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We analyze a model that interpolates between scale-free and Erdos-Rényi networks. The model introduced
generates a one-parameter family of networks and allows one to analyze the role of structural heterogeneity.
Analytical calculations are compared with extensive numerical simulations in order to describe the transition
between these two important classes of networks. Finally, an application of the proposed model to the study of
the percolation transition is presented.
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I. INTRODUCTION

In the last several years, graph theory has experienced a
burst of activity as many real systems can be represented and
modeled as networks �1–3�. A network is made up of vertices
representing the interacting elements of the system and of
edges that stand for the interactions among them. Network
modeling comprises the analysis and characterization of the
structure of networks as well as their modeling in terms of
generic models aimed at reproducing the features found in
real systems �2–4�. The second important branch has to do
with dynamics on networks. This has lately attracted the at-
tention of many scientists as it is ultimately related with the
functioning of the system that is being modeled �3,4�.

In this paper, we deal with the first of these areas of re-
search. The seminal paper by Barabási and Albert �5,6�
showed that many real world networks cannot be described
by graphs where the connectivity distribution �i.e., the prob-
ability that a given node has a given number of links� follows
a Poisson-like distribution. Indeed, Barabási and Albert
showed that most real networks are heterogeneous in the
sense that the probability that a node is connected to k other
nodes follows a power-law distribution P�k��k−�, where �
usually lies between 2 and 3. These networks were termed
scale-free networks �1–4,7,8�.

Soon afterwards, many studies dealt with the analysis and
characterization of models that generate scale-free networks,
along with other global and local topological properties
found in real networked systems �2,3,7,9,10�. In particular,
models based on the mechanism of preferential attachment
�PA�, no matter if the network is growing or not, have been
extensively studied in the last years. There are some models
in which the PA rule is limited to a neighborhood due to
geographic constraints �11� or lack of global knowledge �12�,
or where its linear character is investigated �13�. While today
we have recognized that preferential attachment is not a nec-
essary condition for the formation of scale-free networks
�14�, it seems to be clear that it is an important mechanism.
Indeed, most of the existing models intrinsically incorporate
a preferential attachmentlike rule. On the other hand, uni-
form random linking of nodes on growing networks gives
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rise to networks where the degree distribution decays expo-
nentially fast with the degree k, thus producing homogeneous
networks with a well-defined �and meaningful� average value
for k �15,16�.

The combination of the two rules, i.e., uniform and pref-
erential linking, have also been analyzed in several models
for interpolating between scale-free and exponential net-
works �17�. For instance, Liu et al. �18� have studied a model
in which the probability of establishing new links goes as a
linear combination of both in such a way that a new link is
established between a node i and a new one proportionally to
�1− p�ki+ p, where p weights the contribution of the two
mechanisms. However, in previous models of this sort, there
is an assumption that does not apply always. It has to do with
the fact that the network always grows around a single com-
ponent of connected nodes and uniform or preferential links
from the emerging nodes are always made with elements
belonging to this unique cluster. This single component
grows linearly in time until it reaches the size of the network.
Since there are no clusters of nodes other than the giant
component, the models cannot account for phenomena such
as the coalescence of small networks into a larger one, for
situations in which more than one node is added to a preex-
isting structure at each time step, features that may be rel-
evant in social, economic, and other networked systems.

In this paper, we analyze a model that interpolates be-
tween Erdos-Rényi �ER� and scale-free �SF� networks as far
as the degree distribution is concerned through a tunable
parameter. By construction, new links are not always estab-
lished with nodes previously incorporated to the network. We
explore analytically and numerically the time behavior of
nodes attachment as well as of the degree evolution. We find
that, depending on the interplay between uniform and pref-
erential linking, the transition from an ER-like network to a
SF one is smooth or more abrupt. We finally discuss other
topological properties and perform a numerical percolation
study that highlights the differences in their structure. The
model presented here is useful as it provides a unique recipe
to go progressively from homogeneous to heterogeneous to-
pologies as well as for exploring the interplay between them.
©2006 The American Physical Society-1
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II. THE MODEL

The model introduced in this work generates a one-
parameter family of complex networks. This parameter, �
� �0,1�, measures the degree of heterogeneity of the final
networks. Let us assume the final size of the network to be
�. The network is generated in the following way:

�i� Start from a fully connected network of m0 nodes and
a set U�0� of ��−m0� unconnected nodes.

