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Langevin molecular-dynamics simulations of two-dimensional Josephson-junction arrays in a uni-
form external magnetic field are presented. I-¥ characteristics for zero and finite temperature are
calculated. The voltage response is analyzed in terms of the dynamical behavior of defects with
respect to the ground-state flux lattice—domain walls and vortex-antivortex pairs. At zero temper-
ature, several spatio-temporal regimes as a function of I are found: (i) a superconducting phase
(¥=0) corresponding to the locking of the flux lattice; (i) a “chaotic” response related to domain
walls nearly pinned by the discreteness of the underlying flux lattice; and (iii) two phases with ac
response corresponding to different periodic domain-wall lattice patterns. At finite temperatures
the response is modified by the nucleation of transverse structure (vortex-antivortex pairs) on the
moving domain walls. This instability can enhance or inhibit the voltage response depending on the
domain-wall structure. A phase diagram of the different dynamical regimes is proposed.

I. INTRODUCTION

Considerable attention has been devoted in recent
years to studying of the properties of two-dimensional
(2D) Josephson junctions arrays (JJA’s).!™7 Such studies
have importance in their own right since modern litho-
graphic techniques allow the construction of arrays of
many geometries so that theoretical predictions can be
tested experimentally. On the other hand, JJA’s are the
discrete version of a 2D superconductor assuming the lat-
tice spacing to be of the order of the coherence length. In
this framework a complete translation between JJA and
2D superconductor languages exists.® Also granular su-
perconductors have been modeled by arrays of weak
links. High-T, superconductors belong to this last
category because of their ceramic structure—due to the
short coherence length of these materials, structural im-
perfections such as twin boundaries also weaken the su-
perconductivity. It has been suggested that a hierarchy
of weak links of different length scales may provide a
model on which to base a “glassy” macroscopic phenom-
enology for these materials.

Most of the information already available on 2D JJA’s
concerns static properties. In the absence of any external
magnetic field, the 2D JJA is equivalent to the classical
2D XY magnet.® For example, the resistivity transition
can be explained in terms of a Kosterlitz-Thouless® !°
transition: i.e., vortex-antivortex pairs are thermally ex-
cited and unbind at T, giving a finite resistivity in the
JJA case. In the presence of a perpendicular magnetic
field, the system is equivalent to a uniformly frustrated
XY magnet. The ground state can be described by using
a flux lattice language.’ For rational values (f =p/q,
where p and ¢ have noncommon divisors) of the magnetic
field (measured in units of flux quanta) two species of flux
with values (— f) and (1—f) form a g Xg periodic square
flux lattice. Two kinds of excitations are possible in these
ground states: one is the interchange of two different
kinds of flux (which correspond to a vortex-antivortex ex-
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citations in the pure XY model) and the other is a domain
wall that breaks the discrete symmetry of the flux lattice.
Both excitations play an important role in the properties
of the phase transitions for the frustrated model. For ir-
rational values of the magnetic field, nonperiodic flux lat-
tices with spin-glass-like behavior have been found: these
are characterized by defects occurring with respect to a
neighboring periodic (locked) flux lattice.*

An equivalent flux lattice representation is in terms of
a Coulomb gas of excess positive charges with respect to
a neutral f =0 background. Then the excess positive
charges (+1) have to be defined on the underlying square
lattice, but are driven by logarithmic Coulomb interac-
tions towards a hexagonal lattice structure (as for flux lat-
tices in superconductors). This competition of length
scales is the source of complexity discussed in this paper.
As temperature increases, vortex-antivortex excitations
can appear in the neutral background screening the
Coulomb interactions and leading to melting of the lat-
tice of positive charges and/or the neutral background
(i.e., unbinding of vortex-antivortex pairs).

