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Abstract

Using the continued-fraction method we solve the Caldeira– Leggett master equation in the phase–space (Wigner)

representation to study quantum ratchets. Broken spatial symmetry, irreversibility and periodic forcing allows for a net

current in these systems. We calculate this current as a function of the force under adiabatic forcing. Starting from the

classical limit we make the system quantal. In the quantum regime, tunnel events and over-barrier wave reflection

phenomena modify the classical result. Finally, using the phase–space formalism we give some insights about the

decoherence in these systems.
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1. Introduction

Transport properties in periodical structures
with broken spatial symmetry (ratchet systems)
have attracted a lot of attention in the past decade
[1]. These systems, under out-of-equilibrium con-
ditions, can display net current even when the time
and space average of all applied forces is zero. For
this reason, these systems are also called Brownian

motors [2]. Realizations of Brownian motors can
be found, for example, in biological and condensed
matter systems [3].
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In the classical limit, the dynamics is governed
by classical Langevin or equivalently Fokker–

Planck equations. This limit has been extensively
studied in the recent past, establishing the main
phenomenologies of the ratchet effect (non-van-
ishing rectified current, etc.) [1]. The inclusion of
quantum fluctuations in the system enriches the
ratchet phenomenology [4]. However, the difficul-
ties to deal with quantum dissipative systems,
make their study harder and one finds less works
on this regime [3–9].

Recently, it has been shown that it is possible to
solve quantum master equations using continued
fraction methods [10,11]. Such master equations
are the ‘‘quantum generalization’’ of the classical
d.
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Fokker– Planck equations for some ranges of the
parameters (weak coupling, high temperature,
etc.). Adapting this technique from the classical
case [10], the authors of Ref. [11] have studied the
ratchet effect as a function of the temperature. In
this work we extend the study to the force
dependence of the rectified velocities in the high
temperature/weak coupling regime.
2. Theoretical framework

The out-of-equilibrium dynamics of classical
systems is well established since a century ago with
the seminal works of Einstein and Langevin. The
Langevin (Fokker– Planck) equations describe sa-
tisfactorily the stochastic behavior of these sys-
tems. However, their quantization represents, in
most cases, a difficult task [12]. The most
satisfactory approach consists of quantizing the
Hamiltonian of the system plus its environment.
The minimal bath model is a large collection of
harmonic oscillators. This approach, in the classi-
cal limit, recovers the Langevin description of open
systems.

In the quantum realm, a closed evolution
equation is not possible in the general case. This
is mainly due the non-Markovian nature of the
quantum correlations. Nevertheless, under some
approximations, it is possible to derive a Marko-

vian quantum master equation. Thus, it is typically
assumed that the relaxation times are much longer
that the quantum correlations of the bath,

1

g
b

_

T
, (1)

with g the damping parameter measuring the
strength of the coupling to the bath. Under these
conditions (high temperatures and/or weak cou-
pling) the evolution is given by the celebrated
Caldeira– Leggett master equation [13],

i_qtR ¼ ½HS; R� þ
g

2_
½x; fp; Rg� �

igMkBT

_
½x; ½x; R��.

(2)

Here R is the reduced density matrix, obtained
after tracing out the environmental degrees of
freedom and HS is the system Hamiltonian, in our
case HS ¼ p2=2m þ V ðxÞ. The first term in (2)
gives the unitary evolution, the second yields the
dissipation and the last is responsible for the
diffusion.

An alternative description of quantum systems
is provided by the phase–space (Wigner)
formalism. The central object is the Wigner

function, defined in terms of the density matrix
as [14]

W ðx; pÞ ¼
1

2p_

Z
dy e�ipy=_Rðx þ y=2;x � y=2Þ.

(3)

This representation not only gives a phase–space
description for quantum systems, but it allows to
extend classical concepts and tools into the
quantum domain. Besides, it facilitates the study
of quantum analogues to classical phenomena
(quantum chaos, phase–space trajectories, etc.)
and provides a natural quantum–classical connec-
tion.