�ii� At each time step choose a new node j from U�0�.
�iii� This node makes a link in two ways:

�a� With probability � it links to any other node i of
the whole set of �−1 nodes with uniform probability

�i
uniform = �� − 1�−1. �1�

�b� With probability �1−�� establish a link following
a preferential attachment strategy, that is, the probability for
any other node i to attach to node j is a function of its
connectivity as

�i
PA = F�ki� , �2�

where different choices for the functional form of F�x� are
analyzed in the following.

�iv� Repeat m times step �iii� for the same node j.
�v� Repeat U�0�= ��−m0� times steps �ii� to �iv�.
A schematic plot of the linking procedure at step �iii� is

shown in Fig. 1. The above rules allow for the coexistence of
two classes of nodes. On one hand, there are nodes with at
least one link. This set will be referred to henceforth as the
connected set N�t� �19�. On the other hand, there is another
set U�t� of isolated nodes such that its size is �−N�t�. At
variance with other models in which there are only nodes
with connectivity different from zero and thus the connected

FIG. 1. �Color online� Schematic representation of the general
procedure for generating the networks. With probability � one of
the m links can be made with any of the nodes �and with the same
uniform probability� that will take part in the final network. On the
other hand, with probability �1−�� the link will be made only with
those nodes that form the connected set at that time because the
node will choose a preferential linking strategy.
component grows linearly with time, the above rules allows
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the addition of more than one node to the set N�t� as a result
of random linking. Therefore, we expect the time depen-
dency of N�t� to be highly nontrivial.

III. NETWORK GROWTH AND DEGREE EVOLUTION

In order to describe the evolution of the nodes degree, one
has to consider the functional form of F�x� for the preferen-
tial attachment probability �2�. However, we can take into
account some previous considerations that do not depend on
the particular form of F�x�.

First of all, it is useful to consider two kinds of links in
order to analyze the model. Namely, the ones that arise from
a uniform random choice, ku, and the remaining, kpa, corre-
sponding to the implementation of the preferential attach-
ment rule. The dynamics of ku is completely independent of
the dynamics of the PA links, kpa, but the opposite is not
necessarily true. From this, it follows that the probability that
one node has ku uniform links, Pu�ku�, is a Poisson distribu-
tion with �ku�=2�m:

Pu�ku� =
�2�m�ku

e−2�m

ku!
. �3�

As a consequence, we will concentrate on analyzing the
growth dynamics of the PA links for the studied models.

It is particularly interesting to study at this point how
uniform random linking affects the evolution of the con-
nected set since this is completely independent of the specific
PA rule considered. This feature represents one of the main
differences between the studied model and other previous
mechanisms used to generate growing networks �2,3,9�. That
is, in our model nodes are not incorporated to the connected
set at a constant rate �like, e.g., in the standard Barabási-
Albert model� due to the possibility of adding new nodes
from U�t� by applying uniform linking at time t and therefore
the set U�t��U�0�− t. We can easily derive the evolution of
the connected set size, N�t�=�−U�t�, for any value of the
parameter �. For this, we consider the growth of the con-
nected set at each time step, i.e., when a new node of U�0�
throws its m links