The dynamics of a 2D JJA is much less well studied ¢
than the statics but provides an excellent controlled labo-
ratory example with which to probe pattern formation
and complex dynamics in competing interacting systems.
Such systems are appreciated increasin§ly in many con-
densed matter and materials contexts'!—e.g., the I-V
characteristics of superconductors (above). The dynam-
ics of a JJA (without magnetic field) can be derived from
the dynamical theory of the Kosterlitz-Thouless transi-
tion.>!® At T'=0 the array behaves like a single Joseph-
son junction. At finite temperature, voltage response to a
driving current is expected to have the nonlinear behav-
jor V=I't%T) coming from the field-induced unbinding
of vortex-antivortex dipoles. This scaling form is con-
sistent with molecular dynamics simulations.! However,
in the case of frustrated arrays the role of domain walls in
the dynamics is not well understood, and gives deviations
from the simple predictions.
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In this paper, we study the dynamics of frustrated
JJA’s using a Langevin molecular dynamics technique
with overdamped dynamics. Our main results are con-
cerned with the study of the dynamics of a JJA in a per-
pendicular magnetic field which we set to achieve 1 of
quantum flux per plaquette (i.e., f =1). With this value,
the ground state is highly degenerate and anisotropic, so
we can expect a rich variety of domain-wall excitations.
At zero temperature and with a spatially uniform driving
current only extended defects (i.e., domain walls) can be
excited. Due to the pinning effect of the lattice discrete-
ness the ground-state flux lattice “melts” by the field nu-
cleation of a one-dimensional domain-wall lattice. De-
pending on the strength of the driving current, very
different patterns of the flux lattice are found and corre-
lated with interesting dynamical behaviors. In particular,
ac voltages are driven by dc currents. This ac effect is
understood by the formation of solitonlike defects in the
flux lattice. A dynamical transition between metastable
configurations is also observed, as well as a “chaotic”
(“noisy”) regime near the flux flow threshold. The driven
JJA is indeed seen to provide fascinating examples of
space-time complexity and pattern formation.

At finite temperatures, local inhomogenous defects are
thermally excited (vortex-antivortex pairs) in addition to
domain walls. Both of these excitations determine the
nature of the I-V characteristics for low currents. We ob-
serve how these local excitations provide the mechanism
for the domain-wall motion at low currents and decrease
the critical current at finite temperatures. A scenario for
the critical behavior is discussed in the following. To
briefly summarize, we find evidence for the following: (a)
discrete lattice pinning of domain walls in the flux lattice
background potential; (b) “chaotic” dynamics associated
with motion of domain walls in a potential that varies ac-
cording to individual local environments of lattice
discreteness and domain walls; (c) transverse instabilities
on moving domain walls nucleated thermally as vortex-
antivortex pairs; (d) two characteristic temperatures cor-
responding to domain-wall melting and vortex-antivortex
unbinding; and (e) critical driving currents corresponding
to transitions of patterns in moving domain-wall lattices.
This rich variety of phenomena leads to distinct regions
in the temperature-driving current parameter space dom-
inated by either thermal or field nucleation.

This paper is organized as follows. First, in Sec. I, the
model used and the equation of motion for Langevin
molecular dynamics (MD) are derived. Section III re-
ports the main results at zero and finite temperature and
discusses them. Finally, in Sec. IV, the conclusions of
this work and future research directions are discussed.

II. MODEL AND SIMULATIONS

Consider a 2D square array (L XL =N) of supercon-
ducting islands with weak links lying on the bonds. The
Josephson energy for this 2D array in the presence of a
perpendicular static magnetic field is given by

EP=_EJ 2 COS(ei_ej_Aij) N (1)
(i,j)
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where E;=(#/2e)l, is the Josephson coupling, 6; is the
order-parameter phase in each superconducting island i
with coordinates (i,,i,) and 4;; are lying along the links
so that :
plaquette 0

Here @ is the flux of the external magnetic field through
the plaquette and ®y=hc /2e is the flux quantum. The
parameter f fixes the “degree” of frustration of the phase
lattice. For f =0 and f =1, Eq. (1) reduces, respectively,
to the unfrustrated and fully frustrated XY models, both
of which have been extensively studied in the past fifteen
years (at least regarding their static properties).®™>%12
We have chosen the A4;; in such a way that they equal
27f i, on the horizontal bonds and zero on the vertical
ones, i.e., the Landau gauge.

We can introduce the dynamics in our problem by us-
ing a resistance-capacitance shunted junction model
(RSJ). We start by considering the most general case in
which we have an arbitrary capacitance matrix, C;;.
Then the energy associated with charge distribution in
the lattice is

1 . . _
Exzz_zeicijej=%azpicij 'p; 3)
oy ij
where a=4e?/#* and we have defined

pi=dEg /d6=(1/a)S Cy;0y .
k

At this point we can construct the Hamiltonian
Hy=Eg+E, and write the equations of motion for the
variables p; and 6;. These equations read

éi =GZC;§IP5 ’
. s . (4)
Pi=E; 3 sin(0; 1 5—60,— 4;;+5)

5

with s running over all the lattice sites and 8 over nearest
neighbors only. In the spirit of the RSJ model, a dissipa-
tion term that takes into account the normal current
junction resistance, and a noise term that brings the sys-
tem to thermal equilibrium should be added to Eq. (4).
The dissipation term is taken to have the form

_”I§(éi_éi+5)=_772Gis_lcsl—lps=_ >Map - O
1

s,

Here, Gj; is the discrete Green function for the square
lattice, 71=(ﬁ/2e)2/R with R the normal resistance of the
junction and we define a dissipation matrix,

N;=n 21 Gy'cyt.

