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The dissipative dynamics of commensurate structures of the one-dimensional Frenkel-Kontorova
model submitted to dc and ac forces is studied. The average velocity varies with the average external
force as a staircase (dynamical mode locking). We characterize the unlocking transition as a transition
from temporal periodicity to quasiperiodicity by using standard tools of the theory of dynamical sys-
tems. This transition is phenomenologically described as the generation of coherent, time-localized, and
regularly-distributed increases of the particle velocities (instantons), which carry out a topological
charge, the origin of which is the discrete character of the symmetry group of transformations of the

locked steady state.

The dissipative dynamics of many-body models with
competing interactions has been recently studied in con-
nection with some interesting problems in condensed
matter such as density-wave transport (either charge- or
spin-density wave),! > Josephson-junction arrays (JJA),*
or flux-line motion in layered type-II superconductors.’
In particular, when these systems are submitted to ac
Jforces, they show a staircase macroscopic response, i.e.,
the response function locks at certain resonant values,
when the average driving force varies. This dynamical
mode locking appears to be a universal feature of the
competition of time scales. The material systems men-
tioned above are rather complicated and the various in-
teractions which give rise to the observed behavior are
yet imperfectly understood. Hence it seems natural to
focus on simple many-body models in order to gain some
insight into the problem. In this respect, the Frenkel-
Kontorova (FK) model seems one of the simplest capable
of exhibiting not only a rich variety of commensurate and
true incommensurate static structures,® but also, when
submitted to both dc and ac forces, the complexity of
dynamical mode locking.” 8

In this paper we address the problem of the mechanism
of the locking-unlocking transition and its characteriza-
tion, using molecular-dynamics simulations. We charac-
terize the unlocking transition in the ac driven dissipative
dynamics of commensurate structures of the FK model
as a transition to quasiperiodicity. This transition is
driven by the generation of coherent, time localized and
regularly distributed in time disturbances (instantons)
which produce a quantized increase of the mean velocity.
The “topological charge” or “phase shift” carried out by
an instanton is a consequence of the discrete character of
the symmetry group of transformations of the locked tra-
jectory. Moreover, these instantons are particular in-
stances of intermittencies of type 1.’ The interpretation
of the numerical results makes use of various well-known
and powerful concepts and tools of the theory of dynami-
cal systems.

We study the dissipative (overdamped) dynamics of an
array of coupled harmonic oscillators u; in a periodic
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substrate (pinning) potential V:
V(u)=[K /(2m)*][1—cos(2mu)] (1)

(Frenkel-Kontorova model), submitted to dc and ac driv-
ing forces, F(t)=F+F,.cos(2vyt). The equations of
motion are

4;=u; i tu;—2u;—[K/(2m)]sin(2my;)+F(t),  (2)

where j=—N/2,...,N/2; and we are interested in the
thermodynamic limit (N — o0 ), as well as the asymptotic
behavior (steady state). Equations (2) have been integrat-
ed using a fourth-order Runge-Kutta code. Given a
steady-state solution of (2), {u;(#)}, the transformation

O rm,s2

Grmsiuf()y={u; (t —s/vo)+tmi={u/(®)}, (3)

(r,m,s arbitrary integers) produces another steady-state
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FIG. 1. Staircaselike response function U(F) for o=1,

F,.=0.2, v=0.2, and K =4.0. The inset shows a subharmonic
step (s =2).
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solution. If a solution is invariant under a particular
symmetry operation {3), it will be called resonant and its
(particle and time) average velocity is then given by
v /vo=(ro+m)/s, where 0= ((uj+1 u; )} is the inter-
particle average distance, fixed by the approprlate bound-
ary conditions. Commensurate structures are character-
ized by a rational value of o, this value being irrational
for an incommensurate structure. For commensurate
structures, which is the case we will consider hereafier,'°
the response function 7(F), at any nonzero value of the
pinning strength K, is a staircase function with steps at
every resonant value of the velocity. A particular exam-
ple of this response function for ®=1, K =4, v,=0.2,
and F,,=0.2 is shown in Fig. 1, where several steps cor-
responding to values of s =1 are clearly visible. The inset
in Fig. 1 shows a step with s> 1. The existence of
subharmonic (s > 1) steps has been a matter of controver-
sy: Renné and Polder''® and Waldram and Wu!l(®
proved that for w=1 they do not exist. But, for nonin-
teger values of w, Inui and Doniach'? gave some evidence
as well as plausibility arguments for the existence of
subharmonic steps. We have carefully checked this issue
for many different fractional values of @, and have always
found numerical evidence of subharmonic steps (as well
as no subharmonics for integer values of ®).

The largest Lyapunov exponent!® of the steady-state
trajectories reveals in a most sensitive way the existence
of subharmonic steps. The trajectories in the steps are
resonant and, consequently, periodic in time, so that the
Lyapunov exponent takes on negative values in the steps
(Fig. 2). Outside the steps, the trajectories are quasi-
periodic, as suggested by the computed zero Lyapunov
exponent, and confirmed by the inspection of Poincaré
sections: An example of it is shown in Fig. 3(a), for a
time interval between sections of 1/v,, the period of the
external force. The section has the topology of a circle,
which reveals that the unlocking transition is a transition
from periodic to quasiperiodic behavior.