In the Wigner representation the master equa-
tion (2), can be written as

qtW ¼ � pqx þ V 0 qp þ gT qp ðp þ qpÞ

"

þ
X1
s¼1

kðsÞ V ð2sþ1ÞðxÞ qð2sþ1Þ
p

#
W . ð4Þ

The first two terms correspond to the Poisson

bracket (Liouville equation). This Poisson

bracket plus the third term yields the classical
Fokker– Planck equation, evidencing the classical
character of the noise and relaxation. The last term
is purely quantal and comes from the unitary
evolution of the closed system (Wigner– Moyal

bracket).
Eq. (4) is written in dimensionless form [11]. The

variables have been scaled with help from a
reference length x0, mass M and frequency O0.
For example, action variables are scaled by the
characteristic action S0 ¼ MO0x2

0, energy by
E0 ¼ MO2

0x2
0, etc. Then the coefficient in the

quantum sum is given in terms of the de Broglie

wavelength by,

kðsÞ ¼ ð�1Þsl2s
dB=ð2s þ 1Þ!. (5)
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Besides, gT / g
ffiffiffiffi
T

p
and _ is introduced in terms of

S0 via the quantum parameter K:

_=S0 ¼ 2p=K and ldB / 1=K . (6)

Note that the classical limit is naturally recovered
letting K ! 1.

To conclude, the calculation of observables in
the Wigner formalism is an example of extension
of classical methods to the quantum domain. The
quantum mechanical expectation value is obtained
via W ðx; pÞ as a classical ‘‘average’’

hAi � TrðR̂ ÂÞ ¼

Z
dx dpW ðx; pÞAðx; pÞ, (7)

with Aðx; pÞ the classical observable corresponding
to the operator Â (via Weyl’s rule).
3. Continued-fraction approach

A suitable non-perturbative technique to solve
classical Fokker– Planck equations of systems with
a few variables is the continued-fraction method
[15]. This is a special case of the expansion into
complete sets (Grad’s) method to solve kinetic
equations in statistical mechanics. The technique
had already been adapted to quantum dissipative
systems in studies of spins and quantum non-linear
optics. Recently, this method has been extended
to quantum Brownian motion problems described
by Caldeira– Leggett type equations exploiting
the Fokker– Planck-like structure of the quantum
master equation in the Wigner representation
[10,11].

The idea of the method consists of expanding
the desired solution W of the dynamical equation
(qtW ¼ LW ) into an appropriate basis of func-
tions. The equations for the expansion coefficients
(Ci) have then the form of a system of coupled
differential equations, say

_Cj ¼
XI

i¼�I

Qj; jþiCjþi. (8)

The goal is to find a basis in which the range
of index coupling I of the coefficients Ci is as
short as possible. Indeed, for finite coupling range
(Io1) the differential recurrence relation (8) can
be solved by iterating a simple algorithm, the
structure of which is like that of a continued
fraction,

C ¼
p1

q1 þ
p2

q2 þ
p3

q3 þ � � �

. (9)

In the case of the Caldeira– Leggett equation the
expansion is on an x and p basis:

W ðx; pÞ /
X
n;a

Ca
nuaðxÞcnðpÞ. (10)

Then, the recurrence (8) is replaced by a two index
one, _C

a
n ¼

P
m;b Qnm

ab Cb
m, which can be transformed

into a one index recurrence introducing appro-
priate vectors and matrices:

d

dt
Ca ¼

Xi¼I

i¼�I

Qa;aþiCaþi. (11)

This recurrence relation can be solved with matrix

continued-fraction methods. In [11] the explicit
form of matrices Q was derived. In particular, for
periodic potentials [V ðxÞ ¼ V ðx þ LÞ] explicit re-
currence relations were constructed using Hermite

functions for the momentum basis and plane waves

(ua / eiax) for the position basis. This choice
provides a finite coupling range I, making possible
its solution by the above-sketched method.