N�t + 1� = N�t� +
� − N�t�

� − �t + m0�
+ �m�1 −

N�t�
�

	 . �4�

In the above equation the second term on the right accounts
for the probability that the new node �which is throwing its m
links� of U�0� does not belong already to the connected set at
time t �due to the possible uniform links obtained from pre-
vious nodes of U�0� already connected to the connected set
N�t��. Besides, the third term on the right describes the prob-
ability that any uniform link thrown by the node is directed
to a node belonging to U�t�. These two terms account for the
growth rate of the connected set. We can consider that both
time and N�t� are continuous variables and make the time
step small enough in order to obtain the corresponding ODE
associated to Eq. �4�, whose solution is given by
-2
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N�t� = � + �t + m0 − ��e−�mt/�. �5�

The agreement between this calculation and Monte Carlo
simulations is shown in Fig. 2 for different values of � and a
preferential attachment as described in what follows �model
A� Sec. III A. It is worth noting the highly nonlinear behav-
ior of N�t�, at variance with models in which its size changes
at a constant rate.

We formulate below two different ways to implement the
preferential attachment rule, which give rise to different be-
haviors. In both models we will consider that the PA prob-
ability of a node j depends only on the PA links of the node,
kj

pa. This new separation between PA links and uniform ones
introduces a higher differentiation between the two simulta-
neous kinds of link dynamics implemented here allowing us
to manipulate �as shown below� the degree of correlation
between them. The two models interpolate between scale-
free and Erdos-Rényi topologies but the structural transition
is quite different �as we will show in Sec. V�.

A. Model A

In this first model we shall study a preferential attachment
rule strongly correlated with the simultaneous uniform ran-
dom linking. First, we consider that the PA probability of a

node i is linear with the incoming PA degree of the node, k̂i
pa,

that is, those links received by i when other node launches
�in average� �1−��m links following the PA rule. This par-
ticularity of the PA rule was already considered by Dorogovt-
sev et al. �20�. Besides, we consider that when a node is
introduced in the connected component �because either it is
chosen at random by any node or it is launching its m out-
going links over the rest of nodes� it has an initial attractive-
ness �or fitness� A. In other words, each node has an associ-
ated parameter Ai that is zero if the node i is not in the
connected set and is Ai=A if i is linked to other nodes �i.e., it

FIG. 2. �Color online� Size of the connected set N�t� as a func-
tion of time. Solid lines correspond to the analytical results �Eq. �5��
and points are the Monte Carlo results of network construction �em-
ploying model A �Sec. III A��. The comparison is made for �
=105 and several values of �. The parameters of the model are set
to A=m=m0=1.
belongs to N�t��. We further consider that the attractiveness
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Ai enters linearly in the preferential linking probability of
node i. With these two ingredients, the expression for � j

PA is
given by

�i
PA =

k̂i
pa + Ai



j��

�k̂j
pa + Aj�

, �6�

The introduction of the fitness A correlates the PA rule with
the uniform linking in the sense that the more links are es-
tablished uniformly �the higher ��, the more new nodes with

k̂i
pa=0 are incorporated to the connected set from U�t� and

hence �by the presence of A in the PA probability� the more
candidates to obtain PA links are available. This can be ob-
served from the evolution of the connected set N�t�, when �
is high there are a lot of nodes added into N�t� at the early
stage of the network construction so that the potential growth
of the PA degree of the former members of the connected set
is strongly weakened. In order to confirm these heuristic con-
siderations we derive the mean field evolution for the incom-

ing PA degree of a node i, k̂i
pa,

dk̂i
pa

dt
= �1 − ��m

k̂i
pa + A

�1 − ��mt + AN�t�
�7�

�with the initial condition k̂i
pa�t0

i �=0�. Obviously, in the limit
�=0 we recover the mean field equation for the generalized
Dorogovtsev model �20� �which, when A=m, describes the
Barabási-Albert model�. For ��0 the influence of the uni-
form random linking is evident from the presence of N�t�.
The number of nodes that start to have the above dynamics at
some time t0 is dN�t� /dt evaluated at time t= t0 which for
��0 is not constant as we have seen in the previous calcu-
lation of N�t�. The solution of Eq. �7� is then given by

k̂i
pa�t = ��

A
= − 1 + exp��1 − ��m�

t0
i

� dt

�1 − ��mt + AN�t�
 .

