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Taming Chaotic Solitons in Frenkel-Kontorova Chains by Weak Periodic Excitations
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We have proposed theoretically and confirmed numerically the possibility of controlling chaotic
solitons in damped, driven Frenkel-Kontorova chains subjected to additive bounded noise by weak
periodic excitations. Theoretically, we obtained an effective equation of motion governing the
dynamics of the soliton center of mass for which we deduced Melnikov’s method-based predictions
concerning the regions in the control parameter space where homoclinic bifurcations are frustrated.
Numerically, we found that such theoretical predictions can be reliably applied to the original Frenkel-
Kontorova chains, even for the case of localized application of the soliton-taming excitations, and there
is strikingly good agreement between analytical estimates and numerical results.
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Control of chaos in spatially extended systems repre-
sents one of the most interesting and challenging prob-
lems in the field of nonlinear dynamics. Examples of
possible applications include the stabilization of super-
conducting Josephson-junction arrays [1], semiconductor
laser arrays [2], and periodic patterns in optical turbu-
lence [3], to quote just a few. A fundamental question in
this field is whether effective control of the whole system
can be achieved by solely influencing a part of its freedom
degrees. In this regard, localized control of spatiotempo-
ral chaos has only recently been investigated in diverse
extended systems, such as plasmas [4], coupled oscillators
[5,6], isotropic systems [7], continuous extended systems
[8], and coupled map lattices [9]. Much less effort has
been devoted to control chaotic localized solutions (such
as solitons and breathers) arising from nonlinear partial
differential equations [10–12]. Although diverse works
concerning similar chaotic localized solutions in lattices
of nonlinear oscillators exist [13], to the best of our
knowledge their control (in the sense of regularization),
which is a problem of general interest [14], has not been
considered before.

In this Letter, we present a general theoretical approach
to control chaotic solitons in damped, noisy, and driven
Frenkel-Kontorova (FK) chains by weak periodic exci-
tations. It is worth mentioning that the FK model pro-
vides a fairly accurate description of diverse physical and
biological systems and phenomena, including charge den-
sity wave conductors, ladder networks of discrete
Josephson junctions, and DNA dynamics, to quote just a
few [15]. For the sake of concreteness, the approach is
discussed, in particular, in the simple case of linear
damping, additive noise, and two harmonic forces
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where uj is the phase of the jth oscillator, � is the damp-
ing coefficient, K measures the strength of the substrate
potential, F cos�!t� is the chaos-inducing excitation, and
�	;
; ’� are the as yet undetermined suitable parameters
of the chaos-taming excitation 	F cos�
t� ’�. Here,
��t� � 
 sin�
0t� �B�t� � �	 is a bounded noise term
with zero mean, where 
 and 
0 are the amplitude and
averaged frequency, respectively, B�t� is a unit Wiener
process, � represents the intensity of random frequency,
and � is a random initial phase uniformly distributed in
[0, 2�). Also, a finite chain of N particles with the fol-
lowing boundary condition: uj�N � uj � N � 1 is as-
sumed to keep the analysis close to experimental
realization (e.g., a circular array of Josephson junctions).
As is well known, a collective coordinate formalism
(CCF) [16,17] permits one to describe the motion of the
soliton center of mass, X�t�, by means of an effective ode,
which is a perturbed pendulum for the FK model [18].
Thus, the application of CCF to Eq. (1) by assuming a
sine-Gordon profile for the (discrete) soliton, un � n

�2=��tan�1fexp�n� X�t�	=l0g, yields the perturbed pen-
dulum equation
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PN , where 
PN and l0 are the Peierls-
Nabarro frequency and the soliton width, respectively
[
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0 sinh��

2l0��]. Let us as-
sume in the following that the forcing, noise, and damp-
ing terms in Eq. (2) are small amplitude perturbations of
the underlying integrable pendulum, i.e., they satisfy
Melnikov’s method (MM) requirements [19], and that,
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FIG. 1 (color online). Maximal LE distribution in the �’�
	� parameter plane for the soliton in the FK model (Eq. (1), top
panel) and for the associated perturbed pendulum (Eq. (2),
bottom panel) in the absence of noise (
 � 0). Cyan (light
gray), green (dark gray), and magenta (halftone gray) regions
indicate that the respective maximal LE, ���	> 0� is non-
positive, belongs to the interval [0;���	 � 0�], and is larger
than ���	 � 0� ’ 0:03 bits=s, respectively. The solid black
contour indicates the predicted boundary function [cf.,
Eq. (4)]. Fixed parameters: K � 1; � � 0:1; F � 0:0017; ! �
0:04�, and l0 � 1:0 118 179. Only LEs corresponding to values
’ 2 ��; 2�	 are depicted because of symmetry with respect to
the optimal suppressory value ’opt � �.
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in the absence of both chaos-taming excitations �	 � 0�
and noise �
 � 0�, the perturbed pendulum exhibits ho-
moclinic chaos which corresponds to a chaotic soliton
existing in the FK model (1). Now we let the chaos-
taming excitation act on each pendulum of the FK chain
[and hence on the associated perturbed pendulum (2)]
�	> 0� in the presence of noise �
 > 0� and deduce
analytical estimates of the regularization regions in the

parameter space �	; e
; ’�. Next, we conjecture, notwith-
standing the approximate and perturbative character of
both CCF and MM, that such theoretical predictions
could remain reliable to some extent [in the correspond-
ing regions of the control parameter space �	;
; ’�] to
effectively tame chaotic solitons arising from the uncon-
trolled FK model (1). As shown below, this is just the
case. For the sake of clarity, we shall consider separately
the cases with and without noise.

Purely deterministic case.—In the absence of noise

�
 � e
 � 0�, the application of MM to Eq. (2) gives us
the Melnikov function (MF)
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where C � 8�, A � 2��sech�� e!=2�, and B �

2�	�sech�� e
=2�, where the plus (minus) sign corre-
sponds to the upper (lower) homoclinic orbit of the un-
perturbed pendulum. Now the previous theory on chaos
suppression by weak periodic perturbations [5,25] di-
rectly applies to the above MF. In particular, for the

main resonance case 
=! � e
= e! � 1, one obtains the
boundary function in the ’� 	 parameter plane,
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where homoclinic chaos is suppressed. Note that Eq. (4)
represents a sufficient condition for M
e
�0

��0� to be nega-

tive or null for all �0, and that the area enclosed by such a
boundary is 4jCj=A. Next, one can compare the theoreti-
cal predictions and Lyapunov exponent (LE) calculations
of both the FK model and the associated perturbed
pendulum. It is worth noting that one cannot expect too
good a quantitative agreement between the two kinds of
results because LE provides information concerning
solely steady chaos, while MM is a perturbative method
generally related to transient chaos. The maximal LE,
��, was calculated for each point on a dense grid, with
(normalized) initial phase ’ and amplitude 	 along the
horizontal and vertical axes, respectively, for both sys-
tems. An illustrative example is shown in Fig. 1.
Typically, one finds for both systems that complete regu-
larization ����	> 0� < 0	 mainly appear inside maxi-
mal islands which symmetrically contain the
theoretically predicted areas where even the chaotic tran-
sients are suppressed. Note the great similarity of both
237006
LE distributions in their respective ’� 	 parameter
planes.

Effect of additive bounded noise.—In the presence of

noise �
; e
 > 0�, one has a random Melnikov process
(RMP) [22–24]:

M
e
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��0� � M
e
�0

��0� 
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where R��0� � 2
R
1
�1 sech������� �0�d� is the compo-

nent of the RMP due to noise. It is well known that the
simple zeros of a (deterministic) MF imply transversal
intersections of stable and unstable manifolds, giving rise
to Smale horseshoes and hence hyperbolic invariant sets
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FIG. 2 (color online). Maximal LE distribution in the ’� 	
parameter plane for the FK model (Eq. (1), left panel) and for
the associated perturbed pendulum [Eq. (2), right panel] in the
presence of noise (e
 � 1:5; e
0

