed-
dotted lines for the asymptotic result (5.89) by Storonkin (for B = 0 only). The
out-of-phase components of Egs. (4.2) and (5.89) visually coincide.
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well relaxation modes, whereas their contribution to xﬂ’ is smaller by a factor
w/A3,5 ~ WTK.

Furthermore, the intra-potential-well relaxation modes take a dramatic
reflection in the phase shifts (Raikher and Stepanov, 1995b). As any expression
of the form x(w) = x/(1 + iwt) (Debye-type), the longitudinal component of
Eq. (4.2) yields a phase shift

¢|| = arctan(wT”) . (5.92)

which increases monotonically with decreasing T' and, eventually, reaches 7 /2
since at low temperatures wr) > 1 (see the insets of Figs. 27 and 30). How-
ever, owing to the fact that the fast intra-potential-well relaxation modes
yield an almost instantaneous contribution to the response, Xfl decreases with
T less steeply than x);/[1 + (w /A1)?] at low temperatures, whereas xfl’ is still
approximately given by x|(w/A1)/[1 + (w/A1)?]. Consequently, the actual
phase shift (insets of Figs. 27 and 30), also increases monotonically With de—
creasing T but, at a temperature close to that of the peak of x ), & (T
exhibits a mazimum and then decreases to zero, since at low T’ t e response
is again “in phase” with the probing field due to the fast intra-potential-well
modes. This behavior of the phase shift is qualitatively similar to that en-
countered in one-dimensional bistable systems (Morillo and Gémez-Ordéiiez,
1993) and ascribed to the crossover from the “high-noise” regime, dominated
by inter-potential-well jumps, to the “low-noise” regime, dominated by the
fast intra-potential-well motions.

Concerning the phase behavior for non-collinear situations, we must bear
in mind that the intra-potential-well motions make a relative contribution
to the transverse response much larger than to the longitudinal response.
Therefore, as the former contribution is somehow taken into account by Eq.
(4.2), via the equilibrium transverse susceptibility, we find that, inasmuch as
{cos?a) departs from unity, the Shliomis and Stepanov equation describes the
low-temperature phase shifts reasonably well (cf. the inset of Fig. 27 with that
of Fig. 29). We finally remark that, because the intra-potential-well relaxation
modes are very fast and, thus, xil' is reasonably described by Eq. (4.2), while
X'l is relatively small, the theoretical background of the methods of determi-
nation of the energy-barrier distribution of Section IV that are based on the
use of the out-of-phase component of the low-frequency equation (4.3), result
to be supported in the context of the Brown—-Kubo-Hashitsume stochastic
model.

b. Transverse response. Figure 33 displays the corresponding compar-
ison for x (w) in the unbiased case for various values of the damping coeffi-
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FIGURE 33. Upper panel: x1 vs. T for B = 0, wrk /27 = 0.005, and various
values of the damping coefficient A. The circles are for X/, , and the rhombi for x'| .
The medium dashed line corresponds to the constant ', given by Eq. (4.4) and
the solid lines to Eq. (4.2) with 7, given by the effective transverse relaxation time
(5.71). The heavy dashed curve is x| with 7, given by the A >> 1 result (5.69).
Lower panel: Detail of x| in the intermediate-to-weak damping range together with
the exact zero-damping formula (5.93) (dashed-dotted lines).

cient.?! For the transverse relaxation time, 7, , we have employed the effective
relaxation time (5.71), which has been derived (Appendix B) from the low-
frequency expansion of the equation for x (w) of Raikher and Shliomis (1975;
1994).

For the transverse probing-field geometry, the discrete-orientation formula
(4.5) predicts obviously an identically zero response, while the Gittleman,
Abeles, and Bozowski formula yields a constant x', (T') and a zero x| (T). In
contrast, the exact x/, (T') is well described by Eq. (4.2), although, because

21Tn the cases with larger damping coefficients, A = 0.5 and 2, we have used a dis-
cretization time interval At = 0.00257k in the numerical integration of the stochastic
Landau—Lifshitz—Gilbert equation, instead of the value At = 0.017x used in the rest of this
Section.
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wri < 1 holds in the considered frequency range, x', (T') almost coincides
with the equilibrium susceptibility x . (7). Concerning x'| (T'), Eq. (4.2) with
the effective expression (5.71) for 7, only matches the out-of-phase response
in the low-temperature range for the smallest damping coefficient considered
(A = 0.1). Nevertheless, Fig. 33 shows that, as the damping coefficient is
enlarged, the matching between the numerical results and the simple Eq. (4.2)
improves if one uses the effective 7 proposed [Eq. (5.71)]. This constitutes
an advance over the usual approach, where one employs the 7, derived by the
effective-eigenvalue method [Eq. (5.68)], which yields the heavy dashed curve
of Fig. 33 irrespective of A.

The above comparison is in agreement with that made by Kalmykov and
Coffey (1997) of their numerical results, obtained by continued-fraction tech-
niques, with the complete (but approximate) expression for x, (w) of Raikher
and Shliomis (1975; 1994).22 The failure of this expression for weak damping
was explained in terms of the effects of the gyromagnetic terms of the dynam-
ical equation. When these terms dominate (A < 1), due to the occurrence of
a spread of the precession frequencies of 7 in the anisotropy field at inter-
mediate temperatures (these frequencies are x YBgm,), the response is not
well described by a simple relaxation mechanism. Then, only at low temper-
atures, where the magnetic moments are concentrated close to the bottom of
the potential wells (so the spread in precession frequencies is reduced), the
exact results are well described by the x (w) of Raikher and Shliomis.

The effects of the spread of the precession frequencies of 7 in the aniso-
tropy field had already been investigated by Gekht (1983) and independently
by Garanin, Ishchenko and Panina (1990). They derived the ezact expression
for x| (w, T, B) in the A — 0 limit, which accounts for the effects of the phe-
nomenon discussed (the former author employed a Liouville approach while
the latter ones started from the Fokker—Planck equation). Their formula can
be written as

2 ~ 2 ~ 2 ~2 2
" _ pom T W (2‘7) — (w - f) W =¢
Xih=0 =5 T 5 @ll? Z eXp( 4o ) ’

(5.93)

where @ = w(m/vkgT), & = mB/kgT, Z is the longitudinal partition function
(2.25), and x'[ (w) is non-zero in the interval (@ — £)? < (20)%. In order
to compare the zero-damping formula (5.93) with the numerical results, we
just write ® = w(2A7k0o), which for fixed wrk (as occurs in the plots) is a
“function” of A.

The lower panel of Fig. 33 shows that, for A = 0.5, the dampingless
Eq. (5.93) gives correctly the order of magnitude of the numerical results

22In the frequency range below the ferromagnetic resonance range, this formula, is indis-
tinguishable from the low-w expansion used here.
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at intermediate-to-high temperatures, while for A = 0.1 a good agreement
extending down to quite low temperatures can be seen. Since Eq. (5.93) is the
exact A = 0 result, this comparison indicates that, in the intermediate-to-weak
damping regime, the contribution of the spread of the precession frequencies
of the magnetic moment to x| (w) is sizable in comparison with the effects of
the damping. Therefore, by omitting this zero-damping effect one could erro-
neously extract values of A from the x| (w) data that overestimate the actual
A and, for example, infer that the damping in superparamagnets is stronger
than it is in fact.

Another important manifestation of this effect was studied by Raikher and
Stepanov (1995a). The contribution of the damping to the absorption line in
intrinsic ferromagnetic resonance provokes a (unbounded) monotonic increase
of the linewidth with the temperature, whereas the linewidths experimentally
observed in certain magnetic nanoparticle systems are almost independent of
the temperature (Hennion et al., 1994). However, the spread of precession
frequencies in the anisotropy field also yields a contribution to the linewidths,
which in addition saturates at high temperatures. Thus, the combination of
both contributions leads to the appearance of an intermediate temperature
regime, fairly wide for systems with low damping, in which the linewidth is
quasiconstant.

VI Foundation of the stochastic dynamical
equations

VI.A Introduction

In this Section we shall examine various topics related with the foundation
of the Brown-Kubo—Hashitsume stochastic model and possible extensions of
this model (Garcia-Palacios, 1999).

1. Phenomenological equations

The Brown—-Kubo-Hashitsume model is phenomenological inasmuch as is con-
structed by augmenting known phenomenological equations (Gilbert or Landau—
Lifshitz) by fluctuating fields. For subsequent reference, let us first rewrite the
basic equations of this model (see Subsec. V.C):

e Stochastic Gilbert equation
dm dm

o = A Bog + ba(t) — (ym) " "A—| . (6.1)
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This equation is equivalent to the stochastic Landau-Lifshitz—Gilbert
equation (5.20), except for a “renormalization” of the gyromagnetic ra-
tio.

e Stochastic Landau—Lifshitz equation

% =ymA [Eeﬁ + I;ﬂ(t)] — )\%Tﬁ A (Tﬁ A geﬁ) . (6.2)

This equation may be regarded as the weak damping case (A < 1) of
Egs. (6.1) or (5.20), although it can be considered as an independent
model as well. On the other hand, this is a Langevin equation more ar-
chetypal those equations, in the sense that the fluctuating and relaxation
(damping) terms are not entangled.

In these dynamical equations A is a dimensionless damping coefficient and
Beg = —OH/0nm is the (deterministic) effective field associated with the
Hamiltonian of the spin H(m). This typically includes Zeeman and magnetic-
anisotropy energy terms, e.g., for uniaxial anisotropy with symmetry axis 7

H=—m-B—LBr/m)m i) = Beg=B+Kkm,
where K is a second-rank tensor with elements K;; = (Bx/m)nin; [cf. Eq.

(5.4)]. On the other hand, gﬂ(t) is a fluctuating field, the statistical properties
of which are

(bai(t) =0,  (bai(t)ba;(t"))

2A0;4
= n;kBT&t—tﬁ, (6.3)

where we have taken into account that when one starts from the Gilbert
equation one must replace y — v/(1+?) in the results of Section V associated
with the stochastic Landau—Lifshitz—Gilbert equation, so that Dy, is then
identical with Dy, [see Eq. (5.35)]. Finally, on introducing Eq. (5.33) into
Eq. (5.38), the Fokker—Planck equation governing the time evolution of the
non-equilibrium probability distribution of spin orientations, associated with
the above Langevin equations, can be written as

op 9

L3 Yonlen (B 9
— =" A BegP — A—m A A\ Begg — kT — | P 6.4
ot om {7m eff mm [m ( off B (‘%ﬁ) ]} , (6.4)
where (8/0m) - J = >-:(0J;/Om;) and for the Gilbert case one must replace
v by 7/(1+X?).
The Brown-Kubo—Hashitsume stochastic model has been the basis of sig-
nificant studies of the dynamics of classical magnetic moments. Nonetheless,
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there exist important microscopic relaxation mechanisms that cannot be ac-
commodated in the context of this model, inasmuch as they do not produce a
field-type perturbation on the spin (“field-type” fluctuations). An important
example is the coupling of the spin to the lattice vibrations, which modu-
late the crystal-field and the exchange and dipole-dipole interactions, and
can produce fluctuations of the magnetic-anisotropy potential of the spin
(“anisotropy-type” fluctuations).

In order to take this phenomenon into account, Garanin, Ishchenko, and
Panina (1990) generalized the above Langevin equations to dii/dt = ym A
[Begr + b(t) + #(t)i] — R. Here, R is a relaxation term to be determined and,
in analogy with the expression Beg = B + K for the effective field, b(t) is
a stochastic vector that introduces the field-type part of the thermal fluctua-
tions, while £(t) is a stochastic second-rank tensor, so that #(¢)m incorporates
anisotropy-type fluctuations into the dynamical equation.

On assuming the correlation properties

(bi(Hb; () = 2% kTt —t')
bi(t)rik(t)) = 2/7\”kk Ts(t—t'), (6.5)
(ko @rse()) = —Zmﬂ knTo(t - ¢) |

they constructed the associated Fokker—Planck equation

oP 0

=5 {’ym/‘\BeffP [ﬁ—%kBTmAG(mAi>]P}, (6.6)

om

where G is a symmetrical second-rank tensor related with the correlation
coefficients of the fluctuating terms by

Gz] = /\zj + Z ijk T /\] ik mk + Z /\zk,ﬂmkmé (67)
k£

The relaxation term E was then determined by merely assuming that the
Boltzmann distribution Pe(m) o exp[—H(m)/ kBT] is a stationary solution of
the Fokker—Planck equation (6.6). This yields B = (v/m)m A G(ifi A Begr), s
the starting Langevin equation finally reads [cf. Eq. (6.2)]

dm

_ =3 Y N = l ~ — =
n =ym A [ o + b(t) + R(t)m - NG (m A Beff) . (6.8)
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For an arbitrary form of G the relaxation term in this equation deviates
from the form proposed by Landau and Lifshitz (1935). Only for G;; = A\dij,
which for instance occurs when both the field-type and the anisotropy-type
fluctuations are isotropic (A;; o< d;; and A je o< 6;;0r) and there is not
interference between them (X;jx = 0), that archetypal relaxation term is
recovered and the Fokker—Planck equation of Garanin, Ishchenko, and Panina
[Eq. (6.6)] reduces to Eq. (6.4).

2. Dynamical approaches to the phenomenological equations

There have been several attempts to justify, starting from dynamical descrip-
tions of a spin coupled to its surroundings, the phenomenological equations
for the stochastic spin dynamics.

Smith and De Rozario (1976) considered a classical magnetic moment 77
coupled to a field I;(P, Q) depending on the canonical momenta and coordi-
nates (P, Q) of the environment. They derived a master equation for 7 by
“projecting out” the environment variables, which, when the modulation due
to the surroundings is fast in comparison with the precession period of i,
reduces to the Fokker—Planck equation (6.4).