Solving the quantum master equation in this
way, the Wigner function is obtained (i.e., the
density matrix), so any observable can be calcu-
lated.
4. Results for quantum ratchets

In the context of Brownian motion, the simplest
model that allows for broken spatial symmetry is
the two harmonic potential,

V ðxÞ ¼ �V 0½sin x þ ðr=2Þ sinð2xÞ�, (12)

(other ratchet systems can be modelized using tight
binding Hamiltonians, rotational spin systems,
optical lattices, etc.). The potential (12) has a
steeper side to the left, which we will call the
‘‘hard’’ direction, while we will refer to the other
direction as the ‘‘easy’’ one (to the right).
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Fig. 1. Rectified velocity vs. force for a classical particle in a

ratchet potential (a square wave �F is used). Results are shown

for various values of the damping g, as well as the analytical

overdamped result. The vertical lines mark the two critical

forces in the deterministic case F�
c [Eq. (14)].
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Fig. 2. Energy bands for K ¼ 5. The potential profile V ðxÞ ¼

�V0½sin x þ ðr=2Þ sinð2xÞ� is plotted (dashes) to show the

number of bands below the barrier. In the calculations, we

use r ¼ 0:44 which smoothens the potential profile.
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Using the continued-fraction technique, we can
solve the Caldeira– Leggett equation. In particular,
for the case of the two harmonic potential (12) the
coupling range I is 2 (i.e., equal to the number of
harmonics of the potential).

Our purpose is to study the transport properties
in this system. We limit ourselves to the case of a
square-wave force switching alternatively between
�F with a period 2p=o. Then the rectified velocity
is defined as,

ghpir ¼ ghpiþF þ ghpi�F . (13)

As we consider adiabatic conditions (o ! 0), the
hpi�F are the corresponding stationary velocities;
they can be calculated immediately with the
general result (7).

In Ref. [11] we considered the temperature
dependence of the ratchet current. In this article,
we study the force dependence of ghpir at fixed
temperature. A high enough temperature is chosen
to circumvent validity problems of the master
equation (see Eq. (1) and discussion below).

4.1. Classical limit

First, it is convenient to understand the classical
phenomenology. We plot in Fig. 1 the effect of
finite inertia on the curves ghpir vs. F at a fixed
temperature kBT=E0 ¼ 1.
The results obtained can be summarized as
follows: (i) the rectified velocity is positive, i.e., the
net drift is to the ‘‘easy’’ side; (ii) at high g the
results converge to the known overdamped analy-
tical result; (iii) finite inertia (g) shifts the curves to
lower forces and narrows them; (iv) at low enough
damping the net current drops to zero.

There are two main points to be understood
here: the dependence on g of the efficiency of the
rectification and the window of forces where it
occurs. Recall that in the zero noise limit (T ¼ 0),
there exist two critical forces (for r41=4),

F�
c =V 0 ¼ 1 þ r; Fþ

c =V 0 ¼ 1 � r, (14)

where F�
c =V0 are the critical forces for barrier

disappearance to the right and left sides. In our
case, r ¼ 0:44, then F�

c =V 04Fþ
c =V0. Thus, in the

T ¼ 0 limit we expect a current to the right (i.e.,
positive).

Borromeo et al. studied the classical inertial,
deterministic (T ¼ 0) case [16]. They found that
the net current starts at Fþ

c =V 0. Then rectification
grows quickly with F, up to F�

c =V 0. From this
force the rectification starts to decrease with F,
tending to zero at large forces. They also observed
that inertia narrows the curves, and fits them to
the window ðFþ

c =V0;F
�
c =V0Þ. In addition, for

intermediate damping the ratchet efficiency grows
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inversely proportional to the damping. Finally, at
very low damping the rectified velocity drops to
zero. Thus, our findings agree with the efficiency
and narrowing characteristics of Ref. [16] for
the noiseless limit. Nevertheless the temperature
smoothens the curves in our case, allowing for
rectified velocity below Fþ

c .
This range below Fþ

c is indeed quite rich already
in the T ! 0 limit. There are two more character-
istic forces F 1ðgÞ and F 2ðgÞ (F1oF 2oF c). Below
F1 the locked solution (hpi ’ 0) is the attractor
globally stable. Above F 2 the stable attractor is the
running solution (hpi ’ F=g). Between F1 and F2

there exist bistability between these solutions.
However, both for locked and running solutions
there is little asymmetry in the response [as then
hpi is nearly independent of V ðxÞ]. Therefore, the
asymmetry in the response concentrates in the
range F 1oFoF 2. Then, since both F 1 and F2

decrease with g [15, p. 330], the window with the
maximum rectification is shifted to lower F as g is
decreased, in accordance with our results.