In conclusion, we have the following set of coupled
Langevin equations:

9:':‘120;;11’: ’
s

Di=E; 3 sin(0; 45— 8;— A;; 15)— 3 b TA,(2),  (6)
8 : s

(A())=0 and (A,(DA;(¢'))=2Tn,8(t —¢') .
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Here, T is the temperature (in units of k) and the noise
correlation is just the result of the classical fluctuation-
dissipation theorem. Note that, because of the nonlocal
character of the dissipation in Eq. (5), the thermal noise
A(t) is spatially correlated.

Particular choices of the matrix C; may give compli-
cated equations involving long-range interactions. This is
the case, for instance, if we consider the capacitance be-
tween islands, C;. Then we have Cij_1=Gij /C,, where
G;;=G (i —j) behaves asymptotically like log(i —j). Al-
though we have made preliminary investigations in this
general case, we restrict ourselves here to a simpler situa-
tion in which the capacitance matrix is diagonal:
C;;=Cyd;;. Such a choice is realistic for some kinds of
array geometry in which only the capacitance between is-
land and background is relevant.'® For this case the nor-
malized Langevin equation can be written as

6,=p,, p;=J > sin(6; 15— 6;,— 4;;15)
5

=7 (5 —Di+s) A0,
5

- )}
(R:(6))=0 and (X;(1),X;("))=2%G;'T8(t —1") .

Here p=p/#, the dimensionless parameters in these
equations are J =E;C,/a, fj=#/2¢’R, T=TC,/a, and
the time unit is 7=#C,/4e% In these units the plasma
frequency is a)§=E La/Co#i?. It is straightforward to
make contact between this dynamics and that proposed
by Shenoy® and used in MD simulations by Mon and
Teitel.! Our dynamics reduces to theirs in the over-
damped limit (n— ), and we have quantitatively repro-
duced the I-V characteristics of Ref. 1 for the f =0 and 1
cases studied there. We will concentrate on this over-
damped regime here. However, it is worthwhile to note
that from a numerical point of view our equations have
some advantages. Specifically, the computing time grows
like L2 and not L* as in Ref. 1, allowing the use of larger
lattices. This is simply because by using a coupled set of
differential equations we can avoid the inversion of the
dissipation matrix nu(ni;l:G,-j /7). Finally, in order to
simulate nonequilibrium dynamics a uniform external
current [ is injected along an edge of the array and re-
moved at the opposite edge. This is achieved by adding
to the Hamiltonian a term’

Hy=—J; 3 0;=1,;70i=rx;) » @
j

where J,=(#i/2e)l. This term creates a ‘“‘washboard”
potential in which a phase slip of 27 over a local
minimum induces voltage difference as defined below [Eq.
9(a)]. Periodic and free boundary conditions in the y and
x direction, respectively, were used.

We have integrated Egs. (7) using a second-order
Runge-Kutta algorithm for stochastic differential equa-
tions'> with time steps of 0.057. The time-dependent
voltage across the array, as well as its time average, were
measured. The dimensionless voltage and its power spec-
trum are defined as

V(t)=% 2 Bi=(1,p~Pi=wx, ) Oa)

J
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and
S(w)= |f_+mV(t)e"“"dt ? R (9b)

respectively. Fourier transforms were calculated using a
4096-point fast Fourier transform algorithm and averag-
ing over different initial times (typically 4) to reduce the
standard deviation of fluctuations.

Phase and fractional charge configurations were
displayed (see the figures), allowing us to follow the dy-
namics of individual vortices and domain walls. The
fractional charge g is calculated as the circulation of the
gauge invariant phase around a plaquette

g=> 3 (6,~0;—

Ag)=m—f, (10)
2w plaquette Y

where (8, —0;— 4;;) is restricted to be in the interval
(—r,m). m takes the values 1 and O with density + and £,
respectively, giving charge neutrality. Using these charge
variables, the system is equivalent to a Coulomb gas
driven by a uniform electric field. >

Most of our simulations were made on 36X 36 lattices
in which finite size effects are expected to be small. Simu-
lation in 16X 16 lattices' show essentially unchanged be-
havior. The parameters used in the Egs. (7) were J =1,
77=5 which gives excellent agreement with previous re-
sults for f=0 and 1 at finite temperature.! With these
parameters we are in the overdamped regime discussed in
Ref. 2,ie., w;RC < 1.