Seshadri and Lindenberg (1982) studied a test spin interacting through a
Heisenberg-type Hamiltonian with an environment consisting of other spins.
The interaction among the latter was treated by a mean field approach, and
a dynamical equation for the test spin was obtained to second order in the
spin-environment coupling. The equation derived has the form of a generalized
(i-e., containing “memory” terms) Langevin equation, whose fluctuating and
relaxation terms naturally obey fluctuation-dissipation relations.

Jayannavar (1991) employed the oscillator-bath representation of the en-
vironment (Magalinskii, 1959; Ullersma, 1966; Zwanzig, 1973; Caldeira and
Leggett, 1983; Ford, Lewis and O’Connell, 1988), and assumed a coupling
linear in both the spin variables and the oscillator coordinates (bilinear cou-
pling). A generalized Langevin equation for the spin was derived, which, in
the Markovian approach (no memory) and for isotropic fluctuations, formally
reduces to the stochastic Gilbert equation (6.1). (A similar treatment was
presented by Klik, 1992.) Equations of Landau-Lifshitz form, akin to those
derived by Seshadri and Lindenberg, were also obtained in the weak-coupling
regime.

Nevertheless, since spin-environment interactions linear in 7 produce a
field-type perturbation on the spin (see below), the treatments mentioned do
not account for fluctuations of the magnetic anisotropy of the spin. In this
Section, in order to incorporate this phenomenon, we shall extend the bilinear-
coupling treatment of Jayannavar by considering general dependences of the
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spin-environment coupling on the spin variables. Furthermore, we shall also
include interactions quadratic in the oscillator variables (the classical analogue
of, for example, two-phonon or two-photon relaxation processes), which are
essential at sufficiently high temperatures. Because the ordinary formalism of
the environment of independent oscillators is not directly applicable when such
quadratic couplings are included, we shall resort to a perturbational expansion
in the spin-environment coupling, which is inspired on that of Cortés, West
and Lindenberg (1985).

We shall obtain dynamical equations for the spin that have the structure
of generalized Langevin equations with fluctuating terms i A ba (i, ¢) and
concomitant relaxation terms. These will have the form of a vector product
of 17i(t) with a memory integral, which includes (di7/dt)(¢') or (1 A Beg)(t')
for weak coupling, taken along the past history of the spin (t' < t). In the
Markovian approach, the equations derived will reduce to the form

S — A [ + B, )] -

where for couplings linear in the environmental coordinates the relaxation
term reads B = (1/m)m A A® (dm/dt) or B = (y/m)m A A® (i A Beg) for
weak coupling, A®™ being a second-rank tensor depending on the structure
of the coupling. In addition, when interactions quadratic in the environment
variables are also taken into account, the relaxation term will depend explicitly
on the temperature and, in the Markovian approach, R will take the form
R = (y/m)m A A(1 A Beg), with A = A® + kgT A@, where the additional
tensor A is determined by the quadratic portion of the coupling.

Since the fluctuating effective field ba(m,t) will depend in general on i,
it can incorporate fluctuations of the magnetic anisotropy of the spin. For in-
stance, when the spin-environment interaction includes terms up to quadratic
in the spin variables, ba(1,t) can be written as b(t) + £(t)m, with the cor-
relation coefficients of the fluctuating terms being related with the tensors A
by expressions identical with Eq. (6.7). In this way, the generalization of the
classic Brown-Kubo—Hashitsume model effected by Garanin, Ishchenko, and
Panina will formally be obtained.

VI.B Free dynamics and canonical variables

The dynamical equation for an isolated classical spin with Hamiltonian H (1)

is
dm - - OH
=~ym A B, Beg = ——— .
ym eff 5 eff om

T (6.9)
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By means of the formula (5.40) for the gradient operator in spherical coor-
dinates, these vectorial equations, which merely express the precession of m
about the instantaneous effective field, can be written as

dp __y T oH dd_~o 1 OH
dt  msing 89’ dt  msind dp ’

(6.10)

where ¢ and ¥ are, respectively, the azimuthal and polar angles of . Fur-
thermore, these formulae are equivalent to the Hamilton equations

dg oM dp oA

dt ~ ap’ dt ~ dq’
with the conjugate canonical variables?3
a=¢, p=m/y. (6.11)

In terms of the variables (6.11) the Cartesian components of the magnetic
moment are given by

mgy = v/m2 — (yp)2cosq, my=+/m?—(yp)2sing, m,=1vp. (6.12)

From these expressions for m;(p, ¢) and the definition of the Poisson bracket
of two arbitrary dynamical variables

one can readily obtain the customary Poisson-bracket (“commutation”) rela-
tions among the spin variables

{mi;mj} = 'Yzfz'jkmk s
k

where €5, is the Levi-Civita symbol.?* In addition, on using the chain rule
of the Poisson bracket, namely

{f,g}zzﬁ@{ﬂh,éﬂk}, xz:xz(paq)a
i,k

23The alternative choice § = m, /v and p = —¢ is equivalent to the one used here through
the canonical transformation ¢ = —p and p = §.
24To illustrate, from
1/2 . —1/2
omy/0q = —[m?—(yp)?] sing, Omg/Op = —’p[m? - (y)?] cos g,
1/2 —1/2
omy/dq = [m2 - ('yp)z] cosq, Omy/0p = —7?p |:m2 - (7p)2:| sing ,

one gets {mﬁ,my} = v2psin?q + y?pcos?q = ym,. Q.E.D.
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one gets the useful relation (cf. Eq. (13) by Smith and De Rozario, 1976)
ov
1) i = - 5 1
{m;, V ()} fy(m A 6m>i (6.13)

which is valid for any function of the spin variables V().

Note finally that one can conversely postulate the relations {m;, m;} =
v >k €ijkmy and then derive Eq. (6.9) starting from the basic Hamiltonian
evolution equation dm;/dt = {m;, H} and using Eq. (6.13). This can be con-
sidered as a justification of the presence of the expression By = —0H /O0m in
the dynamical equations for a classical spin.

VI.C Dynamical equations for couplings linear in the
environment variables

We shall now study a classical spin surrounded by an environment that can
be represented by a set of independent classical harmonic oscillators. In spite
of its academic appearance, those oscillators can correspond to the normal
modes of an electromagnetic field, the lattice vibrations (in the harmonic ap-
proximation), or they can be an effective low-energy description of a more
general surrounding medium (Caldeira and Leggett, 1983). We shall assume
that the spin-environment interaction is linear in the coordinates of the oscil-
lators but otherwise arbitrary in the spin variables. In this way, fluctuations
of the magnetic anisotropy of the spin will be incorporated in the dynamical
equations.

1. The spin-environment Hamiltonian

The total system consisting of the spin (the “system of interest”) plus the
oscillators representing the environment forms a closed dynamical system that
we shall describe by augmenting the isolated-spin Hamiltonian as follows

Hr = H(m) +Z (P2 +u2]a +wi2Fa(m)]2}. (6.14)

Here, a is an oscillator index [e.g., the pair (E, s) formed by the wave-vector
and branch index of a normal mode of the environment], and the coupling
terms F, (M) are arbitrary functions of the spin variables (typically polyno-
mials in m). These terms may depend on the parameters of the oscillators
Wa, but not on their dynamical variables P,, Q,. On the other hand, for the
sake of convenience in keeping track of the various orders, we have introduced
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a spin-environment coupling constant £, which in the weak-coupling approxi-
mation will be considered small.

The terms proportional to F2, which emerge when squaring Qo +(¢/w?) F,,
are “counter-terms” introduced to balance the coupling-induced renormaliza-
tion of the Hamiltonian of the spin. The formalism takes as previously con-
sidered whether such a renormalization actually occurs for a given interaction
(Caldeira and Leggett, 1983), so that H would already include it (whenever
exists). An advantage of this convention is that one deals with the experimen-
tally accessible energy of the spin, instead of the “bare” one, which might be
difficult to determine.

The introduction of non-linear coupling terms F, (M), as otherwise occur
in various relevant situations (F, o< Y. mgmy for the magneto-elastic cou-
pling of 7 to the lattice vibrations), will be essential to get fluctuations of
the magnetic anisotropy of the spin. The starting Hamiltonian in the work of
Jayannavar (1991) was similar to (6.14) with a special type of linear F, (m):
the component m; of the magnetic moment was coupled to the ith Cartesian
component (),,; of certain three-dimensional oscillators. This specific bilin-
ear interaction yielded, not only field-type fluctuations, but also uncorrelated
ones. [Klik (1992) also considered couplings non-linear in 77, but in that work
the focus was on the existence of thermal equilibrium in the Markovian limit.]

2. Dynamical equations: general case

For the sake of simplicity in notation but also of generality, we cast the Hamil-
tonian (6.14) into the form

He =H™(p,q) + >3 (P +w2Q2) + Y QuFalp,q) (6.15)

where ¢ and p are the canonical coordinate and conjugate momentum of a
system with Hamiltonian H(p, ¢) [in the spin-dynamics case p and ¢ are given
by Egs. (6.11)], and the “modified” system Hamiltonian H™) augments # by
the aforementioned counter-terms

2 F2
ARISE VR (6.16)

2
2~y

The equation of motion for any dynamical variable C' without explicit de-
pendence on the time, dC/0t = 0, is given by the basic Hamiltonian evolution

equation o
d
E = {C; HT} )
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where the whole Poisson bracket is given by

_0A0OB O0OAOB 0A OB 0A OB
B = 5 55 " 0p 00 T 22902 07, 0P, 00

Therefore, the (coupled) equations of motion for any dynamical variable (0b-
servable) of the system A(p, q) and the environment variables read (C = A, P,,
and Qq)

dA

= = {A,H(m)}+g;Qa{A,Fa}, (6.17)
dQa  _ dPa _ 20
- P, T W2Qqy —€F, . (6.18)

The goal is to derive a dynamical equation for A(p,q) involving the system
variables only (reduced dynamical equation). Then, the corresponding equa-
tion for the spin will be obtained by replacing A(p, q) in that equation by the
Cartesian components of m [Eq. (6.12)].

On considering that in Egs. (6.18) the term —eF,(t) = —eF,[p(t), ¢(t)]
plays the role of a time-dependent forcing on the oscillators, those equations
can be explicitly integrated, yielding

Qu(t) = Qh(t) — = a sinfwe (t — ¢')]Fa () , (6.19)
a Jtg
where
Qu (1) = Qalto) coslwa(t — to)] + [Pal(to) /wa] sinfwa (t — to)] , (6.20)

are the solutions of the homogeneous system of equations for the oscillators
in the absence of the system-environment interaction (proper modes of the
environment). Then, on integrating by parts in Eq. (6.19) one gets for the
combination £Q), that appears in Eq. (6.17)

dF,

Qult) = £ult) = Kalt = )T, + [ Kol =) G2(@) ., (620

where X

falt) =eQR(t),  Kalr) = 5—2 coS(WaT) - (6.22)

a

Next, in order to eliminate the environment variables from the equation for
A(p, q), one substitutes Eq. (6.21) back into Eq. (6.17). This yields a term
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o VA, Fo} Ko (t — to)Fa(to) that depends on the initial state of the sys-
tem (p(to),q(to)) and produces a transient response that can be ignored
in the long-time dynamics (we shall however return to this question be-
low).?> The parallel term — > {4, F,, } Ko (0)F,(t), which is derivable from
a Hamiltonian, is exactly balanced by the term emerging from the counter—
terms in {4, H(m)} This can be shown by using — >, {4, Fu }K«(0 =
{A4,-1 >, Ka(0)F2}, which follows from the product rule of the P01sson
bracket

{A,BC} ={A,B}C+{A,C}B, (6.23)

and then using K, (0) = £2/w? [see Eq. (6.22)].
Therefore, one is finally left with the reduced dynamical equation

= {4, ’H}-l—Z{A F, }[fa dt Ko (t—t')%(t') . (6.24)

where the first term yields the free (conservative) time evolution of the system,
whereas the second term incorporates the effects of the interaction of the
system with its environment. The terms f,(t) are customarily interpreted
as fluctuating “forces” (or “fields”), while the integral term, which keeps in
general memory of the previous history of the system, provides the relazation
due to the interaction with the surrounding medium. [Note that without the
integration by parts yielding Eq. (6.21), the Hamiltonian (renormalization)
terms would occur inconveniently mixed in the integral term.]

The origin of both types of terms can be traced back as follows. Recall that
in Eq. (6.19) the time evolution of the oscillators has formally been written
as if they were driven by (time-dependent) forces —e Fy, [p(t'), ¢(t')] depending
on the state of the system. Therefore, @, () consists of the sum of the proper
(free) mode Q" (t) and the driven-type term, which naturally depends on the
“forcing” (state of the system) at previous times. Then, the replacement of
@, in the equation for the system variables by the driven-oscillator solution
incorporates:

(i) The time-dependent modulation due to the proper modes of the envi-
ronment.

25Tn the ordinary independent oscillator model, one considers Fy (p,q) o g and the cor-
responding terms can formally be removed from the dynamical equations by choosing the
origin of the “coordinate frame” to lay at the “position” of the system at ¢t = to, that is,
Fo(to) x q(to) = 0. However, this frame-dependent procedure cannot be employed if the
system comprises different entities. In addition, in the spin-dynamics case with, for instance,
F, () linear in 77, one cannot set 17(to) = 0 due to the conservation of the magnitude of
the spin.
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TABLE VI. Terms incorporating the effects of the interaction of the system with
the surrounding medium in the reduced dynamical equation (6.24).

| term | mechanism | interpretation
time-dependent modulation .
fluctuating
fa(t) due to the proper modes
. term
of the environment.
. back-reaction on the system .
integral . . : relaxation
of its preceding action
term . term
on the environment

ii) The “back-reaction” on the system of its precedin action on the sur-
g
rounding medium.

