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We study numerically synchronization phenomena of mobile discrete breathers in dissipative nonlinear
lattices periodically forced. When varying the driving intensity, the breather velocity generically locks at
rational multiples of the driving frequency. In most cases, the locking plateau coincides with the linear stability
domain of the resonant mobile breather and desynchronization occurs by the regular appearance of type-I
intermittencies. However, some plateaus also show chaotic mobile breathers with locked velocity in the locking
region. The addition of a small subharmonic driving tames the locked chaotic solution and enhances the
stability of resonant mobile breathers.
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I. INTRODUCTION

Nonlinear lattices provide some of the most interesting
model systems of macroscopic nonlinear behavior with ex-
perimental realizationsf1g. From a theoretical perspective
they have been progressively recognized not as mere dis-
cretizations of nonlinear continuous fieldssunavoidable for
numerical computationsd, but as a target of interest by them-
selves, due to the distinctive features associated withdis-
creteness.

Among the variety of behaviors of the lattice nonlinear
dynamics, we focus our attention here on the called “intrinsic
localized modes” or “discrete breathers”sDB’sd. DB’s are
exact-periodic, large-amplitude, and exponentially localized
solutionsf2g. These solutions are made possible by the com-
bination of nonlinearity and discreteness: Nonlinearity al-
lows for solutions out of the linear mode bands, due to the
frequency dependence of the oscillation amplitude. On the
other hand, discreteness sets an upper cutoff in the band
structure and prevents the multiharmonic resonances of DB’s
with extended linear modes. These two simple ingredients
are enough for the existence of DB’s, wherefrom the gener-
ality and wide range of interest of the phenomenon. To visu-
alize an immobile DB see the upper part of Fig. 1.

These excitations are not only interesting from a theoret-
ical point of view but with respect to the experimental appli-
cability as well, concerning fields as diverse as biophysics
smyelinated nerve fibersf1g, biopolymer chainsf3gd, nonlin-
ear opticssphotonic crystals and waveguidesf4gd, Josephson
effect ssuperconducting devicesf5,6g, Bose-Einstein conden-
satesf7gd or the physics of glassinessf8g. This makes dis-
crete breathers an object of remarkable multidisciplinary in-
terest.

Unlike localization due to impurities or disordersAnder-
sond, intrinsic localization phenomena support mobile DB
solutions—i.e., exponentially localized oscillations where
the localization center propagates along the lattice as time
goes byssee the lower part of Fig. 1d. Although rigorous
results apply to the generic existence of nonmoving DB’s,

much less is known about the conditions for their mobility.
In this respect, Hamiltonian discrete breathers have received
scomparativelyd more attention than their dissipative counter-
parts. However, from the perspective of applications to ex-
perimental situations, the unavoidable couplingsboth ther-
mal and nonthermald of the relevant degrees of freedom to a
variety of other ones often demands one consider open sys-
tems where power balance, instead of energy conservation,
governs the nonlinear dynamics of the lattice.

In this article we pay attention to the problem of synchro-
nization and resonant behavior inmobile discrete breathers
sMB’sd of the forced and damped sine-Gordon latticefthe

FIG. 1. Time evolution of two discrete breathers:sad periodic
pinned breather andsbd 1/2-resonantssee textd mobile breather. The
localization center moves a lattice site every two periods of the
external force.
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one-dimensionals1Dd standard Frenkel-Kontorova model
f9–11gg, illustrating the effects oftime scale competitionin
breather dynamics, in a discrete, dissipative, and noninte-
grable context. The two time scales of the moving pulse are,
respectively, associated with its frequencyvb and its velocity
vb. Our main results can be summarized as follows.

sid Locking of the breather mean velocity at some rational
values of the ratio 2pvb/vb for ranges of parametersscou-
pling, driving strength, etc.d is observable.

sii d The synchronization of breather velocity is deeply
rooted in the structural stability of pure resonantsto be de-
fined soond MB’s, but it is by no means limited to it: The
locking island in parameter space is generally larger than the
linear stability domain of the pure resonant breather state.

siii d The “extra” locking domain is characterized by more
complex attracting breathers, sometimes chaotic in the
breather core, but still keeping a locked velocity at large
integration times.

sivd When ssubdharmonic perturbations are added to the
driving term, the stability of the pure resonant MB is en-
hancedssometimes substantiallyd, taming chaotic dynamics
and enlarging the locking step size.