III. RESULTS AND DISCUSSION

A. T:=O simulations

In this section we report results for f =1 obtained

with the model described in Sec. II. Simulations at tem-
perature T =0, although not relevant for comparison
with experimental results because of quantum effects,
give a perspective on possible extended defects (domain
walls), which are responsible for flux flow mechanisms.
The first effect of the inclusion of a magnetic field is a
critical current reduction. Figure 1 shows the I-¥ curves
for several values of parameter f(0,%,1). For f =0, the
array behaves like a single Josephson junction obeying
the well-known characteristic ¥ =(I2—1I?)'/2, where I is
the critical current of a single junction. Using our pa-
rameters I, =1. For f=1 and }, I,~0.35 and 0.1375,
respectively, and a more complex behavior is observed.
It is very important to emphasize that the =0 “depin-
ning” at I (f) is fundamentally different for f =0 and
JF70. If £ =0 the ground-state configuration is spatially
uniform, and, in the absence of impurities, temperature,
or an inhomogeneous driving field, the voltage response
remains spatially homogeneous for I >1,(0). However,
in the presence of a magnetic field (f#0), the ground
state has spatial structure and becomes depinned at I (f)
via instabilities of finite wave-vector modes which satu-
rate, in the nonlinearity of the pinning potential, as a
wall-antiwall nucleation process. Thus, the I-V threshold
characteristics for f#0 are quite different from f=0
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(a) (b)  Ic(t=0) :
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le(f=1/3) 1c(f=1/2)

FIG. 1. I-V curves for different external magnetic fields: (a) f =1; (b) f =1 (data taken from Ref. 1; (c) f =0. Straight line is the
ohmic limit. Arrows show the respective critical current values. Note the log-log scale.

(above). Only at I>>I.(f) does the background flow  features can be noted. Four different regions can be
easily as for /=0 with I > I(0). clearly distinguished.' First, A is a superconducting re-

Figure 2 shows the T'=0 I-¥V and I-R (R =dV/dl)  gion (I <I,, I.~0.1375) in which no voltage is generated
curves for the case f =1, from which several interesting  and no flux flow can be observed. A second region, B,

10
1 L
A
A
>
v
0.1
0.01 N 2 N N 1 N . NN
0.1 1 10

FIG. 2. I-V curve for f =§ at T =0 (dotted line). Solid straight line gives the ohmic limit. Arrows show separations between
space-time regimes discussed in the text. Inset shows the I-R curve. Note the discontinuity at 7 ~0.68.
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follows the onset of the nonzero voltage. Finally two re-
gions, C and D, with near-linear characteristics separated
by a sharp transition in the resistance. In each of the re-
gions, different space-time dynamical behaviors have
been observed. Discarding the pinned superconducting
A phase, which is not of major interest for the present
purposes, we review the other regions.

Region B (I,<I <0.2). This rich phase presents a
broad spectrum of frequencies. Figure 3 shows the time
dependence and power spectrum of the voltage for two
different values of I near the boundaries with regions 4
and B. For higher currents a broad spectrum appears al-
though some frequencies can be distinguished. As I, is
approached, the spectrum becomes noisier and more
“chaotic” or “intermittent.” In the following we relate
this behavior with the domain-wall textures.

Regions C (0.2<1I <0.68) and D (I >0.68). In these
parts of the I-V curve the dynamics is dominated by the
ac Josephson effect. However, many properties (critical
currents, the shape of the I-V curve, etc., show deviations
from single junction behavior: cooperative interactions
(i.e., many junction) effects are evidently involved. As
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shown in Fig. 4 the response is highly anharmonic for
low currents as I, is approached from above. The C and
D regions are separated by a distinct change in the slope
of the I-V curve (see inset of Fig. 2).

In order to understand these behaviors we have fol-
lowed the dynamics of the flux lattice, relating different
defect patterns to the various dynamical behaviors. We
initialized all of our simulations in the ground state for
I=0.% Figure 5 shows configurations of the flux lattice
in the regions of interest. For I <I, the flux lattice is
pinned by the lattice descreteness and no voltage is
developed [Fig. 5(a)]. For I >I, the ground state is
modulationally unstable and domain walls are nucleated.
Their density increases as I increases and for a high
enough density of domain walls (I >0.2) ordered super-
lattices of walls are formed [Figs. 5(c) and 5(d) are good
examples]. However, a uniform motion of these superlat-
tices cannot give an ac effect. (This is similar to the over-
damped behavior of the sine-Gordon chain where only an
inhomogeneous driving field produces an ac oscilla-
tions!”.) The motion is driven by injection of linear de-
fects (domain wall in the lattice of domain walls) through
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0.015 4
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(Y L Lc T, U ——— . . .
0 200 400 600 800 1000