Thus, the formalism leads to a description in terms of a reduced number of
dynamical variables at the expense of both explicitly time-dependent (fluctu-
ating) terms and history-dependent (relaxation) terms (see Table VI).

Archetypal example: the Brownian particle. In order to particularize
these general expressions to definite situations, the structure of the coupling
terms F,, needs to be specified. For instance, on setting Fy,(p,q) = —caq (bi-
linear coupling), where the ¢, = Co(wy) are coupling constants, and writing
down Eq. (6.24) for A = ¢ and A = p with help from {p, B} = —0B/0q and
{q, B} = 0B/dp, one gets the celebrated generalized Langevin equation for a
“Brownian” particle (Zwanzig, 1973)

dg OH dp OH L N
- __9n — — = (t) . 2
&= o i 30 +f®) todt Kt —t) 3 (&) (6.25)

Here, f(t) = Y., Cafa(t) is the fluctuating force and K(r) = Y cZ2Kq(7)
is the memory kernel, the relaxation term associated with which comprises
minus the velocity —(dg/dt)(t') of the particle (viscous damping).

In general, when {4, F,} in Eq. (6.24) is not constant, the fluctuating
terms f,(t) enter multiplying the system variables (multiplicative fluctua-
tions). In this example, owing to the fact that {g, —caq} = 0 and {p, —Caq} =
Ca, the fluctuations are additive.
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3. Dynamical equations: the spin-dynamics case

Let us now particularize the above results to the dynamics of a classical spin.
Here, we introduce the coupling functions

= o Vilm) (6.26)
1

where 1 stands for a general index depending on the type of interaction, the
coefficients ¢!, are spin-environment coupling constants, and the terms Vj (1)
are certain functions of the spin variables. In order to motivate this expres-
sion, consider, for example, the magneto-elastic coupling of M to the lattice
vibrations. The index 1 then stands for a pair of Cartesian indices (ij) and
W = Vij =D 0 aij kemimy, where the a;j ¢ are magneto-elastic coefficients.

In order to derive the reduced dynamical equation for the spin, we merely
put A =m;, i = x,y, 2, in Eq. (6.24), and then use Eq. (6.13) to calculate the
Poisson brackets required. On gathering the results so-obtained in vectorial
form and using Beg = —0#/8m and dVy /dt = (Vi /1) - (dimi/dt), we arrive
at

. . . ar
dm _ M A $ Bege + ba (11, 1) — dt D0 (175 ¢, ') m(t')} . (6.27)
dt to dt
In this equation the fluctuating magnetic field is given by
o
=— t)— 6.28
which involves the environmental proper modes via the fluctuating sources
() =e)_ chQu(t) . (6.29)
[e3
On the other hand, the relaxation tensor in Eq. (6.27) reads?®
. Vi
Ir“m;t,t') =) Kw t—t' ¢ t 6.30
=2 AT, (6:30)
where the memory kernel is given by?’
Kw () = 522 a 2 cos(waT) - (6.31)

26Although we omit the symbol of scalar product, the action of a dyadic A B on a vector
C is the standard one: (4 B)C = A(B - C).

2"Note that fi(t) = Za ¢l fa(t) and Ky (1) = E clcl lCa (1), where fo(t) and Ko (1)
are given by Eq. (6.22).
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Equation (6.27) contains dni/d¢ on its right-hand side, so it will be re-
ferred to as a Gilbert-type equation [cf. Eq. (6.1)]. For ¢ < 1, on replacing
perturbatively that derivative by its conservative part, dm/dt ~ ym A Eeﬁ,
one gets the weak-coupling Landau—Lifshitz-type equation

. t
(Z—T =ymA [Eeﬁ + Eﬁ(m,t)] —ymA { dt' 4T® (715 , 1) (m A Beﬂs) (t’)} ,
¢
’ (6.32)
which describes weakly damped precession.

For spin-environment interactions linear in the environment variables but
being otherwise arbitrary functions of m, Egs. (6.27) and (6.32) are the de-
sired reduced dynamical equations for the spin. They have the structure of
generalized Langevin equations with fluctuating terms ym A bg (1, ) (asso-
ciated with the modulation by the proper modes of the environment) and
history-dependent relazation terms (corresponding to the back-reaction on
the spin of its previous action on the surrounding medium).

Note that fi(t) [Eq. (6.29)] is a sum of a large number of sinusoidal terms
with different frequencies and phases; this can give to fi(t) the form of a highly
irregular function of ¢ that is expected for a fluctuating term. However, for
a general form of the coupling functions Vj(m), the term bq (7, t) cannot be
interpreted as a fluctuating ordinary field, since it may depend on m, but it
is rather a fluctuating effective field to be added to the deterministic effective
field Bog = —0H/0m [Eq. (6.9)]. This can be illustrated by phrasing the
discussion in terms of the fluctuating part of the energy of the spin, namely
[see Hamiltonian (6.15)]: Ha = €Y., Q% (t)F, (). From this definition one
first gets

Hali,t) = 3 AOVER) , a0 =00 (639
1

so that I_;ﬂ can be derived from Hg in the same way as éeﬁ is obtained from H.
Next, recall that the non-linear part of H(m) carries the anisotropy-energy
terms, e.g., H = —m - B — +(Bk/m)(ri - 7)? in a uniaxial crystal. Analo-
gously, Hg has the form Hg(m,t) = — - ba(t), with bg independent of 3,
only for linear Vi(m) (bilinear coupling), so that the non-linear part of Vi(m)
incorporates fluctuations of the magnetic anisotropy of the spin.

To illustrate, if the spin-environment interaction includes up to quadratic
terms in 17, one can write the coupling functions Vj(mi) as

Vi(m) = Z vLim; + 3 Zwl,ijmimj ; (6.34)
i ij
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where the constants v1,; and wy,;; incorporate the symmetry of the interaction.
In this case, the fluctuating effective field (6.28) can be cast into the form [cf.
Eq. (6.8)] . .

ba (i, t) = b(t) + &(t)m , (6.35)

with the following expressions for the fluctuating sources b(t) and #(t) in terms
of the coupling constants

bi(t) ==Y ht)ori kij(t) = =Y Alt)wy; -
1 1

As b(t) does not depend on 3, it can be interpreted as a fluctuating ordi-
nary field. The fluctuations of &(t), however, do not enter in this way, since
they occur via }; k;;(t)m;, but they produce fluctuations of the magnetic-
anisotropy potential of the spin, both of the direction of the anisotropy axes
and of the magnitudes of the anisotropy constants. This is clearly perceived
on considering that the fluctuating part of the energy of the spin (6.33) takes
in this case the form

Ha (i, t) = —ih - b(t) — Lo - k() .

This resembles the scenario encountered for a mechanical oscillator (Linden-
berg and Seshadri, 1981), where the portion of the oscillator-environment cou-
pling quadratic in the coordinate of the test oscillator yields, instead of a fluc-
tuating force, a fluctuating contribution to its harmonic potential (frequency-
type fluctuations). Finally, if V1(71) only comprises non-linear terms, such as
those occurring in the magneto-elastic coupling mentioned (Vi o< > mypmy),
no field-type fluctuating terms emerge and only anisotropy-type fluctuations
remain.

We remark in closing that, even for couplings linear in the spin variables,
and hence for bg(t) independent of 17, the occurrence of the vector product
m A Eﬂ in the dynamical equations entails that the fluctuating terms enter in
a multiplicative way. This is at variance with the situation encountered in or-
dinary mechanical systems (Lindenberg and Seshadri, 1981), where couplings
linear in the system variables lead to additive fluctuations [see Eq. (6.25)],
whereas multiplicative fluctuating terms only emerge for couplings non-linear
in the system variables. To illustrate, for the mentioned mechanical oscillator,
the force- and frequency-type fluctuations provided by F, = —v,q — waq>
are, respectively, additive and multiplicative, whereas in the gyromagnetic
case the field-type fluctuations are already multiplicative. Indeed, in the spin-
dynamics case, in analogy with the results obtained for mechanical rigid ro-
tators (Lindenberg, Mohanty and Seshadri, 1983), the multiplicative char-
acter of the fluctuations is a consequence of the Poisson bracket relations
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{mi,mj} = 7>, €ijkmy for angular-momentum-type dynamical variables,
which, even for F,, linear in 7, lead to non-constant {A,Fa} in Eq. (6.24).
In our derivation, this can straightly be traced back by virtue of the Poisson-
bracket formalism employed.

4. Statistical properties of the fluctuating terms

In order to determine the statistical properties of the fluctuating sources fi(t),
one usually assumes that the environment was in thermodynamical equilib-
rium at the initial time (recall that no statistical assumption has been ex-
plicitly introduced until this point). This initial state is customarily chosen in
two different ways.

a. Decoupled initial conditions. The environment variables are dis-
tributed at ¢t = ¢y according to the Boltzmann law associated with the envi-
ronment Hamiltonian alone

Po(P(t0),Q(to)) o< exp[—Hg(to)/ksT], (6.36)
He(to) = Z 1 [Pa(t0)® + w2Qa(t0)?] ,

a

where (P, Q) stands for the set of canonical variables of the environment. The
initial distribution is therefore Gaussian and one has for the first two moments
of the environmental variables

<Qa(t0)) =0, (Pa(to» =0,

(Qa(to)Qp(to)) = 5aﬁkj—2T ; {(Qalto)Ps(to)) =0, (Palto)Ps(to)) = bapksT -

(6%

From these results one readily gets the averages of the proper modes over
initial states of the environment (ensemble averages):

(@YD) = (Qalto)) coslwalt — to)] + (Pa(to)) —— sinfwa(t — to)] ,
0 W

0
(Qa(t0)Qp(t0)) cos[wa (t — to)] cos[wa(t' — to)]
—_——
6a5kBT/w§
+{(Qa(to)Ps(to)) 1 cos[wq (t — to)] sinfwa(t' — to)]
ﬁ,_/ LUB

T (Pato)Qs(to)) — sinlwa (t — to)] coslus(t' — to)]
—_— Wy

(QL)QB())

0
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+ (Pa(to) P (to)) —— sinfua(t — to)] sinfuws (t' — to)]
—————— WaWp

6a5kBT

= kBT%—f{cos[wa(t — to)] cos[wa (' — to)]

a

+ sinfwe (t — to)] sin[wa (' —to)]} ,

so that

da
Q) =0,  (QuHQB()) = kT coslwa(t — )] . (6:37)
«
Thus, the fluctuating terms fi(¢) [Eq. (6.29)] are Gaussian stochastic pro-
cesses and the relevant averages over initial states of the environment are
given by

(A®) = 0, (6.38)
(h®fe(t)) = ksTKw(t—t'). (6.39)

Equation (6.39) relates the statistical time correlation of the fluctuating terms
Ai(t) with the relaxation memory kernels Ky (7) occurring in the dynamical
equations (fluctuation-dissipation relations). Short (long) correlation times of
the fluctuating terms entail short-range (long-range) memory effects in the
relaxation term, and vice versa. The emergence of this type of relations is not
surprising in this context, since fluctuations and relaxation arise as different
manifestations of the same interaction of the system with the surrounding
medium.

b. Coupled initial conditions. The environment is assumed to be at ¢t =
to in thermal equilibrium in the presence of the system, which is however taken
as fastened in its initial state (Ford, Lewis and O’Connell, 1988). Therefore,
the corresponding initial distribution of the environment variables is

P.(P(to), Qlto) o exp[~Hse(to)/knT],
Hsu(to) = > H{Palto)® +wi[Qalte) + 5 Falto)] },

a a

where the F,(tp) are taken as constants. In this case, the dropped terms
depending on the initial state of the system Ko (t—to)Fa (to) [recall the remarks
before Eq. (6.24)], which for F, = Y, ¢!, 1} lead to the terms Y, Kw (¢t —
to) Vi (to), are not omitted but they are included into an alternative definition
of the fluctuating sources, namely fi(t) = fi(t) + >, Kw (t — to)Vir (to). The
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statistical properties of these terms, as determined by the above distribution,
are given by expressions identical with Egs. (6.38) and (6.39).

Notice that the recourse to the “process” of initial fastening (and subse-
quent releasing) of the system by an external agency can, to a certain extent,
be circumvented on noting that the concomitant initial statistical properties
of the environment are consistent with the notion of a time-scale separation
between the system and the surrounding medium, i.e., the latter adjust rapidly
to the state of the former (Lindenberg and West, 1984).

Note finally that the differences associated with assuming decoupled initial
conditions or the more physically motivated coupled initial conditions dimin-
ish as long as the weak-coupling condition is met. Anyhow, with both types of
initial conditions one obtains the same Langevin equation after a time, mea-
sured from tg, of the order of the width of the memory kernels Ky (7), which
is the characteristic time for the “transient” terms ), Kw (t — to) Vi (to) to
die out.

VI.D Dynamical equations for couplings
linear-plus-quadratic in the environment variables

The introduction of interactions non-linear in the environment variables is
mandatory when relaxation mechanisms involving more than one environ-
mental normal mode (e.g., multi-phonon or multi-photon processes) become
relevant, as occurs at sufficiently high temperatures. When such non-linear
couplings are taken into account, one must resort to approximate methods to
derive a reduced equation of motion for the spin. Here, we shall tackle the
important weak-coupling case by a perturbational treatment.