The paper is organized as follows: After this introductory
section we present in Sec. II, in a brief but self-contained
manner, the relevant and most basic aspects of dissipative
breather mobility in the forced and damped discrete sine-
Gordon equationsFrenkel-Kontorova modeld. The definition
and characterization ofsp/qd-resonant mobile DB’s along
with the extended Floquet method for the analysis of their
linear stability are explained in this section.

In Sec. III we present our numerical results. We show that
steps of the mode-locking velocity, wheresp/qd-resonant so-
lutions exist, are found when varying the driving strength.
We see that this phenomenon is quite general since it is also
found for an open set of coupling parameter values. In Sec.
IV we focus our attention on the unlocking transition—i.e.,
the transition fromsp/qd-resonant locking state to quasiperi-
odic sirrational 2pvb/vbd generic velocity. This transition is
characterized as a bifurcation via intermittencies of type I by
using the Floquet methods reviewed in Sec. II. Section V is
devoted to the phenomenon of locking enhancement by add-
ing small additional subharmonic driving. Finally, some con-
cluding remarks are given in Sec. VI.

II. MOBILE DB IN THE FRENKEL-KONTOROVA
MODEL: RESONANT STATES AND THEIR STABILITY

Mobile dissipative discrete breathers have been well char-
acterizedf12g in the standard Frenkel-KontorovasFKd chain
subject to homogeneous periodic driving and viscous damp-
ing ssee belowd. These solutions areattractorsof the dynam-
ics, and thus they are surrounded in phase space by a basin of
attraction of initial conditions. This fact not only provides
fast and accurate numerical methods for the continuation of
generic mobile breatherssin contrast with expensive root
finding methods for continuation in the Hamiltonian cased,
but also guarantees the very existencef13g of exact moving
breatherssin contrast also with the Hamiltonian situation,
where the stability and generality of exact moving solutions
is currently an issue of debatef14gd.

Generic MB’s unavoidably excite extended modes
sloosely referred to as phononsd which tend to delocalize
energy. However, in dissipative systems, the locally excited
phonons decay exponentially so that the mobile breather
keeps on a finite localization length, essentially determined
by the self-generated phonon dressing. The power spectrum
sFourierd analysis of the numerically exact MB’s nicely vali-
dates their description as a moving source of damped radia-
tion to the extent that the predictions of the theory exactly
match the numerical spectraf15g. For resonant statessto be
defined belowd one can use Floquet methods in order to per-
form a more thorough analysis of these examples of exact
nonintegrable mobility. This will become technically precise
along this section, after explaining briefly the model and
some relevant issues for the sake of self-containedness.

The equations of motion of the standard Frenkel-
Kontorova model subject to a harmonic driving force
Fac sinsvbtd and a viscous dampinga are, in dimensionless
form,

üj + au̇j +
1

2p
sins2pujd = Csuj+1 − 2uj + uj−1d + Fac sinsvbtd,

s1d

where C denotes the couplingsindeed the coupling/
nonlinearity ratiod between neighboring nonlinear oscillators
ujstd of unit mass.

Two different mechanisms for mobility of DB solutions of
Eq. s1d have been observed.

sid The spontaneous mirror symmetry breaking of pinned
discrete breathers, which occurs at moderately low cou-
plings, pave the way to mobility in a very natural manner,
because a moving DB is a solution with broken symmetry.
Indeed, this simple idea is at the origin of a very useful
proceduref15–17g to prepare good initial conditions in the
basin of attraction of exact mobile DB’s: As described in
detail elsewheref12g, adding a small perturbationsalong the
symmetry-breaking eigenvector, often dubbed as depinning
moded to the immobile exact DB often evolves asymptoti-
cally to an attracting moving solution.

sii d Immobile quasiperiodic DB’s have been seen to suffer
from depinning parametric instabilities leading to mobile
stypically slowerd DB’s f12g in a range of somewhat larger
values of the coupling parameter. No stable pinned DB co-
exists in this range with moving solutions.