®) time
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B B A e
0 0.2 0.4 06 0.8 1

FIG. 3. (a) Time dependence and power spectrum of the voltage drop across the array [Egs. 9(a) and 9(b)] for 7 =0.14. (b) Same as

(a) for I =0.19."
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FIG. 4. (a) Same as Fig. 3 for I =0.2. (b) Same as Fig. 3 for I =0.74.

the open boundaries, which annihilate inside the lattice.
For higher fields (I =0.6) a uniform pattern of domain
walls is found [Fig. 5(e)]. This pattern is unstable at
I.;~0.68 and melts into another pattern [Fig. 5(f)] via
nucleation of a new defect type—composed of a mixture
of ground-state-like configuration [see Fig. 5(f].'* Now
the mechanism for dynamics is repeated. The formation
of the regular domain-wall lattice can be understood by
assuming a repulsive interaction between them, as in
Frenkel-Kontorova models.!® An interesting feature is
the ratio (¥ ()} /o=~1 over the whole range in which
the frequency is well defined. This means that for each
cycle the whole flux lattice moves by one unit of flux due
to overall motion of the domain-wall lattice. As the den-
sity of extra positive charges (m =1) is {, the preceding
ratio is constant.

In region B (low density of domain walls) an aperiodic
lattice of walls appears. At low density the field-
nucleated domain walls are nearly pinned by the periodic
potential forming spatially irregular moving lattices .'*?°
Each domain wall is dominated by the local potential
created by its individual environment, rather than the in-

teraction with neighboring walls which leads to the
periodic superlattices in region C. The multiplicity of en-
vironments in the nonperiodic lattice leads to a multifre-
quency regime, as in driven Frenkel-Kontorova models.?
Thus this scenario can be understood as the transition
from a pinned commensurate phase (the I <I, supercon-
ducting phase) to a dynamic incommensurate one—a
‘“‘chaotic” lattice of pinned domain walls. In this way,
the competing interactions lead to an explicit connection
between “noisy” dynamics and spatial structure.

It should be noted that, due to the transverse rigidity
of the domain walls at T =0, we can discuss them using a
close analogy with the dynamics of discrete one-
dimensional models, e.g., 1D Frenkel-Kontorova. This
analogy breaks down, however, at finite temperature
where inhomogeneities can play the important role of nu-
cleating transverse dynamics.’! We now discuss T >0
results.

B. T0 simulations

At finite temperature two kinds of simulations have
been made. First, I =0 simulations (with periodic bound-
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FIG. 5. Flux lattice configuration at T=0 for (a) I <I,
(ground state for f=4); (b) I=0.14 (region B); (c) I =0.2 (re-
gion C); (d) I=0.3 (region C); (e) I = 0 6 (reglon Q); () I=0.8
(region D). Dots signify m =1, i.e.,g=

ary conditions in both directions) in order to calculate
thermodynamics properties and locate the phase transi-
tion to the normal (i.e., nonsuperconducting) state. The
nature of the corresponding phase transition in the frus-
trated XY models is interesting because it shares charac-
teristics of both XY and Ising models.>!? The helicity
modulus (HM) has been used as an indicator of the phase
transition>?? based on the fact that a universal jump is ex-
pected?® at T,. Although there is clear evidence that this
is true for the neutral Coulomb §as (f =0), a higher jump
is seen in the frustrated case.>?? Figure 6 shows the
simulation of HM for two different lattice sizes {other in-
termediate values have been used). Using the universal
jump criterion implies T, ~0.275. However, the jump is
visibly larger, and in fact domain walls begin to appear at

~0.2. This estimation of T}, =~0.2 is in excellent agree-
ment with the result for the two-dimensional charged
Coulomb gas.?> We have not attempted further measure-
ments that might distinguish unambiguously between a
single or two transitions (KT like and Ising like). Howev-
er, it seems very likely that these temperature must be
differentiated. For example, in Fig. 7 we show equilibri-
um configuration for T=0.2 and 0.3. It is clear that for
T =0.2 domain-wall excitations are responsible for the
decreasing of the HM and vortex-antivortex pairs do not

appear. This situation persists in the intermediate tem-
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FIG. 6. Helicity modulus (¥) for 12X 12 and 36 X 36 lattices.
Continuous line, Y =2#/T, shows the expected magnitude of
the universal jump according to the Kosterlitz-Thouless theory.
Arrows show the “transition” temperatures cited in the text.

perature region (0.2<7T <0.275). At T >0.275 an iso-
tropic liquidlike state is observed due to the proliferation
of vortexlike excitations. This scenario would be con-
sistent with two transitions, the first of Ising character

vyielding a non-XY decrease of HM. Once the HM
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FIG. 7. Equilibrium flux lattice configuration for (a) T=0.2
and (b) T=0.3.
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FIG. 8. I-V curve at finite temperatures.

reaches the critical value of (27w /T), unbound vortex-
antivortex pairs can develop and the domain-wall struc-
ture melts to a disordered phase.

