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Abstract

The theoretical analysis of the ground state properties and dissipative dynamics of an anisotropic ladder of Josephson
junctions has revealed interesting features associated to the nonlinear character of the Josephson effect, combined with the
inherent discreteness of the system and the peculiarities of the ladder geometry. We analyse some aspects of its underdamped
dynamics when spatially homogeneous time-periodic currents are injected into the islands, and predict the existence of
attracting time-periodic spatially localised modes, for some ranges of junction characteristic parameters. These elementary
dynamical excitations are of two different types, associated to oscillatory and rotating motion of a few superconducting island
phases, respectively, revealing a dynamical mechanism of creation of vortex–antivortex pairs. These results are physical
applications of recent advances in the theory of nonlinear dynamics of discrete macroscopic systems. Their experimental
confirmation would probe the physical relevance of localisation in superconducting devices. Copyright © 1998 Elsevier
Science B.V.

1. Introduction

The impressive developments of nonlinear science in the last decades have provided new concepts and powerful
perspectives which are penetrating many areas of physical research, shedding new light and raising new questions
about an increasing number of physical systems. Condensed matter physics is not an exception in this respect,
as important contributions from nonlinear approaches to several condensed matter systems have been well-known
for years [1]. In particular, Josephson-junction devices constitute an active research field of both fundamental
and practical importance, which has received a great deal of attention from the nonlinear side. The theory of the
Josephson effect contains essentially nonlinear aspects and its predictions can be seen to be closely related to the
general physics of a forced and damped mathematical pendulum, one of the simplest model systems exhibiting a
very complex dynamics.
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Fig. 1. Schematic picture of the Josephson-junction ladder showing the injection of the currents in the array.

We will consider here a Josephson-junction array with a ladder geometry (see Fig. 1). This type of geometry
presents some specific features which distinguish it from both purely one- and two-dimensional geometries, specially
when anisotropy in the horizontal and vertical directions is present.

The anisotropic Josephson-junction ladder was introduced by Kardar [2], by suggestion of Halsey, in connection
with the equilibrium properties of the discrete sine-Gordon (standard Frenkel–Kontorova) model; both models
are different, but in the strong coupling limit, the latter is a good approximation to the former. More recently,
Mazo et al. [3] have shown (with no approximations) that the ground state problem of the Josephson-junction
ladder under perpendicular magnetic field exhibits the same characteristic features as that of the standard Frenkel–
Kontorova model. This result is based upon certain equivalence theorems due to Sasaki and Griffiths [4], and has
the consequence that the equation of state (fluxoid quanta density versus magnetic field) is a devil’s staircase, which
changes from incomplete to complete when the anisotropy parameter crosses a critical value (Aubry’s breaking of
analiticity) [5]; at an introductory level, see [6]. The consideration of inductive effects [7] does not modify those
ground state properties.

The equivalence between the ground state problems of the Josephson-junction ladder and the standard Frenkel–
Kontorova model doesnotextend to their dissipative dynamics. Though both systems share a number of qualitative
dynamical features concerning depinning transition, mode-locking under time-periodic forces [8] or glassy-like
relaxation toward equilibrium, the underlying differences manifest often in an important way [6]. The same applies
to the inertial dynamics, though much remains to be studied in this respect for both systems.

We have recently analysed the dynamics of a Josephson-junction ladder with injected AC currents, searching for
intrinsic localised modes (also known as discrete breathers). These types of time-periodic solutions are attractors of
the dynamics of the ladder in a wide range of parameters. They are also robust against small stochastic noise. They
can be classified into two groups: (i) Oscillator localised modes, in which the amplitude of the superconducting phase
oscillation is exponentially localised, and (ii) rotor localised modes, where the phases of a pair of superconducting
islands rotate while the rest perform forced oscillations. Their physical characterization reveals some interesting
features which could be of relevance in order to their eventual experimental observation. Before reporting on these
results we discuss, in Section 2, the physical description of the Josephson-junction ladder and derive the resistively
and capacitively shunted junction (RCSJ) approach to its dynamics. A preliminary report on these results has
appeared in [9].