Once an attracting MB has been precisely determined,
continuation from it through variations of parameters such as
coupling or driving intensity generates a numerically contin-
ued branch of moving breathers. The continuation procedure
of MB’s from an initial one proceeds by a very smallsadia-
baticd change of a parameter—say, for example,DFac sor C
or whicheverd—and numerical integration during several pe-
riods sTbd of the external driver. The convergence to the
breather attractor corresponding toFac+DFac is guaranteed
to be exponentially fast providedDFac is small enough and
no bifurcation occurs.

The range of coupling values where these mobile solu-
tions are observed is very far from the continuum regime;
they are roughly in the range fromC=0.5 to 1, and its mo-
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tion has a well-defined average velocity. We should remark
here that these MB’s are not related to the breathers of the
integrablescontinuousd sine-Gordon model. The continuum
limit of Eq. s1d is the continuous sine-Gordon equation under
external ac forcing and losses, which does not support mo-
bile breather solutionsf18g.

A convenient quantitative descriptor of a mobile localized
solution is its translation velocityvb. In order to define pre-
cisely this quantity, one has to introduce a continuouscollec-
tive variable Xstd, naturally interpreted as the instantaneous
center of localization of energy:

X =
o j=−`

`
j · ẽj

o j=−`

`
ẽj

, s2d

where ẽj =ej − è is the energy density referred to the back-
ground, i.e.,

ej =
1

2
u̇j

2 +
1

s2pd2f1 − coss2pujdg +
C

4
suj − uj−1d2

+
C

4
suj+1 − ujd2, s3d

andè is ej at a sitej far away from the exponentially local-
ized breather core. The breather velocity is then defined as
the following long-term average velocity:

vb = kẊl = lim
T→`

1

T
E

t0

t0+T

Ẋ dt. s4d

Along a single branch of continued MB’s, the breather
velocity defines a continuousbut not necessarily smooth
curve. Let us emphasize that moving solutions of velocityvb
possess two characteristic time scales: namely,vb and 2pvb.
The issue of time scale competition is thus of concern here,
in the sense that one would naturally expect the emergence
of typically associated phenomena, like resonances and syn-
chronization in the behavior of MB’s, as demonstrated by
numerical results to be shown later in Sec. III. Now let us
introduce some basic notions needed for what follows.

A. Resonant mobile discrete breathers

A close view of Eq.s1d reveals the basic symmetries of
the dynamics.

sad Lattice translationshomogeneous systemd

Lhujstdj = huj+1stdj. s5d

sbd Discrete timeTb shift speriodic driverd

Thujstdj = hujst + Tbdj. s6d

scd Space-time mirror symmetrysspecific to such situa-
tionsd

Shujstdj = H− ujSt +
1

2
TbDJ . s7d

This operator combines the mirror symmetryRsud=−u of
the local term sinsud and the center symmetry of the sinu-
soidal driver:S=RT1/2.

Given any solutionhûnstdj, the combined action of the
symmetry operatorsL, T, andS gives a family of solutions
generated by the symmetry group. We will see that the exis-
tence and structure of this family play a central role in our
interpretation of numerical results on desynchronization of
moving DB’s.

Now we will make precise the notion of resonant DB,
used in the Introduction. Asp/qd-resonant state is a synchro-
nized orbit defined as fixed point of the symmetry element
LpTq, i.e.,

ûn+pst + qTbd = ûnstd. s8d

If p and q have no common divisors, the state is saidpure
resonant. Note that it follows from the definition that a
sp/qd-resonant MB has a velocityvb=svb/2pdsp/qd. But it
is also important to realize that among all conceivable evo-
lutions hunstdj with this velocity, a resonant one is certainly
very special, for it possesses a specificsLpTqd symmetry.