4.2. Quantum corrections

After the exploration of the classical limit, we
proceed to make the system quantal, by decreasing
K (see Section 2), and see how this affects the
ratchet effect. The physical meaning of K can be
seen calculating the bands of the closed system,
which depend only on K [11]. The number of
bands grows with K (as a rule of thumb the
number of bands below the potential is approxi-
mately K=2) while the bandwidth increases with
decreasing K . We plot in Fig. 2 the bands for the
case K ¼ 5.

We show results for the rectified current ghpir in
Fig. 3. We present curves at kBT=E0 ¼ 1 and g ¼
0:05 for different values of K . It is observed that
the deviation from the classical case is systematic
in K . First, we find a reduction of the ratchet effect
at low forces. The reduction continues at inter-
mediate forces, while at high forces an enhance-
ment is observed, with respect to the classical case.
Finally, a slight shift of the peaks of the curves to
higher forces is found as K is decreased.

The reduction/enhancement of the rectified
velocity with respect to the classical limit was
already investigated in [11]. These deviations can
be understood in terms of quasiclassical correc-
tions to classical transport, which is modified by
tunnel events and over-barrier wave reflection
(reflection of particles with energy above the
barrier; those energies are attained by thermal
activation). Modeling with an asymmetric saw

tooth potential one finds that tunnel events are
more frequent in the hard direction than in the
easy one for moderate to weak amplitude forces
(leading to reduction of the ratchet effect) [1,11].
On the contrary, the phenomenon of the wave
reflection is less intense in the easy direction [11].

In particular, at F ’ g we obtained in Ref. [11]
that, depending on the inertia and temperature,
the reduction/enhancement is a consequence of the
‘‘competition’’ of tunnel events and wave reflec-
tion. Increasing the force both the contributions of
wave reflection and tunnel transmission grow [11,
Appendix F]. However, wave reflection grows like
�F , while tunnel transmission goes exponentially
with F. Thus, when F4g, but not too high, tunnel
contributions are favored more than wave reflec-
tion. As a consequence, one finds a reduction of
the rectified velocity in the range of inertia where
an enhancement at Ftg takes place. Finally,
at high enough forces the barrier is sufficiently
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lowered. Then, there are many particles with
energies above the barrier (experiencing wave
reflection). In addition, at high forces tunnel
events also favor the enhancement [1].

As for the shift to higher forces, Shushin and
Pollak showed [17] that quantum corrections
produce a suppression of the diffusion in the
underdamped regime. This effect yields an effec-
tive increased barrier, which manifest itself in a
shift to higher forces in the quantum curves.

In Fig. 3 (see the inset) we also observe a small
current at F ¼ 0. We believe that this ‘‘little’’
violation of the second law (transformation of
thermal fluctuations in net current in absence of
forcing) is a consequence of the approximations
done in the derivation of the Caldeira– Leggett

equation [8] (since the starting formalism is
thermodynamically consistent).
5. Phase space representation

We plot a (stationary) Wigner distribution in
Fig. 4. In order to see quantum effects clearly
we choose the lowest K case considered
(recall K / S0=_).

The white islands in the graph represent zones
with negative values of the Wigner function. Apart
from this negative zones, the Wigner distribution
lies mainly on its classical counterpart.