We would like to echo the words of Robert Mackay in this conference, calling for experiments to probe recent the-
oretical advances in nonlinear intrinsic localisation, and push forward the Josephson-junction ladder as a benchmark
system where the necessary interaction between theory and experiments can take place.
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2. Josephson-junction arrays and RCSJ approach

Superconducting arrays consist of superconducting grains (islands) embedded in a normal or insulating matrix,
linked together by Josephson or proximity effect couplings. The superconducting Ginzburg–Landau order parameter
(many-particle condensate wave function) of the island located at positionx is denoted by

Ψ (x) = (N(x))1/2 exp(iθ(x)), (1)

whereN(x) = |Ψ (x)|2 is the local density of superconducting pairs (charged bosons) andθ(x), the phase, its
conjugate variable.

For the ideal case of perfect insulating junctions (i.e. no ohmic currents), the Josephson Hamiltonian of a homo-
geneous array can be written as

HJ =
∑
x∈Λ


−µ|Ψ (x)|2 + λ|Ψ (x)|4 −

∑
δ

TδΨ
∗(x)Ψ (x + δ)


 , (2)

whereΛ is the lattice of island positions,δ are nearest neighbour lattice vectors,µ is the chemical potential,λ is
proportional to the island inverse capacitance andTδ is the coupling of the junction attached to the linkδ.

The Schr̈odinger equation for the island condensate wave functionΨ (x) is

ih̄Ψ̇ (x) = δHJ

δΨ ∗(x)
= −µΨ (x) + 2λ|Ψ (x)|2Ψ (x) −

∑
δ

TδΨ(x + δ), (3)

where one easily recognises adiscrete nonlinear Schr¨odinger equation. This equation can be reexpressed in the
form of equations of motion for the particle numberN(x) and phaseθ(x), by inserting Eq. (1), multiplying both
sides byΨ ∗(x) and separating real and imaginary parts:

Ṅ(x) = −2

h̄

∑
δ

Tδ[N(x + δ)N(x)]1/2 sin[θ(x + δ) − θ(x)], (4)

θ̇ (x) = 1

h̄


∑

δ

Tδ

[
N(x + δ)

N(x)

]1/2

cos[θ(x + δ) − θ(x)] + µ − 2λN(x)


 . (5)

If it is the case that the superconducting islands are of macroscopic size, then theJosephson approximation

Tδ � 2λN(x) (6)

should be valid so that Eqs. (4) and (5) reduce to

θ̈ (x) =
∑
δ

[Jδ sin(θ(x + δ) − θ(x))], (7)

whereJδ is the critical current,Ic,δ, of the junction attached to the linkδ. When resistive effects associated to the
contribution of normal electrons are included in this description, and external currentsI (t) are injected into each
island, the equations of motion for the Josephson-junction array (neglecting inductive effects) are

θ̈ (x) =
∑
δ

[Jδ sin(θ(x + δ) − θ(x)) + εδ(θ̇(x + δ) − θ̇ (x))] − I (t). (8)

These equations of motion for the array are known as the RCSJ model [10,11], which is usually considered to give a
sensible description for the so-calledclassical junctionregime, in which the ratio between charging and Josephson
energies is very small (see discussion in Section 5).
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Let us concentrate now on the particular geometry of the ladder as shown in Fig. 1. We will assume that the
junction characteristics are(Jx, εx) for junctions in the horizontal rows, and(Jy, εy) for junctions which couple
islands in different rows. Also,θi andθ ′

i will denote, respectively, the phases of upper and lower islands at sitei in
the ladder. Moreover, the currentsI (t) are injected into the islands in the upper row and extracted from those in the
lower row. Then, from Eq. (8),

θ̈i = Jx [sin(θi+1 − θi) + sin(θi−1 − θi)] + Jy sin(θ ′
i − θi)

+ εx(θ̇i+1 + θ̇i−1 − 2θ̇i ) + εy(θ̇
′
i − θ̇i ) − I (t),

θ̈ ′
i = Jx [sin(θ ′

i+1 − θ ′
i ) + sin(θ ′

i−1 − θ ′
i )] + Jy sin(θi − θ ′

i )

+εx(θ̇
′
i+1 + θ̇ ′

i−1 − 2θ̇ ′
i ) + εy(θ̇i − θ̇ ′

i ) + I (t).