1. The spin-environment Hamiltonian

Let us consider the following generalization of the Hamiltonian (6.14)
— 2 1[ p2 2 € N
Hr=H(7) + Zajg{Pa e [Quat S Falm)] }

kBT52

nb— & —\2
373 o) |, (640

+ 1Y [Qu@sFus(i) +
aB

where couplings quadratic in the coordinates of the oscillators representing
the environment have been included. The part of this interaction depend-
ing on the spin variables is introduced via the functions Fi,3. On the other
hand, embodying the additional counter-terms (those proportional to Fgﬁ),
the coupling-induced renormalization of the energy of the spin is balanced to
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order €2. This renormalization results to be explicitly dependent on the tem-
perature for interactions non-linear in the environment variables (see below).

2. Dynamical equations: general case

Again, for the sake of simplicity and generality, we rewrite the Hamiltonian
(6.40) as [cf. Eq. (6.15)]

Hr = H™(p,9)+) 5 (P2 +wiQ)

+2[ Y QuFapa) + 5Y QuQuFas(m )] . (6:41)
a af

where (™) augments the system Hamiltonian by the counter-terms [cf. Eq.

(6.16)]
m e (- Fa Fas
a a af @

The ordinary formalism of the environment of independent oscillators (Ma-
galinskii, 1959; Ullersma, 1966; Zwanzig, 1973; Caldeira and Leggett, 1983;
Ford, Lewis and O’Connell, 1988) is not directly applicable when couplings
non-linear in the environment variables are included. For instance, Fi,3Q.Qg
brings about an indirect interaction among the oscillators so that these are
no longer independent. Because a reduced equation of motion for a dynamical
variable A(p, ¢) cannot easily be derived for an arbitrary strength of the cou-
pling, we shall perform a perturbational treatment in the weak-coupling case
by means of simple extensions of the treatment developed by Cortés, West
and Lindenberg (1985).

In Appendix C the corresponding calculations are detailed for a class of
Hamiltonians with quite general non-linear couplings in both the system and
the environment variables. The results obtained permit the incorporation of
relaxation mechanisms involving any number of environmental normal modes
into the dynamical equations of the system variables (under the weak-coupling
condition mentioned). In the linear-plus-quadratic case considered here, we
find the following reduced dynamical equation for any observable of the system
A(p, q) [cf. Eq. (6.24)]

t
%:{A,’H} + ;{A,Fa}[fa(t)+/t0dt'lca(t—t’)%(t')]

¢ ' IdFaﬁ !
+ %{A,Faﬁ}[faﬁ(t) +/todt lCag(t—t)T(t )] . (6.43)
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In this equation, the fluctuating terms f,(t) and the corresponding kernels
K (7) are again given by Eqs. (6.22), whereas their counterparts for the qua-
dratic portion of the coupling read

fas® = ZQLMQK) (6.44)
Kas(r) = %zﬁiiz{m““a—wﬂ>ﬂ+cos[<wa+wﬂ>r]}, (6.45)

where the QU (¢) are the environmental proper modes (6.20).

The treatment leading to Eq. (6.43) can be summarized in terms of the
driven-oscillator picture discussed in Subsec. VI.C. One part of the driving
from the system now depends on the state of the oscillators [cf. Eqgs. (6.18)
with (C.3)]; this state is perturbatively replaced by the free evolution terms
Q" (t), and the back-reaction on the system is averaged over initial states
of the oscillators. This averaging yields the explicit dependence of the ker-
nels Kqop(7) on the temperature (and that of the associated counter-term

3 2ap Kap(0)F35).

3. Dynamical equations: the spin-dynamics case

In order to particularize the result (6.43) to the dynamics of a classical spin,
the additional coupling functions F,g are expressed as

Fap(iit) = ) cgVa(ii) |
a

where the general index q is analogous to that introduced in the linear case
[Eq. (6.26)], the coefficients ¢} ; are the spin-environment coupling constants
for the quadratic part of the interaction, and the terms Vg(m) are certain
functions of the spin variables. To illustrate, for the coupling of 77} to the lat-
tice vibrations including quadratic terms in the strain tensor (“two-phonon”
processes), q stands for two pairs of Cartesian indices and, for example,
Va = Vijke = Y, bijke,rsmrmg, where the bjjr¢ ., are second-order magneto-
elastic coeflicients.

Then, on merely replacing A(p,q) in Eq. (6.43) by the Cartesian com-
ponents of the magnetic moment and then using Eq. (6.13) to calculate the
corresponding Poisson brackets, one arrives at the following reduced equation
of motion for i [cf. Eq.(6.32)]

% = WA [B’eff + b, t)]
tdt'7 [f(“ + kT f(Q)]

to

—ym A { (m A
(m;tytl)



ON THE STATICS AND DYNAMICS OF MAGNETOANISOTROPIC NANOPARTICLES 172

Here, the fluctuating effective field generalizes the expression (6.28) to

Ba [Zfl U + 3 A BV], (6.47)

where the fi(t) are given by Eq. (6.29) and the fq(t) = 3° 5 Casfas(t) are
additional fluctuating terms

Zc 5 QROQ() . (6.48)

Concerning the relaxation terms, I'™ is again given by Eq. (6.30), while the
part of the relaxation tensor associated with the quadratic part of the coupling
in given by

ks T T (i; 1, 1) Zlcqq 6V (t) %‘; ", (6.49)

where the kernel is given by Kqq/ () = 3_ 5 ¢ Bcg’BKO"B (1) or, explicitly
cd.cd
Kaq (1) = kBT 5 %{ cos[(wa — wg)7] + cos(wa + wa)7]} . (6.50)
B

Note that the equation (6.46) is of Landau-Lifshitz type since the deriva-
tive dni/dt that would appear in the relaxation term has been replaced, within
the approximation used (¢ < 1), by its free evolution part di/dt ~ vrﬁAEeg
[see the remarks after Eq. (C.11)]. Notice also that we have explicitly shown
the temperature dependence of the relaxation term, which is caused by the
quadratic portion of the coupling.

Equation (6.46) is the desired dynamical equation for the spin when its
interaction with the environment is weak and embodies linear-plus-quadratic
terms in the variables of the oscillators representing the environment. Note
that, in the pictorial quantum-mechanical language, the term comprising
c0s(wq ) in the memory kernel (6.31) would correspond to a relaxation mech-
anism (transition) via the emission or absorption of a vibrational quantum of
energy fuw,. Similarly, cos[(wq +wp)7] in the kernel (6.50) would be associated
with relaxation mechanisms with either the emission or the absorption of two
vibrational quanta, whereas cos[(wq — wg)7] would correspond to the absorp-
tion of one quantum and the emission of a second one (scattering processes).
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Finally, the definition (6.33) of the fluctuating part of the energy of the
spin can be generalized to

Ha(,t) = 3 AOVOR) + 3 fal®)Valm) | (6.51)
1 q

whence I;ﬂ = —0Ha/Om, in correspondence with Eeg = —0H/Om. Remarks
similar to those made after Eq. (6.33) concerning the structure of Hgq (1, t) for
linear and non-linear (in the spin variables) spin-environment interactions, and
the corresponding nature of the fluctuations (field- and/or anisotropy-type),
are in order here.

4. Statistical properties of the fluctuating terms

The statistical properties of the fi(t), as determined by the initial distribution
(6.36) of the environment, variables (decoupled initial conditions), are given by
Egs. (6.38) and (6.39), whereas the statistical properties of the f,(t) and their
cross-correlations read

(fa(t)) = 0, (6.52)

(h®fa(t)) = 0, (6.53)

(fa®)fq ")) = kBT Kqq(t—1t'). (6.54)

In order to obtain Eq. (6.52), i.e., centered fluctuating sources, as well as Eq.
(6.54), we have assumed that ¢, = 0 for & = . If such a restriction is not

applied, one has, for example, (fq(t)) # 0, which represents a non-vanishing
average forcing of the spin. Note however that to retain those terms must cause
no harm since, when the double sums over oscillators }_ ,5(-) are transformed
into double integrals for (quasi-) continuous distributions of oscillators, such
a = [ terms constitute a zero-measure set whose contribution can therefore
be ignored.

The Gaussian property of the fq(t) can then be established on the basis
that these terms are sums over a large number of contributions ¢ 5 Qg (t)Q}3(t)
with mean zero and equivalent statistical properties (Central Limit Theorem).
On the other hand, Eq. (6.54) expresses that the fluctuating sources fq(t) and
the relaxation memory kernels Kqq (7) associated with the quadratic portion
of the coupling also obey fluctuation-dissipation relations. In addition, the
zero cross-correlations of Eq. (6.53) are also fluctuation-dissipation relations
involving null kernels [see Eq. (C.17)].

We finally remark that on assuming coupled initial conditions, without
modifying the definitions of the fluctuating terms, the corrections to Egs.
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(6.38) and (6.52), and to the relations (6.39), (6.53), and (6.54) are, respec-
tively, of order €2 and €3; these corrections are of order higher than the terms
retained in the weak-coupling approximation used (see Appendix C).

VI.E Markovian regime and phenomenological equations

We shall now study the form that the dynamical equations derived exhibit
in the absence of memory effects. Then, we shall consider some specific spin-
environment interactions, formally obtaining the Langevin equations men-
tioned at the beginning of this section.

1. Markovian regime

The Markovian regime arises when the relaxation memory kernels are sharply
peaked at 7 = 0, the remainder terms in the memory integrals change slowly
enough in the relevant range, and the kernels enclose a finite non-zero algebraic
area. Under these conditions, one can replace the kernels by Dirac deltas and
no memory effects occur.

a. Langevin equations. Let us assume that the memory kernel (6.31)
can be replaced by a Dirac delta

Kw (1) = 2(My [ym)d(7) , (6.55)

where the Ay are damping coefficients related with the strength and charac-
teristics of the coupling (see below). Then, on using [ d7 &(T)h(r) = h(0)/2,
equation (6.27) reduces to the Gilbert-type equation [cf. Eq. (6.1)]

dm . [a - 1, dm
o = A [Beff + ba(m, t) — (ym) " tA )E , (6.56)

where A™ (m) is a dimensionless second-rank tensor with elements

o1 oW

8mi 6m]- ’

AP =)

LY

(6.57)

Likewise, on inserting Eq. (6.55) in the weak-coupling Eq. (6.32) we get the
following Landau—Lifshitz-type equation [cf. Eq. (6.2)]

S — i A [Bar + Ba, )] — LA A® (AABr) - (659)
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Note that the tensor A®™, the precursor of which is the tensor ['™ [Eq. (6.30)]
occurring in the memory integrals, is symmetrical since Ay is so [see Eq. (6.69)
below].

On the other hand, the Markovian case of the dynamical equation for
couplings linear-plus-quadratic in the environment coordinates emerges when
the additional memory kernel can also be replaced by a Dirac delta, namely

Kaa' (1) = 2(Aqq k8T /ym)é(7) , (6.59)

where we have explicitly shown the temperature dependence arising from
the kernel (6.50). Under these conditions, Eq. (6.46) reduces to the Landau—
Lifshitz-type equation
dm . s —_— N
il A [Beﬂ +ba(m,t)| — —mAA (m A Beﬂ‘) , (6.60)
where bg (1, ) is now given by Eq. (6.47). In this equation the relaxation
tensor

A=A" 4 kgTA@ | (6.61)

where SV V.
A® (1) = ,—aa 62
z) (m) c%Aqq 6mz~ amj ’ (6 6 )

introduces an explicit dependence on the temperature rooted in the quadratic
portion of the coupling.

For a general form of the spin-environment interaction, due to the oc-
currence of the tensors A the structure of the relaxation terms in the above
equations deviates from the forms proposed by Gilbert and Landau and Lif-
shitz. Such deviations can be produced by couplings non-linear in 17, for which
A;;) and /A\g?) depend in general on the spin variables, but they also emerge
when these tensors are independent of 17 (for example, for couplings linear in
m) but they are not proportional to d;;. The relaxation is then anisotropic be-
cause, for instance, —17 A A(1 A Begr) no longer points from 1 to the direction
of Eeﬂ.

Finally, owing to the fluctuation-dissipation relations (6.39) and (6.54), the
fluctuating terms corresponding to the Markovian memory kernels are delta-
correlated in time. Consequently, the statistical properties of the fluctuating
terms take the form

(h) = 0, (6.63)

(ROAE) = ZEkTo=t), (6.64)
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and
(fa®)) = 0, (6.65)
AOS) = 0, (6.66)
Fal)fart)) = 22208 e — ). (6.67)

Notice the double occurrence of kg7 in the last relation.

b. Damping coefficients. On taking Egs. (6.55) and (6.59) into account,
one can calculate the damping coefficients from the area enclosed by the mem-
ory kernels, namely

A A ksT [
1 / dr K (1 Laa' B2 _ / A Kgq (1) - (6.68)
ym 0

These areas must be: (i) finite and (ii) different from zero, for the Markovian
approximation to work.

On the other hand, since it could be difficult to find the kernels exactly
in some cases, it is convenient to have alternative means for calculating the
areas required only. Thus, on inserting the definitions of the kernels (6.31)
and (6.50) into the above integrals and using [;°d7 cos(wr) = wd(w), we
arrive at the following expressions for the damping coefficients in terms of the
distribution of normal modes and spin-environment coupling constants

A e

— [¢3 a(s o) s )
~m e Xa: 2 Owa) (6.69)
Aaq’ _ aﬁcaﬁ
Am Z 2w2w5 wp) +d(wa +wp)] - (6.70)

Note that the Dirac deltas in these formulae make sense under integral signs
for (quasi-) continuous distributions of environmental modes. Recall in this
connection that the coupling constants can depend on the frequencies of these
normal modes.

c. Fokker—Planck equations. The Markovian Langevin equations can
be employed to construct the corresponding Fokker—Planck equations gov-
erning the time evolution of the non-equilibrium probability distribution of
spin orientations P(17,t). On examining the statistical properties (6.64) and
(6.67), one realizes that, to do so, Langevin equations where the noise terms
are not statistically independent need to be considered.
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Let us then consider the general system of Langevin equations

dus
G = A+ Y By, OL(t) | (6.71)

k
where y = (y1,...,yn), k runs over a given set of indices, and the Langevin

sources Ly (t) are Gaussian stochastic processes satisfying
(Lr®) =0, (Le(t)Le(t)) = 2Dped(t = t') . (6.72)

The constant (symmetrical) matrix Dy, accounts for the possible correlations
among the L (t) [cf. Eq. (5.23)].