�8�

We have solved numerically Eq. �8� in order to obtain

k̂i
pa�t=�� �or ki

pa�t=��= k̂i
pa�t=��+�m� as a function of t0

i .
This function, along with the number of nodes which are
incorporated to the connected set at time t0

i = t0, gives the
degree distribution of the PA links. We have compared the
results given by Eq. �8� for different values of � with the
corresponding ones obtained by performing Monte Carlo
simulations of the model �averaging over 104 networks for
each value of ��. The results, plotted in Fig. 3, show a very
good agreement for the mean field model and the numerical
network construction. As expected, the sooner a node is in-
corporated to the connected set the higher its final PA degree.
However, as discussed above, one can observe that this gain
of the oldest nodes becomes less important when the value of
� grows due to the combination of two effects: �i� the appli-
cation of the PA rule becomes less frequent and �ii� the fast
growth of the connected set tends to make more homoge-
neous the PA probability of the nodes.
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B. Model B

In the second proposal the two different linking processes
are completely independent. For this, we consider that �i

PA is
a linear function of the �incoming and outgoing� links that
appear as a product of the application of the PA rule. Then,
ki

pa will be zero until it launches its �m PA links over the rest
of the nodes, i.e., regardless of ki

u. Then, the mean field equa-
tion for the evolution of ki

pa is given by

dki
pa

dt
= �1 − ��m

ki
pa

2�1 − ��mt + m0
, �9�

with the initial condition ki
pa�t0

i �= �1−��m and t0
i being the

time when node i launches its m links. Solving the above
equation yields

FIG. 3. �Color online� Model A. Monte Carlo simulation

�points� versus mean field �lines� results for k̂pa�t=�� as a function
of the birth time t0 for different values of �. The parameters of the
model were �=105 and A=m=m0=1. The statistics of the Monte
Carlo simulations were performed using 104 networks for each
value of �.
056124
ki
pa�t� = �1 − ��m� t

t0
i 
1/2

. �10�

Because the nodes launch their links at a constant rate �one
node per time step�, it is easy to obtain the degree distribu-
tion P�kpa�,

P�kpa� = 2�1 − ��2m2�kpa�−3, �11�

which is simply a power law distribution with a Barabási-
Albert exponent regardless of the value of �. On the other
hand, the relative weight of the power law with respect to the
Poisson distribution in the total degree distribution P�k� will
be obviously affected by � �as the prefactor in the above
equation suggests�.

IV. NETWORK PROPERTIES

In this section we discuss the transition from SF to ER
networks in terms of the global topological features of the
networks. We have performed Monte Carlo simulations of
the two models and compared how the relevant topological
measures evolve as a function of �. We are interested in
obtaining how the different correlations between the uniform
and PA linking rules affect several structural measures. To do
this, we have studied the behavior of three magnitudes that
behave very differently in the two known limiting cases �SF
and ER networks�, namely: the degree distribution P�k�, the
average shortest path length �L�, and the second moment of
the degree distribution �k2�.

Degree distribution. The degree distribution evolution is
clearly different for the two models. In Fig. 4 we have plot-
ted the degree distribution and the rank-degree relation for
both models. The rank-degree relation provides a useful tool
for analyzing the degree heterogeneity of the networks �8�
and thus it is helpful when looking at the transition between
ER and SF networks. As can be observed from Figs. 4�a� and

FIG. 4. �Color online� Monte
Carlo results for the degree distri-
bution P�k� and rank-degree rela-
tion for several values of �. �a�,
�c� The results for model A reveal-
ing a progressive increase of the
tails decaying rate when �→1.
The results for model B ��b� and
�d�� show how the decaying rate is
not affected by �. The networks
were generated with the following
parameters �=105 and m=m0=3
�A=3 for model A�.
-4