(9)

With the change of variables (centre of mass and relative coordinates)χi = 1
2(θi + θ ′

i ), φi = 1
2(θi − θ ′

i ), Eqs. (9)
can be written as

χ̈i = Jx [sin(χi+1 − χi) cos(φi+1 − φi) + sin(χi−1 − χi) cos(φi−1 − φi)] + εx(χ̇i+1 + χ̇i−1 − 2χ̇i), (10)

φ̈i = Jx [cos(χi+1 − χi) sin(φi+1 − φi) + cos(χi−1 − χi) sin(φi−1 − φi)]

+εx(φ̇i+1 + φ̇i−1 − 2φ̇i ) − Jy sin(2φi) − 2εyφ̇i − I (t). (11)

With uniform initial conditions in the centre of mass coordinates and momenta, i.e.,χi , χ̇i independent ofi,
(10) have the solutionsχi(t) = Ωt + α for all i. In this case, the dynamics reduces to the following equations of
motion1 for the phase half-differences,φi :

φ̈i = η̃[sin(φi+1 − φi) + sin(φi−1 − φi)] + ε̃x(φ̇i+1 + φ̇i−1 − 2φ̇i ) − sin(2φi) − 2ε̃y φ̇i − Ĩ (t), (12)

where, from now on, we will assumẽI (t) = I cos(ωt) for the injected currents. These are the equations of
motion for an array of forced and damped nonlinear rotors with periodic (sinusoidal) coupling between nearest
neighbours and phonon dissipation. It is important to realise that the sinusoidal character of the coupling allows
the rotation of individual rotors, provided the parametersη̃ andε̃x are not too large. This possibility is ruled out in
the continuum approximation,onlyvalid in the strong coupling limit.Discretenessandperiodicityof the couplings
are essential features of the Josephson-junction ladder, which together make important differences respect to other
superconducting devices like long Josephson junctions or some circular arrays which have been recently studied [12].

3. Discrete breathers and numerical procedure

The existence and characterisation of intrinsically localised modes in Hamiltonian discrete arrays of nonlinear
oscillators has been anticipated by different analytical and numerical approximations [13–15] and has recently been
given support by new theorems of nonlinear dynamical systems theory [16] exploiting the ideas of anti-continuous
limit [17,18]. Many issues concerning their stability, movability, etc. are still open questions in spite of recent
progress [19–21]. These localised modes (also known asdiscrete breathers) are intrinsic, in the sense that they
occur even if the system is homogeneous (no impurities or disorder is present), so that the localisation is due to
nonlinearity.

1 The unit time from Eq. (12) onwards isτ = h̄(8ECEJ)
−1/2. The dimensionless anisotropy parameter isη̃ = Jx/Jy = Ic,x/Ic,y ,

and the dissipative couplings (α = x, y) ε̃α = (h̄/e2)R−1(EC/EJα )1/2; hereEC = e2/(2C) andEJ = h̄Ic/(2e) are the charging and
Josephson energies respectively. Finally,Ĩ (t) is measured in units ofIc,y .
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It has been already argued in [19] (see also [22]), in a general way, that by adding both dissipation and a spatially
uniform time-periodic driving force to a Hamiltonian array of nonlinear oscillators, the intrinsic localised modes
corresponding to the driving frequency not only persist, but many of them become attractors for the dynamics
of the whole coupled system. The equations of motion (12) for the Josephson-junction ladder are in this sense a
physical example of such a type of many-degrees-of-freedom dynamical systems where intrinsic localised modes
are solutions with an open basin of attraction in phase space.