The time evolution of P(y,t), the non-equilibrium probability distribution
of y at time ¢, is given by the following generalization of the (Stratonovich)
Fokker—Planck equation (5.24)

oP 3] 0By,
Sl L |7 BiyDy 2%\ p
= | (4 2 Beoa gt )

jke

62
* X g (3 PPt )]

ke

As in Subsec. V.C, we take the y;-derivatives of the diffusion term in order
to cast the Fokker—Planck equation into the form of a continuity equation for
the probability distribution

oP _ 9 [[4 . 0B 'f) . . i] }
= — A; — B D ) — Bip Dy B P .
ot ;3%{[ % % ik ké(; 8yj J% ik kL ]Zayj
(6.73)

Note that, for uncorrelated fluctuations, Dygy = Ddye, these equations duly
reduce to Egs. (5.24) and (5.25).

Now, on considering the Landau-Lifshitz-type equation (6.58), supple-
mented by the statistical properties (6.63) and (6.64), the substitutions [cf.
Egs. (5.26) and (5.27)]

(k7€) = (17 ll) ) (y17y27y3) = (mwamyamz) )
A
L = Dy = T
1(t) A(t), w=0 ksT ,
4; = [mﬁ A Bog — Lais A A® (rﬁ A Eeﬁ)] ,
m i

A%
By = _’VZ €irsyr 53—
— om

s
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cast those equations into the form of the general system of Langevin equations
(6.71) supplemented by Egs. (6.72). Therefore, on using [cf. Eq. (5.28)]

0By %
8m]~ - ’Y(Zeus + Zezrsmr 6m,3ms> )

one finds that 3, 0B;1/0m; = 0, V1 due to the fact that €;;; = 0 and the van-
ishing of the contraction of symmetrical tensors with antisymmetrical ones.
Consequently, the second term on the right-hand side of the general Fokker—
Planck equation (6.73) also vanishes in this case. For the third term, by re-
peated use of (JA J'); = > s €irsJrJy and recalling the definition (6.57), we
obtain

P N P
- Z BllDll’ Jll 8— %kBT |:'f?l /\ A(L) ( 6 >:|

o om

On introducing these results into Eq. (6.73) one eventually arrives at the
Fokker—Planck equation [cf. Egs. (6.4) and (6.6)]

oP 0

F e {’Ym/\Beﬁ‘P— MYV [77'"2/\ (Eeﬂ - kBTi_,>P] } , (6.74)

om

where (8/0m) - J = >-;(0J;/Om;). In addition, by means of similar con-
siderations and allowing the index in the Langevin sources Lg(t) to run
also over the indices q, the Landau-Lifshitz-type equation (6.60) leads to
a Fokker—Planck equation analogous to the above one with A™ augmented
to A = A® + kgT A@ | namely

oP 0

op _ 5y 9
5% = " am {vm/\BﬁP m/\A[m/\(BeH kBT@m)P]}'(6'75)

Concerning the stationary solution of these Fokker—Planck equations, one
can use Beg = —OH /9 and (8/8m) - (i A Beg P2) = 0 (see Subsec. V.C), to
demonstrate that the Boltzmann distribution, Pe(m) x exp[—H(m)/ksT], is
indeed a stationary solution of Eqgs. (6.74) and (6.75). This entails that under

external stationary conditions P(m},t) 2% p, (m), that is, the spin eventually

reaches the thermal equilibrium distribution of orientations. Note that this is
a consequence of the formalism employed, instead of a constrain imposed
separately, as is done in the phenomenological approaches (see Subsec. V.C).

Note nevertheless that we have only proved the thermal equilibration for
Eqgs. (6.58) and (6.60), i.e., in the weak-coupling case. In this connection, it
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is to be recalled that, inasmuch as the spin-environment coupling Hamilto-
nians themselves are commonly obtained via perturbation theory (so they
are “small” in some sense), the study of the arbitrary-coupling case of such
Hamiltonians is mainly of an academic interest.

2. Brown-Kubo—Hashitsume model

When the spin-environment interaction is linear in the spin variables, the
obtained Markovian equations formally reduce to the equations occurring in
the Brown—-Kubo—Hashitsume model. To illustrate, let us consider the simpler
case of couplings linear in the environment coordinates. Then, if the Vj(m)
are linear in 17, both the relaxation tensor A®™ and the fluctuating field by are
independent of 7 [see Egs. (6.57) and (6.28), respectively]. From the statistical
properties (6.63) and (6.64) of the fluctuating sources fi(t), one then gets [cf.
Egs. (6.3)]
)

(ba,i(t)) =0, (ba(t)ba;(t")) = ’WZ ksTo(t —1t'), (6.76)

where the last result establishes the relation between the structure of the
correlations among the components of ba(t) and the form of the relaxation
tensor A®.28 The corresponding result by Jayannavar (1991) comprised an
uncorrelated by (t) (a diagonal A} in our formulation) due to special bilinear
interaction that he considered [recall the discussion after Eq. (6.14)].

On the other hand, if the spin-environment interaction yields uncorrelated
and isotropic fluctuations (Ag;) = Ad;;), one finds that: (i) the statistical prop-
erties (6.76) reduce to (6.3), (ii) the Langevin equations (6.56) and (6.58) re-
duce, respectively, to the stochastic Gilbert [Eq. (6.1)] and Landau-Lifshitz
[Eq. (6.2)] equations, and (iii) the Fokker-Planck equation (6.74) reduces to
(6.4). Thus, the phenomenological Brown-Kubo-Hashitsume model is for-
mally obtained.

Note that these results also hold when couplings quadratic in the environ-
ment variables are included [Eq. (6.60)], with the difference that the relax-
ation terms (effective damping coefficients) are then explicitly dependent on
the temperature.

3. Garanin, Ishchenko, and Panina model

We shall now show that the weak-coupling Landau—Lifshitz-type equations
(6.58) and (6.60), formally reduce to the Langevin equation (6.8) of Garanin,

28 Note that for gﬂ(m, t) depending on 771, one cannot merely employ Eqgs. (6.63) and (6.64)
to derive the statistical properties of bg(7,t), since 7i(t) and fi(t) are not independent.
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Ishchenko, and Panina, when the spin-environment interaction includes up to
quadratic terms in the spin variables. In this case, the coupling functions W
and Vg can be written as the natural extension of Eq. (6.34), namely

V](T_ﬁ) = E V,iMmy + % E Wy, MMy (677)
i ij

Vq(rﬁ) = E Vq,iM; + % E Wq,i5 MM (678)
i iJ

where the v1;, w145, vq,i, and wq,;; are coupling constants incorporating the
symmetry of the interaction. As in Subsec. VI.C, the fluctuating effective field
(6.47) can be separated in an ordinary-field part and an anisotropy-field part

ba (i, t) = b(t) + &) (6.79)

while, in this case, the expressions for the fluctuating sources in terms of the
coupling constants are generalized to

bi(t) = =[3 A+ Y faltva]
1 q

kii(t) = _[Zfl(t)wl,ij +qu(t)wq,,~j] :
1 q

Naturally, the fluctuating part of the energy of the spin (6.51), which gives
ba = —O0Ha/Om, also takes in this case the form Hg = —1-b(t) — 17 &(t)rm.

In the Markovian regime, the auto- and cross-correlations of b(t) and &(t)
can be obtained by dint of Egs. (6.64), (6.66), and (6.67). Such correlations
can be cast into the form proposed by Garanin, Ishchenko, and Panina [Eq.
(6.5)], with the following expressions for the correlation coefficients

Xij = Y Awwvnivr; + kT Y AgqVq,ivq s
LY a,q’
)\i,jk = E Allfvl,iwy,jk + kgT E )\qq/’l}q,iwq/,]‘k , (6.80)
LY a,q’
Aik,je = E A wipwy je + kT E Aaq' Wq,ikWq',je -
LY q,9’

Concerning the relaxation term, the tensor A = A®™ + kgT A@ [Eq. (6.61)]
associated with the coupling functions (6.77) and (6.78), is given by

Ay = Z A ('Ul,i + Z 'wl,ikmk) (711' g+ Z wy ,jzmz)
& ¢

LY
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+ kT Z Aaq’ (Uq,i + Z wq,ikmk) (Uql,j + Z wa,jgmg) .
k J4

a,q’

However, this expression can be written in terms of the correlation coefficients

(6.80) as

Ai]’ =X + Z()\m’k + )\j,ik)mk + Z)\ik,jemkmg s (6.81)
k kt

which is identical with the relation (6.7) between the tensor G in Eq. (6.8)
and the correlation coefficients in Eq. (6.5).

Therefore, we find that when the spin-environment coupling includes up to
quadratic terms in the spin variables, the structures of the fluctuating effective
field b (17, t) and of the relaxation term R = (v/m) 1 A A(1 A Beg) in the
Landau-Lifshitz-type equation (6.60), as well as the relation between them,
are identical with the structures and mutual relations of the corresponding
terms in the Langevin equation (6.8) of Garanin, Ishchenko, and Panina.
Naturally, the Fokker—Planck equation (6.75) then reduces to Eq. (6.6).

VI.F Discussion

Starting from a Hamiltonian description of a classical spin interacting with
the surrounding medium, we have derived generalized Langevin equations,
which, in the Markovian approach, reduce to known stochastic equations of
motion for classical magnetic moments.

Note however that the presented derivation of the equations of Garanin,
Ishchenko, and Panina and, similarly, the previous derivations of the equations
occurring in the Brown-Kubo-Hashitsume model (Smith and De Rozario,
1976; Seshadri and Lindenberg, 1982; Jayannavar, 1991; Klik, 1992), are for-
mal in the sense that one must still investigate specific realizations of the
spin-plus-environment whole system, and then prove that the assumptions
employed (mainly that of Markovian behavior) are at least approximately
met. A paradigmatic case in which the Markovian approach breaks down, is
the case of the magneto-elastic coupling of the spin to the lattice vibrations
(in two or three dimensions) linear in the corresponding normal modes (Garg
and Kim, 1991). The associated memory kernel crosses zero, changes it sign,
and tends to zero from negative values as 7 — oo, enclosing a zero alge-
braic area. One then gets identically zero Anr by Eq. (6.68) and hence a zero
tensor A® by Eq. (6.57). Therefore, on replacing such a kernel by a Dirac
delta, one looses the relaxational effects associated with the portion of the
coupling linear in the environment variables (“one-phonon” processes), which
are dominant at sufficiently low temperatures.
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On the other hand, we have considered the classical regime of the environ-
ment and the spin. A classical description of the environment is adequate, for
example, for the coupling to low-frequency (hw,/ksT < 1) normal modes,
while, for instance, the magnetic moment of a nanometric particle (m ~ 103
10% up) behaves, except for very low temperatures, as a classical spin. In
addition, the equations derived might also serve as a limit description of the
semi-classical dynamics of molecular magnetic clusters with high spin (S 2 10)
in their ground state.

VII Summary and conclusions

To conclude, let us summarize the most important results presented in this
Chapter:

Approximate and exact results for a number of thermal equilibrium quan-
tities for non-interacting classical magnetic moments with a simple axially
symmetric anisotropy potential, have been derived and analyzed. The results
obtained also apply to systems described as assemblies of classical dipole mo-
ments with Hamiltonians comprising a coupling term to an (electric or mag-
netic) external field plus an axially symmetric orientational potential. Con-
cerning their application to superparamagnetic systems, it has been shown
the fundamental role of the magnetic anisotropy in the thermal-equilibrium
properties of magnetic nanoparticles and, consequently, the inadequacy of the
approaches that ignore these effects on the basis of a restrictive ascription of
superparamagnetism to the temperature range where the anisotropy energy
is smaller than the thermal energy.

In the study of the dynamics of individual magnetic moments by the Lan-
gevin dynamics approach, interesting phenomena, in the over-barrier rotation
process have been found, such as crossing-back and multiple crossing of the
potential barrier, which can be explained in terms of the gyromagnetic nature
of the system.

The results for the linear dynamical susceptibility, x(w), obtained from
the stochastic Landau-Lifshitz—Gilbert equation, have been compared with
different analytical expressions used to model the relaxation of nanoparticle
ensembles, assessing their accuracy. It has been found that, among a number
of heuristic expressions for x(w), only the simple formula proposed by Shliomis
and Stepanov matches the coarse features of the susceptibility reasonably. On
the other hand, we have investigated the effects of the intra-potential-well
relaxation modes on the low-temperature longitudinal dynamical response,
showing their relatively small reflection in the x| (w,T) curves (remarkably
small in Xill ) but their dramatic influence on the phase shifts. Concerning the
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transverse response, the sizable relative contribution to x'[ (w) of the spread of
the precession frequencies of the magnetic moment in the anisotropy field at
intermediate-to-high temperatures, has been demonstrated by comparing the
numerical results with the exact zero-damping expression for x'/ (w). Taking
this effect into account may be relevant to properly assess the strength of the
damping is superparamagnetic systems.