Next we study the I-¥ characteristics at finite tempera-
ture. Figure 8 shows I-V curves for several different tem-
peratures. As can be anticipated, the T=0 critical
current is smoothed due to the thermally excited vortex-
antivortex pairs and domain walls, and an excess voltage
appears below I, (T'=0). This region should show a
characteristic power-law behavior if Kosterlitz-Thouless
(XY) theory prevails. However, we have been unable to
fit the data to such a form. As also pointed out by Mon
and Teitel' this can be interpreted as the influence of the
domain walls on the dynamics. In fact, a finite density of
walls can be observed at low currents and temperatures.
At I =1, the curves cross, decreasing the voltage with in-
creasing temperature. In the region C, near the ohmic
limit all curves converge—only a very slight increase of
voltage with temperature is observed. It is interesting
also to observe the I-R curve (Fig. 9) where one can ap-

preciate the broademing of the tramsition at I,;. At

T=0.2 only a smooth curve is obtained giving further
evidence of a phase transition or strong crossover at this
temperature.

We can understand the preceding behavior by identify-
ing the mechanism for domain-wall motion more precise-
ly. Below the T =0 critical current, a rigid domain wall
cannot overcome the pinning potential. However, due to
thermal fluctuations, a domain wall can lose its rigidity

by nucleation of kink-antikink structures which propa-
gate on the walls transversely to the domain-wall motion.
We can identify the instabilities which saturate into
kink-antikink pairs as thermally excited vortex-
antivortex pairs which unbind in opposite directions
(along the y axis) driven by the electric field associated

1.5

0.0 T
0.0 0.5 1.0

FIG. 9. I-R curve at finite temperatures.
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FIG. 10. Mechanism for domain motion at low currents and
finite temperature: (a) domain-wall structure; (b) vortex-
antivortex (kink-antikink) pair created on the wall; (c) transver-
sal pair separation giving longitudinal motion of the domain
wall; (d) final configuration following annihilation of the pair
through the periodic boundary condition. Domain wall and
vortices are indicated to guide the eye. Note that this pair nu-
cleation occurs randomly on each domain wall and that several
nucleation events can appear on the same wall.

with the external current. This mechanism is easily ob-
served in simulations at low current and low temperature
in which the density of both is small. Figure 10 illus-
trates the motion of a domain wall by this transverse in-
stability. First, a vortex-antivortex pair relative to the
rigid domain wall is created. (In the charged Coulomb
gas language this excitation corresponds to an interstitial
charge hole in the lattice.) Then this pair separate to op-
posite boundaries in the y direction. Due to the periodic
boundary conditions in this direction, they annihilate.
More complicated situations have been observed when
several pairs are randomly nucleated on the same domain
wall. An important consequence of this interaction
mechanism between vortex and domain-wall structures is
the roughening of the domain-wall lattice. At low
currents this roughening only has the effect of facilitating
the domain-wall motion but does not influence the in-
teraction between walls since the wall width is much
smaller than the wall separation. Thus, the thermal
enhancement of the voltage below I, is understood by the
motion of domain walls via transverse instabilities. It is
likely that extrinsic inhomogeneities could act as similar

nucleation sites for such transverse wall instabilities.
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Close to I, (where even the T =0 dynamics is noisy)
the flux lattice patterns become more complicated and
there is little regularity in the dynamics. For these
currents (see Fig. 8), domains walls are induced both by
thermal fluctuations and by the current. Their current-
induced density rapidly increases and dominates, and the
transverse wall roughening leads to non-negligible
domain-wall-domain-wall interaction and entanglement.
Both mechanism of motion (rigid wall flow and
transverse-instability-assisted flow) compete giving a rap-
id increase of voltage (from the increased density of de-
pinned domain walls) at I > I, but a decrease of voltage
with increasing temperature (from the increased vortex-
antivortex density decorating the walls).

At even higher currents (I > 1), the field driven tex-
ture transforms to a new pattern (as for 7=0) and there
is very little T dependence (see Fig. 8). Here, the domain
wall and vortex-antivortex excitations are primarily
field-nucleated (the only role of the temperature is to
create the inhomogeneity necessary for local vortex-
antivortex nucleation). Again, an entangled structure of
domain walls [of the type shown in Fig. 5(g)] is observed
but their motion is dominated by a uniform sliding in the
strong external field, giving little T dependence.