B. Linear stability analysis

Let us consider a small perturbationhe jstd , ė jstdj of a
given DB solutionhujstdj. Linearizing around this solution,
we obtain

ë j + aė j + cosf2pujstdge j = Cse j+1 − 2e j + e j−1d. s9d

An immobile DB of frequencyvb is a fixed point of the
operatorT. The Floquet matrix maps a basis of the tangent
space(he js0d , ė js0dj), onto he jsTbd , ė jsTbdj, and it is given by
the Jacobian ofT—i.e., DsTd. The spectrum of eigenvalues
of this Floquet matrix gives the linear stability of immobile
DB’s, allowing the characterization of the bifurcations that
these solutions experience along continuation paths, as
shown in Refs.f12,15g. In order to use these powerful Flo-
quet methods for the analysis of mobile solutions, they must
be periodic, and so one has to restrict attention to
sp/qd-resonant MB’s.

Because asp/qd-resonant MB is a fixed point of the op-
eratorLpTq, thesextendedd Floquet matrix providing the lin-
ear stability of a sp/qd-resonant MB isDsLpTqd=PM,
whereM is the matrix of the linearized equations of motion
integrated overq Tb periods andsperiodic boundary condi-
tionsd P is a cyclic permutation matrix ofp sites:

hûjst0d + e jst0d,u6 jst0d + ė jst0dj → hûjst0d,u6 jst0dj

+ PMhe jst0d,ė jst0dj.

s10d

The distinctive property of being an attracting solution of
the nonlinear evolution equations1d translates into the math-
ematical assertion that an attractingsp/qd-resonant state has
an associated Jacobian matrixDsLpTqd with sboundedd spec-
trum inside the complex unit circle:

supumu ø 1, s11d

wherem denotes eigenvalues of the Floquet matrix.
Eventually, the exit of a Floquet eigenvalue from the unit

circle signals the destabilization of thesp/qd-resonant MB

MODE LOCKING OF MOBILE DISCRETE BREATHERS PHYSICAL REVIEW E71, 036613s2005d

036613-3



by perturbations along the associated Floquet eigenvector. In
the linear regime these destabilitations will grow with an
exponential rate.

III. INTERNAL STRUCTURE OF THE LOCKING REGIME

First of all, we briefly review the method used to generate
mobile discrete breathers. We begin by generating an immo-
bile discrete breather, starting from the anticontinuum limit
sC=0d. Initially, we have used the same parameters as in
f15g: Fac=0.02,vb=0.132p, anda=0.02. As we increaseC
adiabatically, the discrete breather solution remains as an at-
tractor of the dynamicsf15g, enabling us to find breathers at
different values ofC, by continuation.

We continue the breathers until the first pitchfork bifurca-
tion f15–17g, which connects one-site breathers with two-site
breathers via asymmetric ones. The localized eigenmode, re-
sponsible for this instability, is asymmetric and can be used
to “depin” the static breather. Then, we generate a MB by
perturbing the static breathers along this mode with an am-
plitudem. As in f15,16g, we found MB’s if the perturbation is
larger than some critical valuemc. Unlike Hamiltonian sys-
tems, the velocity reached by the MB is independent ofm for
m.mc. This method allows us to produce MB’s in a wide
range of the coupling parameterC. Two kinds of MB’s have
been observed depending onC: for C in the intervalf0.5,
0.89g only induced MB’s exist in coexistence with static
breathers. However, in theC rangef0.89, 0.97g spontaneous
MB’s appear as attractor solutions, coexisting whith the in-
duced MB’s. Static breathers are not found in this range.
Hence, we have decided to focus our research on some
points in those regions. The selected values areC=0.55 and
C=0.75 in the first region andC=0.94 in the second.

In order to check the dependence of these MB’s on the
driving force, we fixC and then we varyFac. Some general
features emerge in all cases. The simulations show the ap-
pearance of steps with velocitiesvb=svb/2pdsp/qd. Recall
that these velocities are the velocities of mode-locked MB’s.
But this does not guarantee that the MB inside the locking
step issp/qd resonant, so we must check the periodicity of
these MB’s inside these steps. Another empirical observation
is that the limit value ofFac before the destruction of the MB
increases withC.