Negative zones are a consequence of quantum
interference. Thus, one would expect that deco-
-4
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Fig. 4. Wigner function for a particle in a ratchet potential. The

quantumness parameter is K ¼ 5, the damping is g ¼ 0:05 and

F ¼ 0. White ‘‘islands’’ correspond to zones of negative W

(�� 10�5). These negative zones are of size comparable to

those of Hamiltonian case [11]. Note the spatial asymmetry

induced by the ratchet potential.
herence yields positive Wigner functions. In fact, in
the harmonic dissipative case, it was shown that
after a finite time the Wigner function becomes
positive [18]. However, our plots show that more
general (non linear) potentials allow for non-
positive Wigner distributions at long times.

By decoherence we mean that an initial reduced
density matrix, Rðt0Þ evolves with time to a
diagonal one (in a preferred basis), when the
system is coupled to the environment [19]. The
basis fjnig in which R becomes diagonal,
R ¼

P
jcnj

2jnihnj, it is the so-called pointer basis
[19]. The preferred basis depends on the Hamilto-

nian of the system (HS) and the interaction
between the system and the bath. For example,
in linear quantum Brownian motion (free particle
and harmonic oscillator), the pointer states are
localized in phase–space, the so-called coherent
states (familiar from quantum optics). Mixtures of
these states yield positive W.

The fact that our stationary W retains the
negative islands (after decoherence), implies that
such coherent states cannot be the pointer basis in
our case. Actually, in the limit of weak damping
and high temperature, one expects that the
stationary solution of (2) corresponds to the
canonical density matrix,

R ¼
1

Z
e�bHS ¼

1

Z

X
e�bEk jkihkj. (15)

Accordingly, the pointer states would correspond
to eigenstates of the system Hamiltonian.

This can be additionally supported by the
following. Consider the approximate Bloch func-
tions that can be analytically obtained in the
extreme quantum case (Kt1) [11]. Weighting the
corresponding jkihkj by the thermal factor e�bEk

and integrating over k’s in the lowest bands, one
obtains Wigner functions displaying a structure
similar to the stationary solutions obtained here
by solving the Caldeira–Leggett equation for
small g=T .
6. Conclusions

The continued-fraction method is an estab-
lished technique to solve classical Fokker– Planck
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equations. Admittedly, compared with direct
simulations, the method has several shortcomings
(it is quite specific for the concrete problem; the
stability and convergence fails in some ranges of
parameters, etc.). However, it also has valuable
advantages (it is free from statistical errors,
its non-perturbative character, high efficiency,
etc.) [15].

When transferred to the quantum case the
method inherits these shortcomings plus the
problem of the critical election of the basis and
recurrence index [11]. However, no quantum
Langevin simulations are available, while numer-
ical solutions of master equations are computa-
tionally expensive. Notable exceptions are the
different versions of the quantum stochastic
calculus [20], which can be viewed as a sort of
quantum counterpart of the classical Langevin

simulations.
Let us emphasize that the continued-fraction

technique gives the exact solution of the quantum
master equation (Wigner distribution), allowing
the calculation of any observable [see Eq. (7)]. This
method has also ‘‘spectral advantages’’ since it
does not require the calculation of the eigenvalues,
circumventing the demanding problem of con-
tinuum spectrum. Moreover, a quantum–classical
connection is attained in a natural way (tuned by
K). Finally, the method enjoys the advantages of
working in phase–space.

In this work, we have studied the ratchet effect
in the quantum case for high temperature/weak
damping conditions as a function of the amplitude
of the forcing. Starting from the classical case, we
have proceeded to make the system quantal. The
deviations from the classical limit have been
understood in terms of tunnel events and ther-
mally activated over-barrier wave reflection.

The representation of the Wigner functions has
shown that, contrary the harmonic case, ratchet
(cosine) potentials do not exhibit positive Wigner

functions at long times. We have argued that in
the weak damping and high temperature regime
the pointer basis are the eigenstates of the
system Hamiltonian, yielding in our case a non-
positive W.
We finally, mention that the limitations of the
master equation considered do not allow us to
study the low temperature regime, where quantum
corrections will be more important. These pro-
blems are brought to the fore with an unphysical
violation of the second law of thermodynamics.
This situation constitutes a motivation to develop
corrections to the Caldeira– Leggett equation,
which could hopefully be solved with the con-
tinued fraction method.
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