FROM SCALE-FREE TO ERDOS-RÉNYI NETWORKS PHYSICAL REVIEW E 73, 056124 �2006�
4�c� the correlated model A shows a smooth transition from
the power law ��=0� to the Poisson distribution ��=1�. The
decay of the tails �k�1� of the degree distribution and the
rank-degree relation becomes progressively faster as � grows
revealing the decrease of the exponent of Ppa�kpa� as ex-
pected from the results obtained by the analytical insights
developed for model A. For model B the transition is com-
pletely different as it is shown in Figs. 4�b� and 4�d�. In both
representations the decaying rate of the tails is independent
of � and the transition to the Poisson distribution is much
more apparent for low values of k. In this sense one can
conclude that highly connected nodes persist along the tran-
sition of model B while for model A the heterogeneity is
progressively lost.

Average shortest path length. The different evolution of
the degree distributions observed above suggests looking at
how the average shortest path length behaves along the two
paths of interpolation. It is well known that the existence of
high degree nodes makes the network more compact due to
the possibility of finding shortcuts between nodes going
through the hubs. Hence, the persistence of highly connected
nodes determines the small diameter of the scale-free net-
work. The results obtained are shown in Fig. 5�a�. As ex-
pected, the average shortest path length as a function of �
grows slower for model B because the probability of finding
hubs is higher than for the networks generated using model
A for the same value of �.

Second moment of P�k�. In order to obtain a quantitative
measure of the evolution of the degree heterogeneity for the
two models it is convenient to measure the second moment
of the degree distribution, �k2�. This magnitude diverges �in
the thermodynamic limit �→�� for scale-free networks
with exponents between 2 and 3. So, we expect a decrease of
the heterogeneity on the path to ER graphs. As can be ob-

FIG. 5. Average path length �a� and second moment of the de-
gree distribution �b� as a function of �. Both quantities are repre-
sented normalized by their respective values in the ER limit. The
results clearly manifest the two different transitions of the models
regarding the heterogeneity evolution along the interpolating path.
The averaged networks had the following parameters �=104 and
m=m0=3 �A=3 for model A�.
served from Fig. 5�b�, model A shows a faster decrease of
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�k2� as expected from the study of the degree distribution
while for model B the transition is much smoother revealing
again the persistence of highly connected nodes along the
path to the ER limit.

As for other properties like the clustering coefficient and
degree-degree correlations we have checked that they remain
unchanged irrespective of the value � and whether model A
or B is implemented.

V. PERCOLATION DYNAMICS

One of the most important differences between ER graphs
and SF networks is given by the radically different behaviors
of dynamical processes that take place on top of them
�21–26�. For instance, epidemic spreading processes show a
natural threshold below which the epidemic cannot spread
for ER graphs, while this threshold is absent in the thermo-
dynamic limit in SF networks with a diverging second mo-
ment �24–26�. This kind of behavior is precisely what makes
scale-free networks so special.

We have implemented a percolation process on top of the
networks generated by models A and B. It is aimed at simu-
lating the random failures of a fraction f of nodes �21,22�.
By computing the size of the giant connected component,
one can characterize the percolation transition. Here, how-
ever, we are not interested in the transition per se, but on the
influence of the topological features unraveled in the previ-
ous section on the size of the giant component of the net-
work. As expected, the behavior of the two models is differ-
ent when the limit of ER graphs is approached for the same
values of �.

