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Ratchet potential for fluxons in Josephson-junction arrays
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Abstract. – We propose a simple configuration of a one-dimensional parallel array of Joseph-
son junctions in which the pinning potential for trapped fluxons lacks inversion symmetry
(ratchet potential). This system can be modelised by a set of non-linear pendula with alternating
lenghts and asymmetric harmonic couplings. We show, by molecular dynamics simulation, that
fluxons behave as single particles in which the predictions for overdamped thermal ratchets can
be easily verified.

Directional motion (DM) of Brownian particles has been a target of basic and applied
research in the last five years. The initial motivation and interest in this field came from cell
biology: The study of the mechanism of vesicles transport inside eukariotic cells, via motor
proteins along microtubules [1, 2]. Later on new systems with the same underlying ideas for
transportation were proposed. Those systems include: phase separation engines [3], drop mo-
tion under ac forces [4], growth of surfaces [5], and rectification in asymmetric superconducting
rings (SQUID) [6]. To have DM of a particle submitted to a periodic one-dimensional potential
V (x) = V (x + L), one needs i) broken spatial symmetry, i.e. V (x) 6= V (−x) and ii) to drive
the particle out of thermal equilibrium. This last condition makes it possible to extract work
from the system.

The first condition is usually fulfilled by the use of an ad hoc ratchet potential [2]. The
latter condition can be implemented in different ways: by an oscillating driving field [7], by a
time-correlated non-thermal noise [2] or a fluctuating V (x) potential [8], among others. In all
these cases, the conditions for the fluctuation-dissipation theorem do not hold.

In this paper we propose a new experimental realization of DM in a very simple and
controllable system: a parallel Josephson-junction array. Such system has become an excellent
realization of the Frenkel-Kontorova (FK) or discrete sine-Gordon model [9]. Fluxons (or
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Fig. 1. – Schematic equivalent circuit of the parallel array of Josephson junction. External current is
injected from top to bottom. Rs is a small shunt resistance to deal with overdamped junctions.

kinks) in the array move along a periodic pinning potential (the so-called Peierls-Nabarro
potential). We will show that in a simple geometry this potential is a ratchet one and a fluxon
behaves as a particle with well-defined directional motion.

This letter is organized as follows: we begin by describing the basic assumptions for the
array and the equations of motion for the phases are obtained. Then, we calculate the energy
profile for a fluxon trapped in the array and show its “ratchet” character. Finally, we compare
our results for the dynamics of the fluxon with what is expected from single-particle dynamics.

We shall study first the array configuration. Let us consider a parallel array of Josephson-
junctions with alternating critical currents (Ic1 and Ic2, generally Icα) and alternating area
plaquettes. The area differences cause alternating self-inductions L1 and L2. In order to deal
with overdamped junctions, we shunt each of them with a small external resistance Rs so that
we can neglect capacitance effects. Figure 1 is a schematic picture of the circuit. We denote
by 2πxj the phase difference across the junction j. I(t) is an external driving current. The
equation for current conservation through the junction j read as

Vj

Rs
+ Icα sin 2πxj = I(t) + Itj−1 − I

t
j = I(t) + Ibj−1 − I

b
j , (1)

where

Vj = Φ0ẋj , (2)

where Φ0 is the flux quantum. The phase diference along a plaquette is given by

xj+1 − xj =
Φj
Φ0

, (3)

where

Φj = Φext − Lα(Itj + Ibj ) (4)

is the magnetic flux through a plaquette, sum of two contributions: external and induced
magnetic fields [9]. We set now Φext = 0. Combining eqs. (1), (2), (3) and (4), and dividing
the array into two sublattices, the equations of motion for the phases are

Φ0

Rs
ẋj + Ic1 sin 2πxj = I(t) +

Φ0

2L1
(xj−1 − xj) +

Φ0

2L2
(xj+1 − xj) , (5)

Φ0

Rs
ẋj+1 + Ic2 sin 2πxj+1 = I(t) +

Φ0

2L2
(xj − xj+1) +

Φ0

2L1
(xj+2 − xj+1) . (6)
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Normalizing the equations by IL = Φ0/2L1 and putting K = 4πIc1L1/Φ0, α = Ic2/Ic1 and
β = L1/L2, we obtain the dimensionless equations of motion