Dynamical equations for a classical spin interacting with the surrounding
medium have been derived by means of the formalism of the oscillator-bath
environment. The customary bilinear-coupling treatment has been extended
to couplings that depend arbitrarily on the spin variables and are linear or
linear-plus-quadratic in the environment dynamical variables. The equations
obtained have the structure of generalized Langevin equations, which, in the
Markovian approach, formally reduce to known semi-phenomenological equa-
tions of motion for classical magnetic moments. Specifically, the generalization
of the stochastic Landau—Lifshitz equation effected by Garanin, Ishchenko,
and Panina in order to incorporate fluctuations of the magnetic anisotropy
of the spin, has been obtained for spin-environment interactions including up
to quadratic terms in the spin variables. On the other hand, the portion of
the coupling quadratic in the environment variables introduces an explicit
dependence of the effective damping coeflicients on the temperature.

APPENDICES

A The functions R (o)

In this appendix, we shall summarize some properties of the function R(c)
and its derivatives:

1
RY (o) = / dz 2% exp(02?) , £=0,1,2,... .
0

These functions, which were introduced by Raikher and Shliomis (1975), play
an important role in the study of the equilibrium and dynamical properties
of classical magnetic moments with the simplest axially symmetric anisotropy
potential.

We shall also derive approximate expressions for the most familiar com-
binations of the type R¥)/R, which will be valid in the ranges |o| < 1 and
|o| > 1. These approximate formulae can be employed to derive the corre-
sponding approximate expressions for a number of quantities.
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A.1 Relations with known special functions

The functions R (¢) are related with certain special functions, e.g., the Kum-
mer functions, error functions, and the Dawson integral.

The definition of the confluent hypergeometric (Kummer) functions is (Ar-
fken, 1985, p. 753)

n

M(a,c;w):i(a)"m c#0,-1,-2,..., (A1)
0

o (©)n nl’
(@p=ala+1)---(a+n—-1)=(@+n-1l/(a=1)!, (a)o=1,
where (a),, is the Pochhammer symbol. For non-integer argument the factorial
signs are to be interpreted as gamma functions a! def T(a+ 1) with

T(2) = /0 TaElet . R(2) >0, (A.2)

where R(-) denotes real part. The relation between the functions R“)(¢) and

Kummer functions reads

M(+1,0+3;0)
20+1 ’

On using M(a,c;z = 0) = 1 [see Eq. (A.1)], one gets from Eq. (A.3) as a
corollary the derivatives of R(co) at the origin

1
RY(0) = srrg (=0L2 . (A.4)

RY (o) =

£=0,1,2,.... (A.3)

The relations (A.3) can easily be derived from the following integral represen-
tation of the Kummer function

1
2F(C) a) / dze® z2z2a—1(1_z2)c_a_1 R %(C) > §R((]’) >0,
- 0

M((l, C; .CE) = W
(A.5)

which follows from the more familiar one (Arfken, 1985, p. 754)

M(a,c;x) = % /Oldte”t“_l(l 1)t R(c) > R(a) >0,

(A.6)
by dint of the substitution ¢ = z%. For a = £+ 1 and ¢ = £+ 2, one has
¢—a =1, so that

()  2M(L+3)
T(a)T(c—a) T+ 1Hr(1)

=2+1,
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where I'(z + 1) = 2I'(z) and I'(1) = 1 have been employed. Then, on using
c—a—1=0and 2a — 1 = 2/, the right-hand side of Eq. (A.3) can be written
by means of the integral representation (A.5) as

M(E+%,€+%;U) 1

1
= 2041 722 L RO(). QED.
1 2€+1X(€+ )/Odze z RY(a). Q

On introducing the error functions of real and “imaginary” argument,
namely

erf(z) = / /7r/ dt exp(—t*) , erfi(z \/4/7r/ dt exp(t?) , (A.7)

one can alternatively write R(o) as

| r/doerfi(c?/?) foro >0
k(o) _{ V/alo]erf(jo]?) foro <0 (A-8)

The less familiar erfi(z) is directly related with the Dawson integral

D(z) = exp(— / dt exp(f) , (A.9)

which is a tabulated function also available in certain mathematical libraries
of computers. Consequently, the first equation in (A.8) is essentially the
known relation between R(c) and the Dawson integral (see Coffey, Cregg
and Kalmykov, 1993, p. 368)

R(o) = ex\%’)p(\/&) . 0>0, (A.10)

which, as is indicated, only holds for positive argument.
Proofs:

(i) By means of the substitution ¢ = /%o 2z, where the upper and lower
signs correspond, respectively, to ¢ > 0 and ¢ < 0, one finds

m/4(x0) x { 2;?((\/\/2—27) = /7n/4(x0) \/4/_71'/ dt exp(t?)
NN / dz exp(02?) ,
—f—l 0

from which Egs. (A.8) follow. Q.E.D.



ON THE STATICS AND DYNAMICS OF MAGNETOANISOTROPIC NANOPARTICLES 186

(ii) On the other hand, Eqgs. (A.7) and (A.9) immediately yield

erfi(x) = \/4/—7T/Owdt exp(t?) = \/4/mexp(z?)D(x) ,

from which one gets Eq. (A.10) through the already demonstrated Eq.
(A.8). Q.E.D.

A.2 Recurrence relations

The functions R® satisfy the following recurrence relations:

RU+1) — e’ — (20+ l)R(f) RO _ e’ — 2g R+

- A1l
20 20+1 ’ ( )

which can readily be obtained by integrating by parts the definition of R(®.
The ¢ = 0 particular case of these relations is frequently employed. It can be
written in the following equivalent forms

e’ —R - p e’ R’

. & R=e¢"-20R & 7 —1+20R , (A.12)
where the prime denotes derivative with respect to o.

One can also derive recurrence relations among the combinations R /R,
which occur in the expressions for a number of quantities (e.g., the linear and
non-linear susceptibilities). On dividing both sides of the first Eq. (A.11) by
R and using Eq. (A.12) to eliminate e’ /(20 R), one gets the following relation
between quotients of the form R“)/R:

R =

R+ RO 1 R®
=— 4+ —[1-(2 1)— A3
R R "2 [ @+ DF ] (4.13)
The following particular case
RII RI 1 RI
L S (> Sl | A.14
R R 2 (3R ) ’ ( )

is especially useful. For instance, it can be employed to calculate R" /R from
R'/R.
A.3 Series expansions

Series expansions for R(o) and its derivatives can easily be obtained from the
corresponding expansions of the Kummer functions.
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a Power series

From the relations (A.3) between R()(¢) and Kummer functions, one can
construct the Taylor expansion of the former through the power series (A.1)
for the latter. For the quotient of Pochhammer symbols required one gets

1 (+5)n 1 (L4+n—HYE-3)" 1
20+1(6+3), 2+1(L+n+)/(E+3H 2(0+n)+1"

from which we obtain the desired power series of R (o)

=1 o
0 = -z
R (J)_Zn! 2(0+n)+1"

n
n=0

b Asymptotic formula for large positive argument

For z > 1, the Kummer functions are approximately given by (Arfken, 1985,
p. 757)

M(a,c;z) = %xfia
y {1+ (1—al(c—a) + (l—a)(Q—a)éZ;a)(C_a+1) +] . (A.15)

Then, on using the relations (A.3) and noting that in this case 1 — a =
—(2¢-1)/2 and ¢ — a = 1, we obtain the following asymptotic expansion of
RO ()

RO = {1- DL BV LA os 1 g

20 20 402

This expansion generalizes for an arbitrary ¢ the results derived by Raikher
and Shliomis (1975) for £ = 0,1,2, and 3. Note finally that, one can use Eq.
(A.16) to take the 0 — oo limit of the quotient R¥) /R, getting

B oy _ _ 24 ...
RO 1=Q0=1/20+ @0-1)@0=3)/40"+ ooy (p17)

R 1+1/20+3/462+---

¢ Asymptotic formula for large negative argument

Asymptotic expressions for R(Y) (¢ <« —1) can be derived from the asymptotic
expansion of the Kummer functions for large negative argument. The latter
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is easily obtained from the expansion (A.15) for large positive argument by
dint of Kummer’s first formula M(a,c;x) = e*M(c—a,c;—x) (Arfken, 1985,
p. 754)

) N L(c) 1
(a,¢;2) = T(¢c—a) (—x)°
y 1_’_(c—am—l)a_'_(c—a—2)(c2—ﬁvc;—l)a(a-l-l)_'_

(A.18)

Then, taking once more the relations (A.3) into account, one obtains the
approximate expression

a2 e 1
2241 fl (—g)ttl/27?

RO (o) o< -1, (A.19)
for the derivation of which we have also employed the following useful result
for the gamma function of half-odd-integer argument

/2 (20)!

(A.20)
Note that the next terms in the asymptotic expansion (A.19) vanish identi-
cally, since ¢ —a— 1 = 0 in this case [see Eq. (A.18)]. Finally, for the quotient
R /R one gets the limit

RO 1 20! 1 9=

R 22 g (—of

Ve>1. (A.21)

To conclude, as an exercise of consistency, one can obtain from the derived
|o| < 1 and o > 1 expansions of R(c), via the relation (A.10), the known
power and asymptotic series of the Dawson integral (see, for example, Coffey,
Cregg and Kalmykov, 1993, p. 368):

2 4
JI——.’E3+1—5$5+“‘7 z<k1
Dle) = 1 1+ L + >1
2 212 °

A.4 Approximate formulae for R'/R and R"/R

We shall now derive approximate expressions for R'/R valid in the |o] < 1
and |o| > 1 ranges. These expressions, along with the recurrence relations
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(A.13) between consecutive R)/R, would provide approximate expressions
for R /R with £ > 2. We shall explicitly give these approximate formulae
for R"/R.

The following approximate expressions will be obtained by constructing
approximate solutions of the differential equation that the function G = R'/R
satisfies, namely

dG 1
do 20
which can easily be derived from Eq. (A.14).

(1-3G)+G(1-G), (A.22)

a Power series

To obtain G|, «1, we shall seek for a solution of the differential equation
(A.22) in the form of a power series G = > °  a,o™. Prior to do that, how-
ever, in order to remove the singularities in the coefficients in that differ-
ential equation, these are multiplied by 20, yielding the equivalent equation
20(dG/do) = (1 — 3G) + 20G(1 — G). This is a non-homogeneous non-linear
differential equation, and these features will take reflection in the form of the
constructed solution.

On inserting G = Y77, ano™ into the above differential equation, redefin-
ing the summation indices in order to obtain the same exponent for ¢ under
each summation symbol, and equating coefficients, one gets for the a,:

n—1
ap=1/3, (n-}-g)an:an_l—Zakan_l_k, forn>1.
k=0

The fact that ag is not a free parameter results from the non-homogeneous
character of the differential equation. On the other hand, the above recurrence
relation among the a,, shows that, as a consequence of the non-linearity of
the differential equation, the computation of each coefficient involves all the
previous ones. Finally, on computing the first few coefficients, G = R'/R
emerges in the approximate form

1 4 8 16 32
G- 14— —o?— —— - ) . A.23
3( T 57T 3157 T w25 31185 (A.23)
We have carried out the expansion up to the fourth order in o because some
quantities are approximately obtained up to terms of order ¢ and, for exam-
ple, R"/R involves G' [see Eq. (A.26) below].
The formulae required to derive some approximate expressions in the main

text are
R 1 48 16
- ~ - 1 i - 2 ¥ 3
R 3 ( T 17T 3157 T ams’ ) ’
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R"\? 1 8 64 32
i U P S A.24
(R) 9( T 157 5257t amas” ) ’ (A.24)

LAPOR W IK VR I
R — 5 315 10395 '
For instance, the combinations entering in the equations for the non-linear

susceptibility read

L[1R" (R ~ L1408, 8, B2
23R R T 9735 14857 )
1[/rR\* R _ 2 R SN PR
2 [\R R| = " 217 71057 " 20797 )
1 R R\? R"] 1 8 128
= T o 2o~ (1= =2 %) . (A.
6| TR 2(R) * R 45( 217 * 103957 ) (A.25)

The expression for R" /R in Eq. (A.24) has been obtained from R'/R, through

the relation
RII

R
which is directly demonstrated by taking the derivative G' = (R'/R)’
(R"/R) - (R'/R)*.

=G +G*, (A.26)

b Asymptotic formulae

We shall now derive approximate expressions for G = R'/R valid in the
|o| > 1 ranges. To this end we make in Eq. (A.22) the substitution ¢ = 1/0,
which casts it into the form

,dG

dg 2
Let us seek for solutions of this differential equation in the form of a series of
powers of .22 On inserting G = Y.~ bpo™ into the above equation, redefin-

ing conveniently the summation indices, and equating coefficients, one gets
for the by,:

-0 21-360)+G1-G).

B 13b—1
bO(l_bO) - 07 b1—21_2b05

5 n—1
(1—2bo)b, = (5 - n)bn_l + kz_:l bibn_i, forn>2.

29 A similar method was employed by Raikher and Shliomis (1975) to derive the afore-
mentioned asymptotic series of R() (o).
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Again, the first coefficient is not a free parameter and the above recurrence
relation involves all the coefficients preceding a given one.

As could be expected from the fact that we are searching for solutions in
two different asymptotic ranges (¢ — +00), we obtain two different solutions.
The one that corresponds to the choice by = 0 (denoted G;), when expressed
in terms of the original variable o = 1/p, takes the simple form

where all the remainder terms vanish identically. (As can be readily seen,
G = —1/20 is an exact solution of the original differential equation (A.22),
although, since it diverges at o = 0, it is not the selfsame R'/R.) On the other
hand, the solution that corresponds to the choice by = 1 (denoted G>) is given
by 1 1 5
G2:1_;_§_E+.” , (bo=1).

We must now ascribe each solution to one of the two asymptotic ranges. On
recalling Egs. (A.17) and (A.21), we conclude that G; and G2 correspond,
respectively, to the 0 <« —1 and ¢ > 1 ranges. Note anyway that the 0 < —1
result can directly be obtained from the asymptotic results (A.19).