In order to compute explicitly these localised solutions we have used the numerical procedure developed in [19].
Based on rigorous mathematical foundations and incorporating well-established numerical methods of fixed point
iteration and integration of ODEs, this general method provides the exponentially localised solution as a fixed
point of a functional operator in certain space of sequences of functions. In our case, this is the space of loops
φ̄ = {φi(t), φ̇i(t)}, i = −N, . . . , N , with φi(t + 2π/ω) = φi(t), andφ̇i (t + 2π/ω) = φ̇i (t), whereφ is an angular
variable. The operator is the Poincaré (stroboscopic) mapTtb , which maps the initial conditions{φi(0), φ̇i(0)} to
{φi(tb), φ̇i(tb)}, wheretb = 2π/ω, and we use a Newton method to compute the fixed point. Starting from the
uncoupled array (̃η = ε̃x = 0), where the localised solution is trivial, and varying the couplings by small steps, the
Newton method is very efficient for finding recursively the intrinsic localised solution for finite couplings, provided
that the solution obtained in the previous step is taken as the initial trial solution. By this iterative process, we
follow “quasi-continuously” the discrete breather from the uncoupled limit. As a byproduct of the method [19], the
eigenvalues of the linear tangent map∂φ̄Ttb , used by the Newton method, provides us the linear stability analysis
of the intrinsic localised mode, which allows the analysis of the mechanisms which destabilise the localisation.

The solution obtained with this procedure can then be given as the initial condition to a direct simulation of the
full system of equations of motion (10) and (11); remember that Eqs. (12) correspond to a particular choice of initial
conditions for the “centre of mass” variables, which allows the decoupling ofχi andφi variables. That simulation
allows us to check the unrestricted linear stability of the intrinsic localised modes, their attracting character in full
phase space, robustness against different types of fluctuations, etc.

Although we are not aware of a rigorous proof, it may be that intrinsic localized modes in forced-damped
continuous nonlinear systems are structurally stable, as suggested in [23]. In any case, note that a “rotobreather”
cannot exist in a continuous system, so that discreteness is a prerequisite for, at least, a good part of our results.

4. Results

Fig. 2 shows the energy profile of an oscillator localised mode in the ladder for a particular choice of the
parameter values. There we also show the closed trajectories in the phase space (φ, φ̇) of the phase half-differences
across vertical junctions. The high precision of the numerical method of Marı́n and Aubry allows for a precise
Floquet analysis of the linear stability of these solutions. We are currently carrying out an exhaustive exploration
in parameter space of this issue, in order to determine the instability mechanisms. From our preliminary results we
certainly conclude the existence of wide zones for linear stability of the oscillator localised modes, mostly for low
values of the anisotropỹη. This is what should be expected, for localisation is naturally favoured by low values of
the horizontal coupling between superconducting phases.

The second class of localised solutions, the rotor localised mode, differs from the previous one in that at the
site of energy localisation, the superconducting phases rotate, while the rest remain oscillating (see Figs. 3 and 4).
For a Hamiltonian array of pendula with periodic coupling, this type of localised mode was first found explicitly
by Takeno and Peyrard [24], and its existence was implicitly envisaged in the theorems of [16]. Note that in the
Josephson-junction ladder there are additional external forcing, damping and momenta coupling. In this situation,
therotobreatherbecomes asymptotic steady-state for a positive measure open basin of attraction in full phase space.
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Fig. 2. (a) Average energy (kinetic + Josephson) profile of an oscillator localised mode (Jy = 0.5, Jx = 0.04,εy = εx = 0.01,I = 0.1,
ω = 0.8). (b) Phase space trajectories of the central (1) and its nearest neighbor (2) phases.

Fig. 3. (a) Average energy profile of a rotor localised mode for the parameter valuesJy = 0.5, Jx = 0.18, εx = εy = 0.01, I = 0.3,
ω = 1.5. (b) and (c) Phase space trajectories for the central (1) phase of the discrete rotobreather and its nearest (2) and next nearest (3)
neighbors.
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Fig. 4. Voltage profiles (in units of̄h/(2eτ)) across vertical links, for a rotobreather solution. The integration time step in this and Fig. 5
is 0.01.

We have checked the attracting character of these solutions (both oscillator and rotor localised modes) by direct
numerical integration of the original equations of motion (10) and (11). For arbitrary, small enough, perturbations of
the localised solution, the perturbed trajectories are observed to tend to the unperturbed localised mode, confirming
that it is an attractor of the dynamics. They are also robust under small stochastic additive noise and quenched
disorder in the junction characteristics. This clearly suggests a non-negligible chance of observing these localised
modes in experiments, for an appropriate range of fabricated junction characteristics.