The results withC=0.55 are sketched in Fig. 2. This fig-
ure shows the fullFac range in which MB’s with a definite
velocity exist. One can see an extremely narrow step at ve-
locity vb=svb/2pds1/3d. The Poincaré section of these solu-
tions reveals that they arepure resonant MB’s. Moreover, the
linear stability analysis reveals that they are linearly stable
inside the whole step interval—i.e.,f0.01568,0.01581gFac

.
This type of solution, i.e.s1/3d-resonant, has been found in
the whole range ofC values that we investigated.

For C=0.75, the results of the velocity-force curve
are represented in Fig. 3. In this case we find a bigger
step at velocity vb=svb/2pds1/2d sf0.03177,0.042gFac

d
and, again, a very little one atvb=svb/2pds1/3d
sf0.01534,0.01538gFac

d. In the whole interval of this last
step, the MB iss1/3d resonant and linearly stable. On the

other hand, the bigger step has a more complex structure: In
the rangef0.03177,0.03831gFac

, the MB is periodic with pe-
riod 2Tb and linearly stable. Theses1/2d-resonant solutions
can be continued in coupling parameters fromC.0.71 up to
C.0.84. However, atFac.0.03831 the MB suffers a tran-
sition of period triplingsa Floquet eigenvalue and its com-
plex conjugate cross the unit circle at angles 2p /3 and
−2p /3d and rapidly goes to a chaotic state via aperiod-
doubling cascadefor Fac.0.03833. The MB remains in this
chaotic state with commensurate velocity, and aroundFac
.0.042, the solution leaves the step.

Finally, atC=0.94 we obtain the curves represented in the
Fig. 4. There we can observe a very rich behavior of the
breather velocity: different steps at velocity values of
svb/2pds1/3d, svb/2pds4/9d, andsvb/2pds2/3d, as well as
an evident hysteresis. The latter is somehow typical of un-
derdamped systems; it implies the coexistence ofsat leastd
two different MB attractors, with the same model parameters
which has been reported previouslyf15,19g. The dynamics in
these steps is simple: periodic and linearly stable, with no
bifurcations inside the plateau. Also a smaller plateau with
velocity svb/2pds1/2d is found, although in this case only
quasiperiodic MB’s exist. For the sake of completeness we
mention that the upper branch can be continued to lower
values of the coupling and connects with MB’s generated by
the depinning mode, whereas the lower branch belongs to the
spontaneous MB.

FIG. 2. Velocity of the MB vsFac for C=0.55. A very narrow
plateau 1

3 appears. The rest of fixed parameters arevb=0.132p
anda=0.02.

FIG. 3. Velocity of the MB vsFac showing two mode-locking
plateauss1

3 and 1
2d for C=0.75, the values ofg andvb are the same

that in Fig. 2.
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Summarizing, the step with velocitysvb/2pds1/3d is
found in all the range of coupling where MB’s seem to exist.
The range for the step solutions withvb=svb/2pds1/2d starts
at C=0.71 since below this coupling a MB with regular mo-
tion does not exist in the parameter range studied. At higher
C, we observe other locking steps likevb=svb/2pds4/9d and
vb=svb/2pds2/3d for C=0.94. Although we have not been
exhaustive varying in the parameterC we can certainly find
these stepssand othersd in the whole range of coupling pa-
rameters, where DB’s are found.

Some of the observed locking plateaus coincide with the
stability interval of the correspondingsp/qd-resonant MB,
but in other casessnotably the 1/2 locking step shown in
Fig. 3d the resonant state destabilizes inside the plateau and
the new attracting solutionswith locking velocityvbd is more
complex: either periodic with a larger period or even chaotic,
as revealed by the computedslargestd Lyapunov exponent.
These types of complex behaviors inside a locking plateau
are known to happen for a single driven-damped anharmonic
oscillator f20g, as well as for moving discommensurations
f21g. In this regard, the result for discommensurations can be
reducible to the single-particle case using collective variable
approaches. In our case, the breather internal degrees of free-
dom, together with theX sbreather centerd variable, do not
allow for a straightforward reduction to single-particle be-
havior.