We can now derive the combinations of R(o) and its derivatives that are
required in the main text to construct approximate formulae for various quan-
tities. For ¢ <« —1, these are:

R’ 1 R\> 1 R'" 3
=~ - ~— —_—~— A2
R 20’ (R) 402’ R ~ 40%’ (4.27)

and the combinations

1[1R"  [R\?] 0

23R \R -

1 R 2 R//- 1

2 (E) TR S T (4.28)
1 R R\?> R"] 1 11
Slcrge o) 4~ (14— )
6| TR (R)+R 16(+a 402>

Similarly, for o > 1 we find
R 1 1 5
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R\* 2 3
— ~ ]l—-—=— A.29
( R ) o 203’ ( )
R" 2 1 1
=) ==+ =53,
R o o 20
and their combinations
1 1 2 1 2
- 3 o 202 g3)°
1 1
~ - —=4+—, A.30
(202 * 203) ( )
~ 0.
1 15
0.9 0.9
0.8 E 0'8‘§
o 073
N 0.6
0.6 E 0‘5_2
05 3 0.4
0.4 ; 0_3_3
03 3 0.2
0 0 25 o 50
0.4_ 0.2 . . . . ; . .
71 o0.2 T :
0.3 E 0.15] r “IE
] 013 St I
0'2_: 0-1‘: 0.05] //// L ‘/ ;—
01 T -
] R"/R /
0 1 N n L L s s 0 N N N N N | T .
-50 -25 g 0 .50 25 g 0

FIGURE 34. The functions R'/R and R"” /R together with their small and large
o approximations. The continuous lines represent the exact functions. Long dashes:
large |o| approximations (A.27) and (A.29). Short dashes: small o approximations
(A.24). The insets show the details of the zones where the small o approximation
might be swapped by the corresponding large o approximation, without a significant
loss of accuracy.
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We also write down the leading terms in the |o| < 1 and |o| 3> 1 expansions
of the combination R"/R— (R'/R)?, which occurs in some expressions studied
in Sections IIT and 1V,

R B 2 1/20? for o < -1
R (_) N

i 4/45 for l|o| K1 . (A.31)
1/02 foro>1

The appropriate combination of Egs. (A.24), (A.27), and (A.29) almost
patch the corresponding exact curves over the entire o-range. This is shown
in Fig. 34, where it can be seen that the use of the |o| < 1 results, swapped
at some point between || = 2 and |o| = 5 by the corresponding |o| > 1
formulae, is a reasonable approximation of the exact functions.

B Derivation of the formulae for the relaxation
times

In this appendix we shall give demonstrations of the formulae (5.66) and (5.71)
for the relaxation times.

B.1 Integral relaxation time

a The integral relaxation time and the low-frequency dynamical
susceptibility

The integral relaxation time defined by Eq. (5.64) is expressible in terms
of the eigenvalues, Ay, and amplitudes, ay, of the Sturm-Liouville problem
associated with the axially symmetric Fokker-Planck equation [Eq. (5.65)].
In addition, 73,y can also be written in terms of the low-frequency dynamical
susceptibility (Garanin, Ishchenko, and Panina, 1990; Garanin, 1996). In order
to show this, let us first write down the general result from linear-response

theory -

where m(t) is the relaxing quantity, x(w) is its susceptibility counterpart (x
being the equilibrium susceptibility), and AB is the infinitesimal change in
the external control parameter. On applying this result to {(m(c0)) — (m,(t))
from Eq. (5.61) and using the sum rule ), ax = 1, one finds

e = Y ad1- i [“ar el a0d }

k>1
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from which it follows

ag
X||(w) = X|| Z PEEE—— (B.2)
ko1 1+ iwAg

Thus, each exponential mode in the relaxation curve (5.61) gives a Debye-type
factor in x)(w) weighted by aj and with characteristic time A;". Finally, on
expanding x| (w) for low frequencies by dint of the binomial formula, one gets

x| (W) = x| Zak (1- iwAL + - ) =x 1 = iwTine +---) (B.3)
k>1

where we have again used ) ,-; ar = 1 and taken Eq. (5.65) into account.
Equation (B.3) demonstrates that the calculation of 7y can effectively be
reduced to the calculation of the low-frequency dynamical susceptibility.

b Perturbational solution of the Fokker—Planck equation in the
presence of a low sinusoidal field

In order to calculate X (w) one applies a low sinusoidal field, A(t) = A& exp(iwt)
where A§ = mAB/kgT, along the z (symmetry) axis and then calculates the
solution of the axially symmetric Fokker—Planck equation (5.47) in such a sit-
uation. Since —fH(z,t) = —BHo(z) + zA&(t), where Hg is the unperturbed
Hamiltonian, we shall seek for a solution for the probability distribution in
the stationary regime of the form

P(z,t) = Fe(2)[1 + q(2) AL(H)] (B.4)

where P, = Z; ' exp(—fH,) is the equilibrium probability distribution in the
absence of the oscillating field.

On introducing the above P(z,t) into the Fokker—Planck equation (5.47)
one gets, to first order in A (linear response regime), the following second-
order differential equation for ¢(z)

(—ﬂ’r’i{] + i) [Q(z)%] —iw2mng = —Q(2)fHy + ', (B.5)
dz dz

where Q(z) = 1 — 22 and the primes denote differentiation with respect to

z. On the other hand, by taking the introduced form of P(z,t) into account,

the non-equilibrium average of the z component of magnetic moment can be

written as

m.() = [ lldzP(z,t)mz = m @), + mag() [ lldz P(2)a(2),
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where (z)e = f_lldz P,(2)z is the equilibrium average in the unperturbed
case. Next, since A¢(t) = (mAB/kpT) exp(iwt), the dynamical susceptibility,
which is the coefficient of yy; ' ABe™ in (m,(t)), is given by

X =20 1 =P (2)a(2)z (B.6)

Comparison of this equation with Eq. (B.3) reveals that only the low-frequency
part of ¢(z) is required to calculate 73,¢. This is important since Eq. (B.5) can-
not be solved analytically in the general case. In contrast, it can be solved
perturbatively for low w because, for w = 0, only ¢'(2) and ¢"(z) occur in that
equation. This enables one to low the order of the differential equation (B.5)
by introducing an auxiliary function g(z) = ¢'(z), and solving successively the
system of first-order differential equations for ¢(z) and g(z).

Let us accomplish this. First, one introduces the perturbational expansion

4(2) = qo(2) — ()1 (2) + (w)?g2(2) = -+,
into Eq. (B.6), getting

2 o1 1
Hom . Mom
P - P
T _ldz o (2)q0(2)z — iw T /_1dz e (2)q1(2)z +

x| (w) =

Then, on comparing this result with Eq. (B.3), one obtains the following
integral representation of 7yp:

1 1
Tint = W/_ldzpe(z)(h(z)z ) (B.7)

where we have used x| = (pom?/ksT)0 (2), /O¢ [cf. Eqgs. (3.59) and (3.60);
we can differentiate with respect to B since this is parallel to the probing field
AB]J. Equation (B.7) shows that the calculation of 7y, effectively reduces
to that of ¢1(z). In order to obtain this quantity, we introduce the above
perturbational expansion of ¢(z), along with g; = dg;/dz, into Eq. (B.5),
getting

d ) .
(—ﬂHG + @) {Q(2)[g0 = (iw)gr + (iw)?g2 — -]}
—iw2nlgo — (iw)a + -] = Q=) BHp + 2 . (B.8)
The zeroth-order equation has the thermal equilibrium solution

Qo =2—(2) > (B.9)
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as can be shown by using the definition of ¢(z) and expanding the equilibrium
probability distribution associated with fH = fHo—zA¢ [i-e., the w = 0 limit
of fH(t)] in powers of AE.

The (iw)-order term of Eq. (B.8) reads

(—57{6 + %) [2(2)g1] +278go = 0.

This differential equation can be integrated by quadratures yielding

q1(z) = % exp[BHo(2)] [c1 + Z0®(2)] , (B.10)

where Zj is the (unperturbed) equilibrium partition function and ®(z) is given
by

z
3(2) :/ A5 Pa(z1) (2), — 1) - (B.11)
1 ———
—qo(z1)

On using the condition J,|,=11 = 0 (which follows from the tangency of the
current of probability to the unit sphere) and ®(—1) = ®(1) = 0 (which
immediately follow from the above definition), one gets for the integration
constant ¢; = 0. Consequently, q;(z) = [“dzs g1(22) is given by

? dZ2
w =N ] o)

where we have written Zy exp[SHo(22)] = 1/Pes(22). The new integration con-
stant, ¢y, can be obtained by solving the (iw)2-order equation and imposing
anew the aforementioned condition on the current of probability at the bound-
aries. On doing so, one finds ¢; = — (¢1), = — f_lldz P,(2)41(z), where ¢1(z)
is the integral term in Eq. (B.12).

<I)(2’2)/Pe(22) =c2 + ql y (B12)

¢ The Garanin, Ishchenko, and Panina formula

We can already do the integral involving ¢;(z) in the formula (B.7) for the
integral relaxation time:

/wﬂwm@z=(/®&@@@—@ﬁz
—1 -1

_ [Pg@@@%Vkﬁwﬂ@M@

—_————
(@1).
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_ / d2Po(2) ((2), — )@ (2)
d®(z) by Eq. (B.11)
2
= - BEIEL, /dz@ TN 8(2)/Pu(2) -
0 by <1>( 1)=%(1)=0 —,_/

i (z) by Eq. (B.12)
Then, on introducing this result into Eq. (B.7) one obtains

2TN L dz

T (), 106 ], Qz)

whence, on recalling that (z) is a shorthand for 1 — 22, one finally gets the
result (5.66) of Garanin, Ishchenko, and Panina (1990).

®(2)?/Pu(2) , (B.13)

d Explicit expressions for &(z)

Let us conclude with the calculation of explicit expressions for ®(z) for par-
ticular forms of the Hamiltonian. Let us assume that #y comprises a uniaxial
anisotropy term, —Kwvz?2, plus a Zeeman term, —mBz, i.e., —fHo = 02> + £z
[see Eq. (2.3)].

1. Isotropic case. When o = 0, the equilibrium probability distribution
is given by Eq. (2.18). Thus, one of the contributions to ®(z) is

—e¢
/dZ1P 1) (5) 2sinh ¢

where we have used (z)e = L(§), L(§) being the Langevin function. The
remainder contribution to ®(z) is

_/_1dz1 P(z)zn = 251nh§ 85 dz1 exp(€z1)

e _1 —¢(1+z>< l)]
2sinh§[<z 3)” el

On adding these two contributions and recalling the definition (2.49) of the
Langevin function, one finally gets the explicit result

Bran(2) = PeT(Z) [coth§ - exslzr(thZ)] . (B.14)
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2. Zero-field case. For £ = 0 the equilibrium probability distribution is
given by Eq. (2.21). Therefore, (z)e = 0 and
1 # .
®(z) = “3R(0) /_1dz1 exp(023)z .

Then, on expressing the result of the integral in terms of the probability
distribution (2.21), one gets [note that Ps(—1) = Pe(1)]

Buns(2) = 5 [P(1) = Pe(2)] - (B.15)

B.2 Effective transverse relaxation time

We shall now derive Eq. (5.71) for the effective transverse relaxation time by
performing the low-frequency expansion of the formula for x, (w) of Raikher
and Shliomis (1975; 1994).

a The Raikher and Shliomis formula for the transverse dynamical
susceptibility
The expression for x| (w) derived by these authors can be written as
Aa(Np + iw27N) + Ac
A1+ iw27n) (A2 + iw27N)

XL, T) =x.(T) ( (B.16)
where x 1 (T) is the equilibrium transverse susceptibility (3.53). The coefli-
cients g, Ay, and A, are given, in terms of the functions R)(c) [Eq. (2.33)]
and the dimensionless damping coefficient A in the Landau—Lifshitz equation,
by
_R+FR _ R—-3R' +4R" _203R'-R
MER R *" R -R" ‘"X R-R’

whereas A; and A, are the roots of the second-degree equation 22 — Ma+Xp)z+
(XAaXp + A) = 0. On using that the roots z; and zs of ax? + bz + ¢ = 0 obey
z1+x2 = —(b/a) and z1xz2 = ¢/a, we can write the expression in denominator
of x1 (w) in terms of A,, Ap, and A, as

(M +iw2mw) (A2 +1w27n) = (N Ap + Ae) — 4&)27'1% +iw2mn(Ag + o) -

Accordingly, the transverse susceptibility (B.16) can equivalently be written
as

. Aa
1 + %JZT —_— Y
"X s - Ao

X1(w,T) = x1(T) (B.17)

1 —4u?2— - ARG
CINYN A+ A Aas + e
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b Low-frequency expansion of x, (w) and the effective transverse
relaxation time

On expanding x, (w) from (B.17) in powers of w7y to first order, we get the
simple result

. A 1
XL(@, T)/xL(T) ~ 1 —iw2ry—— ~ ., (B.18)
T I SN
N XX + A
where the last approximate equality has been obtained by means of the bino-
mial expansion (14 z)¢ = 1+ ex + - - -. Therefore, in the low-frequency range

X1 (w) has a Debye-type form, so that the quantity multiplying iw defines an
effective relaxation time, namely

1 1
Filemg = 2N ———— B.19
Hemo = 2 T T 3 Ty (B.19)
To conclude, with help from the results of Appendix A, let us write the co-
efficients A\, Ap, and . in terms of Sy [the average of the second Legendre
polynomial (3.73) at zero field]

\ 245, \ _ 202+ S5(1-6/0) _ 1 605,
@ 1—5’2’ b 3 5'2 ’ ¢ /\21—512’
From these equations we get
1 _1-5 A _ 1 (35,)>
Aq 2+»§2 ’ AaAp A2 (2—}—32) [2+§2(1 —6/(7)] ’

which when inserted in Eq. (B.19) yield the effective transverse relaxation
time (5.71).