In analogy with [16] we predict also the existence of arrays of modes localised at different sites. We have computed
also these multi-mode solutions and confirmed their attracting character (see Fig. 5). In fact, in the range of low
values of(Jx, εx), for a wide set of arbitrary initial conditions, the attractor of the full dynamics in phase space which
is reached after (sometimes longer, often shorter) transients is generically a (glassy-like) array of localised modes.

One of the most significant features of a rotor localised mode concerns the vorticity profile of the ladder. The
number of fluxoid quanta (vortices)ni associated to theith plaquette in the ladder is defined in terms of the circulation
around the plaquette of the superconducting phase gradient. In the absence of external magnetic field, which is the
case we analyse here, one has∮

Γi

∇θ · dl = 2πni, (13)

where the contour integral is performed around a loopΓi enclosing theith plaquette. Fig. 6 shows the time-
dependent vorticity profile of the ladder for a rotor localised mode computed with the method of Marı́n and Aubry.
The excitation energy of this mode (which is a microscopic quantity due to the localised character of the solution)
manifests itself through the intermittent creation and subsequent annihilation of a pair of fluxoid quanta of opposite
sign (vortex–antivortex) located in the central plaquettes.

But what also makes the rotor localised mode very interesting is its associated voltage profile. As can be seen in
the example of Fig. 4, the voltage through the vertical link where localisation occurs has non-zero mean value, so
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Fig. 5. Voltage profiles across vertical links for a multi-rotobreather solution.

Fig. 6. Time evolution of the vorticity of one of the central plaquettes for the rotor localised mode of Fig. 3.
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that adirect measureof it will reveal the presence (absence) of therotobreatherin a feasible experiment, provided
the device is adequately designed.

5. Concluding remarks

It is plain that many issues concerning intrinsic localised modes in the Josephson-junction ladder are open
questions.
(i) The comprehensive characterisation of the mechanisms responsible for the destabilisation of these solutions,

along with their movability, are some of the issues under current study.
(ii) Although we have considered the situation in which no external magnetic field is present, it is not hard to

realise that the existence of energy localisation in the Josephson-junction ladder persists under magnetic fields.
Interesting phenomena are then expected to appear as a result of the interplay between commensurability (and
the associated defectibility [6]) and localisation. For example, how the pressence of an intrinsic localised mode
of either type influences vortex motion?

(iii) What is the role of these localised modes in the energy transport properties of the ladder? In particular, how
do they relate to intrinsic disorder?

(iv) In any case, we should recall that most applications of Josephson-junction array based devices rely on the
coherent synchronous motion of the phases; what we have shown here constitutes a new phenomenon which
could destroy this coherence (through the eventual unbinding of pairs and subsequent vortex motion), and is
therefore something to be avoided in such devices, or perhaps, due to the robustness and generality of this novel
effect, something to be turned to our advantage in possible new applications (e.g., photodetection).

This enumeration is by no means exhaustive, but could serve to support the interest in experimental studies
of the Josephson-junction ladder, where specific questions ranging from the several aspects on the design of the
superconducting device, to the conditions of practical device operation, should be adequately addressed. From what
experimental feasibility is concerned with, the RCSJ model is usually considered to give a sensible description for
the classical junction regime,(EC/EJ) � 1 (see [12]), while the underdamped regime of the dynamics should be
fine for low values of̃εδ. Both conditions can be easily fulfilled in tunnel junctions (see e.g. [25]). The parameters
shown in the figures would correspond, assuming e.g.R = 10 k� andIc = 0.03mA, to (EC/EJ) ≈ 10−3 and
ω ≈ 9 GHz, just to give an idea about feasibility matters. As we have already mentioned, large regions of parameter
space exhibit stable discrete breathers. Rotor localised modes, once adequately formed in the system, should be
directly observable, by measuring mean voltage accross vertical links. Oscillator localised modes cannot be observed
in that way, but their presence could perhaps be inferred by indirect effects.

Our results point toward the utmost importance of experimental work on Josephson-junction ladders, as a bench-
mark system for nonlinear concepts, in the firm belief that the interaction between theory and experiment is the
correct way toward serious advances in Nonlinear Condensed Matter Physics.
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