IV. UNLOCKING TRANSITION

A typical route for the transition from a periodic state to a
quasiperiodic or chaotic one in dissipative systems is that
mediated by intermittenciesf22g. Intermittencies occur
whenever the behavior of a system seems to switch between
qualitatively different unstable periodic orbits or behaviors
speriodic, quasiperiodic, or chaoticd even though all the con-
trol parameters remain constant and no external noise is
presentf23g. Depending on the type of Floquet instability of
the periodic orbit responsible for the bifurcationscrossing
the unit circle at +1, at two complex conjugate eigenvalues,
or at −1d intermittencies are classified into intermittencies
type I, II, or III, respectivelyf22g.

In this section we study the unlocking transition of the
sp/qd-resonant MB and characterize it as a transition from

periodicity to quasiperiodicity driven by the regularsperi-
odicd appearance of type-I intermittencies. This mechanism
for unlocking transitions was already observed in the purely
dissipative dynamics of ac-driven modulated structures of
the FK modelf24g. Intermittencies of type I are also known
to be responsible for the depinning transition of discrete soli-
tons sdiscommensurationsd of the underdamped FK model
f21g.

From now on in this section we will focus our attention
on the unlocking transition at the left edge of the 1/2 locking
step of Fig. 3sC=0.75d which occurs atFac=0.03177. The
extended Floquet analysis of thes1/2d-resonant MB close to
the edge reveals that an eigenvalue of the Floquet matrix
DsLT2d approaches the value +1 from the interior of the
complex unit circle along the real axis and leaves the unit
circle at the transition point. The eigenvector associated with
this Floquet eigenvalue is exponentially localized at the
breather center. Out the step, thes1/2d-resonant MB is thus
linearly unstable.

In order to visualize the effect of this instability we plot in
Fig. 5 the breather centersout of the step but very close to its

edged X and its velocityẊ in a reference frame moving with
the locking velocitysvb/2pds1/2d. One can clearly see in
Fig. 5 that the breather center remains for some time inter-
vals in laminar regimessof locked velocityd, interrupted by
sudden jumps of very short duration.

We have numerically checked that these laminar regimes
correspond to the discrete family of equivalent unstable con-
tinuations of thes1/2d-resonant MB, related one to each

FIG. 4. sColor onlined Same as Figs. 2 and 3 now forC=0.94.
Several mode-locking steps are visible. Note also the hysteresis in
the curve.

FIG. 5. Upper panel:X−vlockt—i.e., X respect to a moving
frame that moves withvb=svb/2pd1/2 just below the left edge of
the 1

2 step of the Fig. 3. Jumps correspond to the intermittencies

described in the text. Lower panel:Ẋ in the same point of response
curve.
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other by the symmetry operationsL, S, andT. Therefore, the
destabilizing Floquet eigenvector pushes the weakly unstable
resonant MBû towards itssequivalentd closest member of
the family swhich turns out to beS−1ûd, which is also un-
stable, and so on. The duration of each laminar regime,
which diverges at the bifurcation point, is proportional to
sm−1d−1, wherem is the unstable Floquet eigenvalue.

The computation of thepower spectrumof Ẋ, i.e.,

Ssvd = UE
−`

`

ẊstdeivtdtU2

, s12d

for the attracting MB out of the locking plateaussee Fig. 6d,
reveals the new frequencyvint=m−1 associated with the in-
termittencies and further confirms that they appear at regular
time intervals, so that the attracting MB out of the step is
quasiperiodic.

This scenario of the unlocking mechanism is confirmed to
happen for other numerically obtained plateaus of the mode-
locked velocity. It appears that the desynchronization by
regular intermittent phase shift pulses is quite a generic phe-
nomenon.

V. EFFECTS OF SUBHARMONIC PERTURBATIONS
OF THE DRIVING FORCE

In the previous sections, we have shown how complex the
dynamical response of the system can be. This includes,
among others, resonant MB’s which are destabilized via in-
termittencies when the parameters are changed. Inside the
resonant step, the particular behavior of the oscillators form-
ing the breather can be complexshigh order periodic or cha-
oticd. However, it does not prevent the breather from having
a definite mean velocity, commensurate with the external fre-
quency.