Note finally that, as introduced, the effective transverse relaxation time
is a sort of transverse integral relaxation time 7iny, | [compare the first ap-
proximate equality of Eq. (B.18) with Eq. (B.3)]. However, its usefulness is
questionable in the transverse-field case as the magnetization relaxation curve
then comprises oscillating terms, so that the area under such a curve may
largely overestimate the relaxation rate.

C Reduced equations of motion for non-linear
system-environment couplings

In this appendix we shall derive a reduced equation of motion for any dynam-
ical variable A(p,q) whose time evolution is determined by the Hamiltonian
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(6.41). This will be carried out by means of a perturbational expansion in the
coupling parameter . Nevertheless, we shall first study the weak-coupling
dynamics associated with a larger class of Hamiltonians of the form

Hr=H"(p,q) + > 5 (P2+wlQ2) +e)_BY(QFn(p,g), (C1)
a N

where the coupling terms BY (Q) are arbitrary functions of the environment
coordinates Q and N stands for a general index, which can run, for example,
over single oscillator indices, pairs, triplets, etc. (a, a8, af7,...). On the other
hand, the modified system Hamiltonian (™ augments the system Hamilton-
ian H by appropriate counter-terms, which will be determined below.

We shall first derive the reduced dynamical equations associated with the
Hamiltonian (C.1), so that one could incorporate relaxation mechanisms in-
volving any number of environmental normal modes into the dynamical equa-
tions of the system variables. This will be done by a perturbational treatment
that is an extension of the treatment developed by Cortés, West and Linden-
berg (1985) to deal with a system-environment coupling linear in the system
coordinate [the case Fn(p,q) o ¢ of the Hamiltonian (C.1)], but otherwise
arbitrary in the environment coordinates.?? Eventually, we shall particularize
the results obtained to the Hamiltonian (6.41), which is recovered when:

(i) N only runs over single oscillator indices & and pairs af3.
(ii) The corresponding coupling terms are B%(Q) = Q, and B**(Q) =
%QaQﬂ-
The coupled dynamical equations for A(p, ¢) and the environment variables
associated with the Hamiltonian (C.1) are [cf. Egs. (6.17) and (6.18)]

dA
Qe _ AP o s
@ = P g = wala E;BQ(Q)FN, (C.3)

where we have used the shorthand

BY = o8N /6Q,, .
Equations (C.3) can formally be integrated, yielding an equation akin to Eq.
(6.19) with F,(t') = > 5 BN[Q(#)]Fn (t'), namely

Qalt) = Qh(t) = — [ dt sinfwa(t — )] Y BYIQE)Fw(¢) ,

o Jitg N

30Brun (1993) also treated rather general non-bilinear interactions by perturbation theory.
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where the Q! (t) are the solutions (6.20) for the free oscillators and Fy (') =
En[p(t'),q(t')]. On integrating by parts in this equation one gets [cf. Eq.
(6.21)]

dF,
N N
Qa() Z o (Qst,t) FN(tl)]t,_t +s/dt’ ZD (@t ) == (@),
(C.4)
where we have introduced the indefinite integral
DN (Q;t, ) / dt" sinfuwa(t — " BY[Q(E")] . (C.5)

Recall that writing Q4 (t) in the form (C.4) by an integration by parts,
enables one to separate the Hamiltonian (renormalization) and relaxational
terms (Subsec. VI.C). However, Eq. (C.4) gives Q4(t) in implicit form, since
Q.(t) also appears on the right-hand side via BY(Q). Thus, Eq. (C.4) is an
explicit solution only in the linear BY(Q) case of the Hamiltonian (6.15).

For weak system-environment interactions, we shall solve Eq. (C.4) for
Q. (t) perturbatively in . However, as pointed out by Cortés, West and Lin-
denberg (1985), in order to get eventually a thermodynamically consistent
description, the expansion cannot be uniform in €. If one keeps fluctuating
terms up to order €¥, the relaxation terms must be retained up to order £2*
in order to obtain proper fluctuation-dissipation relations [see, for example,
Egs. (6.29), (6.31) and (6.39)].

The e-expansion of Q,(t) reads

Qa(t) = Qg(t) +65Qa(t) +,

where £9Q4(t) is given by the second plus third terms on the right-hand
side of Eq. (C.4) when QP (the zeroth-order term) is substituted for Q in
DN(Q;t,t'), namely

dFy

o @)

£6Qq(t) ——EZ NQ";t, t') Fn(t )]i, o +5/dt ZDN (Q";t, 1) —~

[that is, we iterate Eq. (C.4) into itself]. The corresponding expansion of the
coupling functions is given by

eBN(Q) =eBN(QM) +> ) BY(Q")6Qa + - - , (C.6)

which enters into Eq. (C.2). The term
In@) =eBV[Q" ()], (C.7)
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per analogy with f,(t) = eQ"(t) [Eq. (6.22)], is interpreted as the lowest
order fluctuation. Following the programme of Cortés, West and Lindenberg
(1985), we shall retain fluctuations only to this order.?!

Concerning the back-reaction part, one first introduces the quantities

KMy = (3 BYIQMOIDY QM) (C3)

SKNM(t, 1) = &> BY[QMIDY (Q"t,t) — KNM(t,#) , (C.9)

so that the second term in the expansion (C.6) can be decomposed as
t'=t

t'=to

Y BYQNOQ = —[ D [KNM(Lt) + SKNM (8, t)] Fu(t)]
a M

dFy

t
/ N,Mp 4t N, My o /
+ [ty [N ) + MM (8 )] = () -

to M

Each kernel KXV'M gives a different type of contribution whereas the con-
tribution of SKN'M can be interpreted as fluctuations around the former
(Cortés, West and Lindenberg, 1985). As these fluctuations are of order higher
(¢2) than the fluctuations that we are retaining in the present treatment,
the terms 6KV*M will henceforth be omitted. On the other hand, the terms
S KNM (¢ t0) Far(to) in €2y, BN 8Q, will also be ignored as they are the
generalization of those terms that give a transient in the response (see Sub-
sec. VI.C; recall however that they could be incorporated into an alternative
definition of the fluctuating sources but, as they are of order €2, they would
anyhow be ignored). Finally, the parallel terms — > ,, KN:M (¢,¢)Fy (t) give
the Hamiltonian contributions. In order to prove this, note first that, since
KN-M (¢t 1) comprises equilibrium averages, it depends on (¢ — ') and, hence,
KN-M(t,t) is independent of ¢. By the same reasoning one can demonstrate
the symmetry property KN>M = KM-N 32 Then, by using the product rule of
the Poisson bracket (6.23), one finds that the contribution originating from
= > KNM(t ) Fpr(t) in the equation for A(p, q) is given by

= Y KVMO{A, Fn}Fy = {4, Y KVMO) v Fu |

311n order to ensure {fx(t)) = 0, where the angular brackets denote average over initial
states of the oscillators, one could assume that, for instance, at least one coordinate enters
in BN(Q) an odd number of times. Nevertheless, as discussed after Eqgs. (6.52), (6.53),
and (6.54), such a restriction is not actually needed when the frequency spectrum of the
oscillators is sufficiently dense.

32We shall anyway verify explicitly these two results for the Hamiltonian (6.41).
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which is indeed derivable from a (time-independent) Hamiltonian. This term
is associated with the coupling-induced renormalization of the energy of the
system and is balanced by the counter-terms incorporated into H(™) now
explicitly identified as [cf. Eq. (6.16)]

HO =H 4+ 5 KVMO)FyFr (C.10)
NM

On collecting the terms whose retention has hitherto been argued and
introducing them into Eq. (C.2), one finally gets the approximate reduced
equation of motion for any dynamical variable A(p, q) [cf. Eq. (6.24)]

dA ¢ F
ST {4,H} + Z {A,Fy} [fN(t) + /tdt’ > OKNM(t— t')dd—tM(t')
N o M

(C.11)
In addition, within the approximation used (fluctuating and relaxation terms
to order e and €2, respectively), one can replace dFys/dt in the memory in-
tegral by its conservative part dFys/dt ~ {Fy,H}. On the other hand, one
can establish fluctuation-dissipation relations by means of arguments parallel
to those presented by Cortés, West and Lindenberg (1985).

To conclude, we shall particularize these results to the linear-plus-quadratic
couplings of the Hamiltonian (6.41). This is recovered when N runs over sin-
gle oscillator indices o, with B* = Q,, and pairs af, with B*? = 1Q,Qs.
Then, the fluctuating terms fn(t) = eBY[Q"(t)] are given by f,(t) = eQ1(¢)
[Eq. (6.22)] and fas(t) = (E/Z)Qg(t)Qg(t) [Eq. (6.44)]. On the other hand,
by inserting the derivatives

BS = 0B%/0Qy = b4y, (C.12)
B = 0B**[0Qy = 3(0ayQs + 051Qa) » (C.13)
into Eq. (C.5), the functions DfYV(Q; t,t') emerge in the form (N = a, af)
da
DS(Q;t,t') = w—,] cos|wa (t — )], (C.14)
1t
D (Q;t,t) = - dt"” sinfw, (t — t")]1[6ayQs(t") + 05,Qa(t")] - (C.15)

Therefore, on taking the averages in Eq. (C.8) with respect to the distribution
(6.36) (decoupled initial conditions) by means of Eqs. (6.37), we get for the
kernels KXN-M (see proofs below)
2
K*B(r) = 5agw—2 cos(WaT) » (C.16)

a
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KB (r) = K*P(r) =0, (C.17)
}Caﬂ,'y&(T) — l(5a7536 + 6 6567)
5% 2 2 { cos[(wa — wg)7] + cos[(wa + ws)7]} . (C.18)

These kernels satisfy the properties mentioned above: they depend on 7 = t—¢’
and are symmetrical with respect to the indices separated by commas, which
correspond to the general indices N, M.

On introducing all these results in Eq. (C.11), the resulting dynamical
equation for A(p, q) is given by Eq. (6.43). For the sake of simplicity, we have
introduced in that equation the kernels Ko (7) and Kqg(7), which are defined
in terms of the above kernels by

’Ca’ﬂ(T) = dapKa(r),
KeP0(r) = 5(Bardps + Gasdpy)Kap(7) -
Besides, on explicitly writing the counter-term of Eq. (C.10) in this linear-
plus-quadratic case, one arrives at Eq. (6.42).
Note finally that, owing to the fact that B2(Q")D5(Q";t,') does not
depend on QP, the kernel K, (7) is not affected by the averaging procedure,
whereas this renders K,g(7) explicitly dependent on the temperature (see

below). In this connection, we remark that the modifications of this last kernel
obtained when one assumes coupled initial conditions, begin at order &3.

Derivation of the kernels

1. Derivation of K*#(7). From Egs. (C.12) and (C.14) and the general
definition KN-M(t,') = e(3°, B, D,"), one gets

KeB(t,t) = 52<ZB§D§>
p
2

0 €
_ 22 B
= ¢ < Ep Sap wg” coswp(t —t')]> = 5a5w2 cosjwa (t — t1)],

a

where the average has played no role. Q.E.D.

2. Derivation of X*#7(7). From Egs. (C.12) and (C.15) we obtain

<BaDﬁ‘Y ap/ ds" sm[w,,(t—t" ]2[ p<Qh // >+6’yp <QB ' >] =0,

0 0
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where Egs. (6.37) have been employed. Therefore, from this result and the
general definition (C.8) it follows that KX*A7(t,#') = 0. Q.E.D.

3. Derivation of KX*?7(r). The average of the product of Eqs. (C.13)
and (C.14) evaluated at Q" is zero as well. Indeed,

(857D3) = 4[5an (@B(0) +550 (@1(0) | 22 cosfo (¢~ )] =0,
HO,_/ \—\0/—’

ol

whence one gets the stated result £*?7(t,#') = 0. Q.E.D.
4. Derivation of K*?79(r). Finally, for the average of the product of
Egs. (C.13) and (C.15) evaluated at Q" one has
Bve
(B3°D3)
= ([00pQB(1) + 53, @51)]

!

* wip dt" sinfw, (t — t")]5 [6,,Q5 (t") + 55PQ}";(tII)]> :

Therefore, we need to calculate the following average
([8ap@5(8) + 05, Q5 (] [5,, Q") + 85,Q4¢")])

= kBT{tsapéw% cos[wa(t —t")] + 5(1,,6,5‘,((5:;; cos[wgs(t — t")]

B B
Oa Oa
+ (55,,57,,&}—25 cosfwa (t — )] + 5g,,65,,w—; cos|wq (t — t”)]}
ksT
= o { a0y + 390y )2 coslus(t — )]
aWs

+ 08,(0yp00s + 55,,(5(17)%23 cosfwq (t — t”)]} ,

where we have used Egs. (6.37). Next, on multiplying this expression by
sinfw, (t — t"")]/w,, and summing over p we obtain

S {[BapQB(6) + 85, @b (0] [8:5@5 (") + 5, Q(¢")] ) sinley (¢ — )]/,

ksT
= wQB—wg(Jav%é + 0as9py)

X {wa cos[wg (t — t")] sinfwq (t — t")] + wp cosjwq (t — )] sinfws (t — t")]} .
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Then, on taking into account that (d/dt"){cos[wq(t — t"")] cos[ws(t — t'')]} is
equal to the term within the above curly brackets when calculating the integral
occurring in K7 (t,') = (3 B3P D)%), we arrive at

2 kT
KB () = L(Saqdps + 6,15657)% % cos|wy (t — t')] cos[ws(t — t')] ,
a”p

whence one immediately obtains Eq. (C.18). Q.E.D.
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