ẋj +
K

2π
sin 2πxj = Ĩ(t) + (xj−1 − xj) + β(xj+1 − xj) , (7)

ẋj+1 + α
K

2π
sin 2πxj+1 = Ĩ(t) + β(xj − xj+1) + (xj+2 − xj+1) , (8)

where time derivatives are given in the time scale τ = 2L1/Rs. Here K play the role of
discreteness parameter [9] and α and β measure the asymmetry of the array. Flux trapped
in the array determines the boundary conditions, therefore, if we have n flux quanta in N
plaquettes, then xN+1 = x1 + n. Note that these equations of motion (7) and (8) correspond
to the well-known FK model in a generalised asymmetric form. The overdamped dynamics
for the symmetric model have been reviewed in ref. [10]. The mechanical analogue of the JJ
array we are dealing with is a set of pendula with two different lengths coupled by two kinds
of harmonic springs.

It is expected for K → 0 that the pinning potential for fluxons vanishes. But we are
interested in the opposite limit in which fluxons are strongly pinned to the discrete lattice.
Due to the spatial asymmetry of the array we expect to have an asymmetric pinning potential.

Now we will try to describe the fluxon as a single particle in the pinning periodic potential.
Fluxon location is given by its center of mass (CM) which can be expressed as [11]

XCM(x1, . . . , xN ) =
1

2
+

N∑
i=1

i(xi+1 − xi) (9)

for any given phase configuration {xi}. On the other hand, the energy of the array is the sum
of two contributions: Josephson and magnetic energy. In the adimensional parameters defined
above this energy reads as

E(x1, . . . xN ) =
N∑

i=1,odd

[
−K

4π2
(cos 2πxi+ α cos 2πxi+1) +

β

2
(xi+1−xi)

2 +
1

2
(xi+2−xi+1)2

]
. (10)

From these expressions we can define E(XCM) = min{xi}E(x1 . . . xN ) such that {xi} are kink
configurations whose CM is XCM.

In order to calculate this potential, several approaches have been tried in the context of
non-linear discrete lattices. For low pinning (low K), a good estimation is obtained using the
collective coordinates method [12]. Essentially, this method assumes a soliton profile for the
{xi} corresponding to the continuous limit (sine-Gordon) and, in some cases, an analytical
solution can be reached which only converges for low values of K. We have adopted a more
general way to (numerically) obtain the potential profile E(XCM). Maxima of this energy
correspond to saddle-points in the N -dimensional phase space. For configurations containing
one fluxon, N−1 directions are stable and one is unstable. Such maxima points can be obtained
using standard minimax methods. We have performed a linear stability analysis around these
points to get the direction of destabilization of the maximum energy configuration. Using this
saddle configuration as initial condition, we perturb it along the unstable direction and study
the relaxation (by numerical integration of eqs. (7) and (8), with Ĩ(t) = 0 to the adjacent
minima. Then, the energy and CM along the trajectory are computed (according to eqs. (9)
and (10)). Using this method we have been able to calculate the energy profile E(XCM) for a
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Fig. 2. – Energy profile E(XCM) for different values of asymmetry parameters (α, β). (a) α = 0.5, β =
1.0. Same plaquette areas and different critical currents. (b) α = 1, β = 0.5. Different plaquettes and
the same critical currents. (c) α = 0.5, β = 0.5 gives “ratchet-like” potential.

trapped fluxon as a function of its CM. Figure 2 shows potential profiles for a set of the model
parameters (K,α, β). In the following we set K = 4.0. For α = 0.5 and β = 1.0 (different
critical currents), the energy profile shows a double-well structure symmetric with respect to
the bottom of the wells. The α = 1.0, β = 0.5 (different areas) potential is symmetric with
respect to the tops. As expected, for any other values the potential profiles do not show
inversion symmetry. The values α = 0.5 and β = 0.5 give a good approximation to the
asymmetric sawtooth potential used in the literature [2]. It is interesting to note that, unlike
other works in extented systems [11, 13], neither the on-site potential nor the interparticle
potential are asymmetric in the field variables.