This characterization of the dynamical locking-
unlocking transition in the Frenkel-Kontorova model is
further confirmed by inspection of the power spectrum of
the (particle) average velocity v(z): It shows peaks only
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FIG. 2. Lyapunov exponent for a detail of the response func-
fion between the first and second steps.
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FIG. 3. Poincaré section (a) and power spectrum (b) of v(z)
for an unlocked steady state at F=0.3006 close to the right
edge of the first harmonic step. The logarithm is to base 10.

at (n/s)v, (n integer) when computed in the steps,
whereas out of the steps [Fig. 3(b}] one observes peaks at
linear combinations of two frequencies v, and v, a well-
known feature of a quasiperiodic temporal series. This
new frequency v comes into scene when crossing the un-
locking transition, grows with F, and is directly related to
the temporal distribution of intermittencies, already men-
tioned in the introduction, which we discuss in the fol-
lowing.™

Figure 4(a) shows the computed v(¢t) for a value of

+F=0.3006, close to the right edge (F,~0.30047) of the

step corresponding to r=—1, m=1, s=1. It presents
long time intervals of periodic oscillations (essentially in-
distinguishable from the time series inside the nearby
step), but this regular behavior is suddenly disrupted by
bursts of short duration, after which the regular periodic
oscillations are restored. We are seeing what is common-
ly termed as intermittencies [9]. Unlike the behavior ob-
served in the intermittent transition to turbulence in con-
vective fluids or to chaos in dissipative dynamical systems
of a few degrees of freedom, the occurrence of intermit-
tencies in Fig. 4(a) is regular and never random; the sys-
tem being in a quasiperiodic attractor, the signal v (¢} is
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FIG. 4. (a) Particle average velocity vs time in an unlocked
state near the right border of the first step, F=0.3006. (b) Plot
of centroid x (z) (see text for details) in the unlocked steady state
(solid line). Instantons are given by jumps in the figure. Dotted
lines correspond to different steady-state (locked) trajectories in
the first step (F=0.3004). -

quasiperiodic.

In order to illustrate the nature of these intermitten-
cies, it is convenient to examine with some detail the
structure of the set of steady states {u jstep(t)} in the close
resonance (step) characterized by

Tgiep = Volro+m)/s

(Ref. 15). Consider the center-of-mass position {centroid)
of a given unit cell, relative to an inertial frame moving at
the step velocity:

1S () =Dt 4)

i=1

x(t)=gq

where g is the number of particles in a unit cell (o=p/q).

For { u]-mp(t)}, the corresponding xg.,(#) oscillates

around some average value Xg.,. Different steady-state
trajectories

{ul (1)}

Jstep

8},

can be obtained by using the invariance of the equations
of motion under transformations o, ,, . [Eq. (3)]. One
easily finds that the average Xy, of the center of mass for

{ujt (2)} is related to X, by

=0 m',s { ujﬂep

step
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T R gep X rep —A(F,m,s")
=(qs)_1[s(r’p +m'q)—s'(rp +mgq)]
R O L (5)
Provided p and g are relatively prime and!® that

(rp +mgq) and s have no common factors, n,, m,st C2N
take on any integer value. Consequently the “phase
shift” A between consecutive steady-state trajectories is
(gs)™!, as shown in Fig. 4(b), where dotted curves are

plots of x4, (#) for different resonant steady states in the

- 'step’ ‘associated to r =1, m =0, s =1.

The (heavy line) curve in Fig. 4(b) shows x(¢) for a
steady-state trajectory outside (but very close to) the step

_entioned above. It clearly shows that instantons con-

nect consecutlve ‘trajectories and then carry a topological
charge of (gs)~!. The unlocked state can be described as
a temporal array of instantons superimposed to the
locked periodic near state. This description shares the
spirit of the familiar phenomenological description of a
(static) 1ncommensurate structure as an array of spatial
discommensurations superimposed to a commensurate
near structure. In both cases there is a topological
charge (or phase shift) associated to the defect (discom-

- mensuration in one case, instanton in our case) whose ori-
- gm lies in the dlscrete character of the symmetry group
" corresponding to the locked state (commensurate struc-

ture or periodic trajectory).

The numerical observations (in rather different cir-
cumstances) of unlocked states always reveal that instan-
tons occurs at regular intervals of time, a fact that can be
related to the convexity of the interparticle potential If
we denote by 7, the width of such intervals, its inverse
v=r]1 is the add1t10nal frequency revealed by the power
spectrum of the unlocked trajectory, and the average ve-
locity U satisfies

]ﬁ—'u_step[ =v(gs)"!.

This characteristic time 7, diverges as the locking transi-
tion is approached with a classical exponent:
7,~|F—F,|71/2. This scaling is predicted from general
arguments, which are apphcable here, developed in the
study of type-I intermittencies,’ and is very well fitted by
our numerical results. When the transition is approached
from the resonant state, another characteristic time, 7,
diverges: it is the inverse of the Lyapunov exponent,
which measures the rate of decay of transients. The scal-
ing is the same, 7\ ~|F—F,|712. These diverging time
scales at the locking-unlocking transition'® play the same
role as the correlation length at the critical point in equi-
librium phase transitions.

Although these results have been obtained for a partic-
ular one-dimensional (1D) model, they are based on rath-
er general features: the discrete symmetries of the steady
states and the convex interaction between particles. Re-
cent studies on charge-density wave (CDW) systems show
a suggestive parallelism with the results reported here:
Careful analysis on dc and ac excited NbSe; crystals
shows transition to quasiperiodicity driven by *“dynami-
cal solitons” (i.e., instantons)!”® as well as “frequency
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puiling” behavior near subharmonic steps.!’®®) In 2D su-
perconducting systems (JJA or layered type-II supercon-
ductors), vortex motion has the same type of discrete
symmetries'® as the one studied here. In spite of the fact
that the superconducting phase interaction is nonconvex,
the pinning seems to be low enough there so that only the
convex part of the interaction would be relevant. Indeed,
our own preliminary numerical simulations on 2D JJA
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confirm that the scenario for the unlocking transition
shown here is applicable to this system.
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