As usual, we have analyzed the evolution of the size of
the giant component of the network after a fraction f of the
nodes �and hence their links� are removed from it. In this
sense, it is relevant to study the relation G�f� /GER�f�, where
G�f� �GER�f�� is the size of the giant component of the net-
work for ��1 ��=1�, since this will clearly unravel the two
different approaches from the scale-free limit to the Erdos-
Rényi network. As can be observed from Fig. 6 the differ-
ences between the SF and ER networks are relevant when f
is high due to the different critical behaviors near the transi-
tion point �21,22�. More interesting for our concerns is the
evolution of the magnitude G�f� /GER�f� as a function of �.
For high values of f we can clearly appreciate the fast ap-
proach from SF to ER supplied by model A �upper plot of
Fig. 6�. In fact, the size of the giant component is very simi-
lar to that corresponding to the ER graph for ���0.7�. In
contrast, the transition exhibited for the same values of f
when model B is implemented reveals again a slower transi-
tion between SF and ER networks �Fig. 6, bottom panel�. In
particular one can observe that the values of G�f� /GER�f� for
�=0.9 are similar to those for �=0.5 in model A.

The two different behaviors observed can be explained
in terms of the topological measures shown in the previous
section, in particular with the behavior of the second moment
of the degree distribution �k2�, which is known to play a
key role in understanding the different transitions in SF and
ER networks. It is known that the critical value of f relates to
the moments of the distribution as 1− f =1/� , where
c 0
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�0= ��k2� / �k��−1. From Fig. 5�b�, one can see that for model
A, the second moment of the degree distribution approaches
the value obtained in ER limit for intermediate values of �.
This is no longer the case for model B, in which the ratio
�k2� / �k2�ER approaches 1 only for values close to �=1.
Given that the average connectivity �k� is the same for all
values of � in both models, we should expect that the behav-
ior of a percolation process near the critical point would be
nearly the same to that of ER networks when �k2� / �k2�ER

→1. This is the situation for a broader range of � values in
model A as suggested by Fig. 5�b�. In other words, the dif-
ferent behaviors for the two network families observed in
Fig. 6 can be explained in terms of the speed at which �k2�
convergences to its corresponding value in the ER limit.

The implemented percolation dynamics serves to illustrate
how the interpolating model presented in this work can be a
useful tool for discovering what topological features are fun-
damental to explain the different behaviors observed when
more complex dynamics are studied. Moreover, real net-

FIG. 6. �Color online� Ratio between the size of the giant con-
nected component in networks generated using models A �upper�
and B �bottom� and ER networks when a fraction f of nodes is
randomly deleted for different values of �. Note that although the
transition points for models A and B are located close to each other,
the dependence with � is quite different. Network parameters are
those of Fig. 5.
works are not purely scale-free or completely ER, so that
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their behavior in front of percolationlike processes lies in
between these extreme cases as clearly shown in Fig. 6.

VI. CONCLUSIONS

In this paper, we have analyzed a model that interpolates
between Erdos-Rényi and scale-free networks. The combina-
tion of uniform and preferential linking allows us to explore
the whole path between the two limiting cases. An important
feature of our model is that the size of the connected set does
not grow linearly with the number of nodes attached to the
network. This is a result of the novel ingredient of the model,
that through the uniform random linking allows every node
to take part on the network irrespective of their connectivi-
ties �even if they are not connected at all�. We have analyzed
two different variants for the interpolation between the
Erdos-Rényi and scale-free limits. On one model the transi-
tion is smooth, while for the other it becomes sharper. The
analytical insights together with numerical simulations sup-
ported that the differences in the versions analyzed are
rooted at the interplay between uniform and preferential at-
tachment. Finally, simulations of a percolation process have
illustrated the differences in both formulations and their as-
sociated transitions �which are easily explained when look-
ing at the topological properties of the networks�.

As for future works, the present model provides a useful
tool to study the influence of the degree of heterogeneity in
dynamical processes of different kinds just as the Watts-
Strogatz model have proved to do so in the transition from
regular to random structures. In particular, there exist open
questions in phenomena such as the synchronization of
coupled oscillators �27� where this kind of model could be
particularly relevant to explore the system’s behavior in the
region where homogeneous and heterogeneous architectures
coexist.
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