We will study now the dynamical behavior of a fluxon in the asymmetric lattice. For all
simulations, we take N = 30, n = 1,K = 4.0, α = 0.5 and β = 0.5. We drive the system out
of thermal equilibrium by applying an external ac bias current. The Ĩ(t) term in eqs. (7) and
(8) is then expressed as

Ĩ(t) = Ĩac sinωt+ ξ(t). (11)

Here, ξ(t) is the white noise (〈ξ(t)〉 = 0 and 〈ξ(t)ξ(t′)〉 = 2Dδ(t− t′))(1) which, in the absence
of other forces, brings the system to thermal equilibrium. Thus, the equations of motion
take the form of a system of stochastic differential equations. We have solved them using
a fourth-order Runge-Kutta method for the deterministic part and a third-order one for the

(1) Where D = kBT

Φ2
0
/2L1

is the temperature in units of the magnetic energy.
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Fig. 3. – Voltage-current (IV ) curves at T = 0 and ac current, for different frequencies ω in units of
1/τ . (a) ω = 2π · 0.01. (b) ω = 2π · 0.05. (c) ω = 2π · 0.1.

stochastic one [14].
We will concentrate first on the deterministic (T = 0) dynamics. We check the ratchet

behavior measuring the critical current of the array under dc driving. For positive driving we
find a fluxon depinning current I+

dp ≈ 0.18, whereas for negative I−dp ≈ 0.31 (for the symmetric
case, α = 1.0 and β = 1.0, Idp ≈ 0.19). Under ac currents we should observe a IV curve
showing rectification of the external current and the maximum efficiently for rectification (in
the low-frequency limit) of the ac currents is expected to be around I+

dp [3]. Figure 3 shows
the IV (voltage vs. amplitude Iac) curves for Idc = 0 and T = 0 for different frequencies ω.
Low-frequency response clearly resembles that found for a single particle [15]. As was noted
in one-particle simulations, voltage is quantised:

V =
Φ0

τ

N∑
i=1

〈ẋi〉 =
2Φ0

τ

(
p

q
ω

)
, (12)

p and q being integer numbers [16]. For finer resolution, the IV curves appears to have a devil’s
staircase structure [15] (see inset of fig. 3c). This quantisation result can be straightforwardly
obtained by assuming that, in the overdamped ac dynamics, the phases xi(t) can be expressed
by a two-dimensional envelope function [10, 17] xi(t) = ζ(i− V t/Φ0, ωt) [18]. Now, imposing
energy balance along the trajectory

N∑
i=1

∫ ∞
0

ẋ2
i dt =

N∑
i=1

∫ ∞
0

ẋiĨ(t)dt , (13)

we find that only voltages commensurate with the current frequency give non-zero contribution
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Fig. 4. – Voltage-current (IV ) curves for ac current at D = 0.001 and ω = 2π · 0.01. The thick line
shows the comparison with eq. (3) of ref. [2].

to the right side of eq. (13).
Quantised steps appear rounded at non-zero temperature as a consequence of multiple hops

between dynamically close attractors, corresponding to the mode-locking trajectories [19]. In
the adiabatic (low-frequency) and low-temperature limit we have fitted the IV curves with
the solution of Magnasco [2] for a sawtooth ratchet potential. We have found a good fit (see
fig. 4) for asymmetry ratio λ1/λ2 = 0.56 and energy barrier ∆E = 0.16 obtained from the
computed energy profile (see fig. 2c). At low frequencies the steps disappear, even for very low
temperatures. At high frequency the steps seem to be more stable against thermal fluctuations
and probably could be observed in real experiments.

In summary, we have proposed a new experiment for DM based in the motion of a fluxon in
a one-dimensional Josephson-junction array. We have calculated the effective pinning potential
for the fluxon and found the parameters needed to have almost a sawtooth one. The simulated
IV curves mimic the behavior of a single particle in an asymmetric periodic potential.

The actual feasibility to fabricate these kinds of arrays along with the simplicity of our
design make this experiment really accesible [20]. Even more, the possibility of introducing
in the array a controlled number of fluxons could serve to study the influence of interaction
in directional motion Brownian particles [21]. Preliminary results in this direction show that
complex behavior dominates the multifluxon dynamics.
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