Finally, we note that, except at low currents (I <I,),
the T=0.2 and T'=0.3 curves coincide. This suggest
that internal wall structure is not relevant to the conduc-
tion processes at these high temperatures. The high den-
sity of domain wall and vortex excitations (thermally or
current excited) give similar textures in the flux lattice
structure at both temperatures, and the dynamics is again
primarily a rigid sliding of the texture.

1V. CONCLUSIONS

In this study we have used a Langevin molecular-
dynamics simulation to examine the flux lattice dynamics
in the superconducting phase of an array of Josephson
junctions in an external perpendicular magnetic field. We
have been able to correlate the response of an external dc
driving current with the diverse spatial configurations of
the flux lattice. Because of the inhomogeneous ground
state and the underlying XY symmetry, several regimes
occur. These are summarized schematically in Fig. 11
and include the following.

(i) At zero temperature, the flux lattice behaves like an
effective 1D model of interacting domain walls in a
periodic potential. Different regimes in the I-V curves
(Sec. III A) can be understood in this way. The dynami-
cal properties are controlled by the defects nucleated
with respect to the ordered flux lattice. These defects
(domain walls) arrange in ordered or “chaotic” lattices
(due to the lattice discreteness) giving the various dynam-
ical behaviors described in Sec. III.

(i) At finite temperatures the appearance of transverse
instabilities breaks the equivalence with 1D models.
These instabilities have been assigned to vortex-
antivortex excitations moving transversely to the
domain-wall motion. Then, the motion of the domain
wall is driven by these local defects leading to a finite

voltage even for I <I.. In our simulations, inhomo-
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stand for domain wall and vortex-antivortex pair, respectively.

geneities are induced by thermal noise although impuri-
ties could also nucleate them?'—such an effect has been
observed in a JJA with missing bonds also giving a lower-
ing of the critical current.®

We have observed a response regime B with multifre-
quency (possibly including chaotic) dynamics. In view of
the space-time relationships established in this paper, we
suggest that noise measurements may be a useful experi-
mental diagnosis for textures in dynamic vortex lattices.
A similar suggestion is appropriate to other systems with
pinned incommensurate ground states which can be dep-
inned by an external driving force—e.g., pinned-charge-
density waves,?* a superconducting layer in an external
magnetic film with vortex lattice pinning from modula-
tion of the film thickness,” or even layered high-
temperature superconductors. It is particularly impor-
tant to appreciate the various interactions between field-
induced and thermally induced vortex and domain-wall
patterns that our results have illustrated. We have seen
that these interactions can both enhance and inhibit flux
flow. Modeling wall-vortex interaction in the presence of
a driving field is an important theoretical challenge. One
possible direction is to map the coupled set of Langevin
equations [Eq. (7)] to a Hamiltonian system in one higher
spatial dimension. This is possible?” in the overdamped
limit considered here, for which a Lyapunov free energy
can be identified. Then, the long-time attractors and ex-
cited states will correspond to ground and metastable
states in this effective higher dimensional, competing

length scale Hamiltonian.

Our future work will address the effects of disorder in
these systems. As we already argued impurities can be
expected to influence the dynamical properties, e.g., criti-
cal currents. This may be especially important in super-
conductors. There are many ways to introduce disorder
in a JJA. Positional disorder has been studied recently,?®
attempting to explain the glassy behavior of high-T, su-
perconductors. Other source of disorder could be the ex-
istence of Josephson junctions on different length scales.
Also finite scale dynamical properties (e.g., frequency-
dependent impedance or conductivity) are important in
JJA’s and real superconductors’ and will have their own
characteristic signatures of glassy situations. In general,
we can expect an important future for dynamical studies
of JJA’s—both as an experimentally controlled environ-
ment for probing glassy dynamics in competing interac-
tion systems and as a model for vortex flow phenomenol-
ogy in real superconductors.

ACKNOWLEDGMENTS

We are grateful for valuable discussions and correspon-
dence with H. Beck, A. P. Kampf, P. Martinoli, and S.
Shenoy. One of us (F.F.) acknowledges the Spanish Min-
istry of Education and Science for support. Work at Los
Alamos was supported by the U.S. Department of Ener-
gy and the Center for Materials Science.