� 0:4�; e� � 0:2). Cyan (light
gray) and magenta (halftone gray) regions indicate that the
respective maximal LE, ���	> 0�, is nonpositive and posi-
tive, respectively. The solid black contour indicates the pre-
dicted boundary function [cf., Equation (11)]. The remaining
parameters are as in the caption of Fig. 1.
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[20,21]. However, the RMP in Eq. (5) can be considered
only in some statistical sense. Thus, one has to deduce an
effective MF (and hence to discuss the existence of its
simple zeros) to obtain approximate predictions concern-
ing the RMP. To this end, we assume that in the absence of
periodic excitations �� � 0�, the threshold amplitude of
bounded noise excitation for the onset of chaos occurs
when the RMP has a simple zero in the mean-square sense
[24], i.e.,
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is the spectral density of ��t�. We found that this estimate
is reasonably confirmed by numerical simulations. Now,
in the presence of periodic excitations �F;	 > 0�, we
define an effective MF
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with
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It is worth noting that Eq. (10) connects the effective MF
with the RMP. Thus, one can again apply the previous
theory [5,25] to the above effective MF [Eq. (8)]. In
particular, for the main resonance case discussed above
for a purely deterministic situation, one obtains a new
boundary function
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which represents a sufficient condition for M

eff��0� <

0;8�0, and hence for M
e
>0
��0� < 0;8�0 [cf.,

Equation (10)]. Thus, a first prediction is that the theo-
retical boundaries of the regularization regions associ-
ated with the random and deterministic cases have
identical form and are symmetric with respect to the
same (single) optimal suppressory value ’opt � �, while
the respective enclosed areas are lesser for the former
case than for the latter case [cf., Eqs. (4) and (11)]. A
second prediction is that there exists a critical amount of
noise, ��R	c � C, from which regularization is not pos-
sible any more, and that this critical value depends upon
the damping strength, as expected. Figure 2 shows an
illustrative example of the comparison between theoreti-
cal predictions and LE calculations. As for the determi-
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nistic limiting case, one typically obtains an
extraordinary agreement between the two kinds of results.

Additionally, we investigated the robustness of the
above theoretical predictions against a discrete (not a
global one) application of the chaos-taming excitations.

Since FK solitons present a very sharp spatial local-
ization (typically, l0 � 1 in our simulations), one could
expect that a reliable soliton control may be achieved by
solely applying the soliton-taming excitation to a few
pendula of the FK chain. To check this conjecture, we
simulated rather large FK chains in parameter space
regions where a chaotic soliton exists. Figure 3 shows
an illustrative example of a chain of 200 pendula with
soliton-taming excitations acting on every fiftieth pendu-
lum in the absence of noise. We found that the regulari-
zation region in the 	� ’ parameter plane has very
approximately the same size as in the case of a global
control [Compare top panels of Figs. 1 and 3]. To under-
stand the mechanism underlying the regularization of the
chaotic soliton, we calculated the temporal series of the
soliton center of mass, X�t�, for a 	 constant while the
control initial phase changed according to ’�t� �
N�t�=NT , where NT and N�t� � !t=�2�� are the total
number of driving cycles and the number of cycles after
a time t, respectively. The bottom panel in Fig. 3 shows a
representative example for NT � 200. Starting from ’ �
0, one sees that the soliton moves chaotically along the
chain at ’ values that are out of the predicted regulari-
zation region, as expected. For ’ values belonging to the
predicted regularization region, one typically observes
6-3
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FIG. 3. Maximal LE for the FK model (Eq. (1), top panel)
with 200 pendula and chaos-taming excitations acting on every
fiftieth pendulum, and temporal series of the soliton center of
mass (bottom panel), X�t�, while the initial phase varies ac-
cording to ’ � !t=�400�� (see the text). 
 � 0; 	 � 0:6, and
the remaining parameters are as in the caption of Fig. 1.
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that the soliton moves to be pinned to the nearest (re-
garding its position when crossing the chaotic threshold)
pendula subjected to the soliton-taming excitation where
it remains regularized. Finally, for certain’ values which
are above the predicted regularization range, we found
that the soliton moves with a definite (mode-locked)
velocity along the chain while its behavior remains
chaotic.

In summary, a general theoretical approach has been
presented concerning the control of chaotic solitons in
damped driven FK chains by weak periodic excitations in
absence but also subjected to additive bounded noise. We
have demonstrated the theory in a simple realistic situ-
ation, but in a general framework; quantitative details of
cases not discussed here (e.g., general resonances 
 �
p!=q and nonharmonic excitations), will be published
elsewhere. We expect that the present results will stimu-
late experimental work, especially in circular arrays of
Josephson junctions. Because of the generality of the
present theoretical approach we also expect it can be
applied to other types of lattices as well as to the cases
of multiplicative noise and parametric chaos-taming ex-
citation. Our current work is aimed at exploring theses
cases.
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