41 IV CHARACTERISTICS IN TWO-DIMENSIONAL ...

*Permanent address: Departamento de Ciencia y Tecnologfa de
Materiales y Flufdos and Instituto de Ciencia de Materiales
de Aragon, Universidad de Zaragoza-C.S.1.C., 50009 Zarago-
za, Spain.

IK. K. Mon and S. Teitel, Phys. Rev. Lett. 62, 673 (1989).

28. R. Shenoy, J. Phys. C 18, 5163 (1985); R. Mehrotra and S. R.
Shenoy, Europhys. Lett. 9, 11 (1989).

3T. C. Halsey, Phys. Rev. B 31, 5728 (1985).

4T. C. Halsey, Phys. Rev. Lett. 55, 1018 (1985).

5S. Teitel and C. Jayaprakash, Phys. Rev. B 27, 598 (1985);
Phys. Rev. Lett. 51, 1999 (1983).

6W, Xia and P. L. Leath, Phys. Rev. Lett. 63, 1428 (1989).

7(a) P. Martinoli, H. Beck, M. Nsabimana, and G. A. Racine, in
Percolation, Localization and Superconductivity, edited by A.
L. Goldman and S. A. Wolf (Plenum, New York, 1984); (b)
Ch. Leeman, Ph. Lerch, G.-A. Racine, and P. Martinoli,
Phys. Rev. Lett. 56, 1291 (1986).

8M. Tinkham and C. J. Lobb, Solid State Phys. 42, 91 (1989).

9J. M. Kosterlitz and D. J. Thouless, J. Phys. C 6, 1181 (1973);
J. M. Kosterlitz, ibid. 7, 1046 (1974); J. V. José, L. P. Ka-
danoff, S. Kirkpatrick, and D. R. Nelson, Phys. Rev. B 16,
1217 (1979).

10y, Ambegaokar, B. I. Halperin, D. R. Nelson, and E. D. Sig-
gia, Phys. Rev. 21, 1806 (1980); B. 1. Halperin and D. R. Nel-
son, J. Low. Temp. Phys. 36, 599 (1979).

USee articles in Competing Interactions and Microstructures:
Statics and Dynamics, edited by R. LeSar, A. R. Bishop, and
R. Heffner, Vol. 27 of Springer Proceedings in Physics Series
(Springer-Verlag, Berlin, 1988).

I2M. Yosefin and E. Domany, Phys. Rev. B 32, 1778 (1985); E.
Granato and J. M. Kosterlitz, ibid. 33, 4767 (1986).

I3R. M. Bradley and S. Doniach, Phys. Rev. B 30, 1138 (1984).

10 993

These authors discuss similar quantum models in 1D chains.

14y, Ambegaokar and B. I. Halperin, Phys. Rev. Lett. 22, 1364
(1969).

15H. S. Greenside and E. Helfand, Bell Syst. Tech. J. 60, 1927
(1981). It is easy to prove that second-order algorithm report-
ed in this reference can be extended to spatially correlated
noise. :

16For a review of the 2D Coulomb gas, see P. Minnhagen, in
Percolation, Localization and Superconductivity, edited by A.
L. Goldman and S. A. Wolf (Plenum, New York, 1984).

17A. R. Bishop, B. Horovitz, and P. S. Lomdahl, Phys. Rev. B
37, 4853 (1988).

18Note in the Fig. 5(f) that the new pattern is symmetric respect
the L/2 line. This is a consequence of the initial conditions.
On this line domain walls coming from the edges annihilate.

195, Aubry, Festkorperprobleme XXV, 85 (1985); P. Bak, Rep.
Prog. Phys. 45, 587 (1982).

205, Aubry, Physica D 7, 240 (1983).

21y, Pouget, S. Aubry, A. R. Bishop, and P. S. Lomdahl, Phys.
Rev. B 39, 9500 (1989); J. C. Ariyasu and A. R. Bishop, ibid.
35, 3207 (1987).

223, S. Grest, Phys. Rev. B 39, 9267 (1989).

23D, R. Nelson and J. M. Kosterlitz, Phys. Rev. Lett. 39, 1201
(1977).

243ee articles by D. S. Fisher and G. Gruner, in Ref. 11.

25R. Eykholt, A. R. Bishop, P. S. Lomdhal, and E. Domany,
Physica D 23, 102 (1986).

268ee, for example, W. Y. Shih, C. Ebner, and D. Stroud, Phys.
Rev. B 30, 134 (1984); I. Morgenstern, K. A. Miiller, and J.
G. Bednorz, Z. Phys. 69, 33 (1987); E. Granato and J. M.
Kosterlitz, Phys. Rev. Lett. 62, 823 (1989); J. Choi and J. V.
José, ibid. 62, 320 (1989).