Our goal in this section is to enlarge the regions of the
parameter space for which those resonant steps exist. The
structure of the quasiperiodic attractor in the vicinity of the
resonant steps gave us some indications about the procedure
to follow. We must reinforce the laminar phasescorrespond-
ingly inhibit the appearance of intermittenciesd, applying a

perturbation subharmonically related with the original ac
force:

Fstd = Fac sinsvbtd + l sinSvb

n
t + DD , s13d

wherel is small compared toFac, n is a positive integer, and
D represents a phase shift between both terms.

Such a kind of perturbation has been proven to be effi-
cient to stabilize linearly unstable periodic orbits. It has been
used in systems with a few degrees of freedomf25,26g as
well as in solitonsf27g and even in experimentsf28g. In our
case we achieve lowering the onset of the resonant steps
significantly. In particular, we focus our attention on the step
1/2 in C=0.75 which presents the richest phenomenology,
and choosen=2 in Eq. s13d andD=0 sotherD values have
been used and the results obtained are essentially similard.
The main results are summarized in the phase diagram of
Fig. 7. For example, the onset of the resonant step is reduced
from Fac=0.031 777 toFac.0.013 whenl increases from 0
to l.0.001.

This effect adds to another that takes place inside the step
and that is related to the control of chaos. A chaotic attractor
like the one developed by a period-doubling cascade inside
the 1/2-resonant step for valuesFac<0.038 33swith l=0d is
formed by a dense set of unstable periodic orbits of different
periodicities but all of the same velocity. The addition of a
suitable perturbation is able to stabilize one of these unstable
periodic orbits. The taming of chaotic states in nonantono-
mous dynamical systems by the addition of harmonic pertur-
bations is a quite general phenomenonf25,27,29g, and we
observe it in the case of these chaotic breathers with locked
velocity.

To quantify this behavior we compute the largest
Lyapunov exponentf30g of the MB solution at a fixedFac
=0.04 as a function as the perturbation strengthl. We start at
a chaotic mode-locking MB. As soon as we apply the pertur-
bation, a significant decrease of the largest Lyapunov expo-
nent is observed until a narrow region of quasiperiodicity is
reachedslargest Lyapunov exponent=0d. Then, a sequence of
periodic and quasiperiodic solutions follows and, finally, a

FIG. 6. Power spectrumSsvd of Ẋ showing clearly a quasiperi-
odic behavior.

FIG. 7. sColor onlined Schematic phase diagram of the behavior
with a subharmonic perturbation of strengthl vs unperturbed driv-
ing force amplitudeFac. The shaded region refers to more complex
behaviorschaotic, quasiperiodic, or higher resonances than 1/2d but
also mode locking. The arrow stands for the path followed in Fig. 8.

ZUECO et al. PHYSICAL REVIEW E 71, 036613s2005d

036613-6



broad region of periodic solution, with the perturbation pe-
riod ssee Fig. 8d. Note that all this is attained with al two
orders of magnitude smaller thanFac.

At fixed C, one cantune, by varyingl, the desired peri-
odic state. This method is extremely robust against changes
in C. The pure resonant MB solution can be extended for a
wide range of the couplingC. Using an appropriatedl we
have extended the 1/2-resonant solution fromf0.71, 0.84g to
f0.5, 0.84g in the coupling parameter.

VI. CONCLUDING REMARKS AND SUMMARY

We have studied mobile discrete breathers in the under-
damped Frenkel-Kontorova model. Periodicsor p/
q-resonantd solutions have been found for a large range of
parameter valuessasC andFacd. These states are structurally
stable as they are a consequence of the synchronization be-
tween the two time scales of the mobile breather. This syn-
chronizationsor its absenced results in a very rich dynamics
of the mobile breather solutions, including quasiperiodic and
chaotic ones. Localized chaotic behavior has been previously

observed in static breathersf31g, but here we show that it is
compatible with the mode-locking motion of the breather
centerscored.

One important issue in the study of localized discrete ex-
citations is the possibility of their dynamical description by
reduction to a system with few degrees of freedomsor col-
lective coordinatesd. To our knowledge, two collective coor-
dinate schemes have been developed with mobile breathers.
The first approach described inf32g has produced very fruit-
ful results for discretef21g and continuumf33g solitons, as
well as for continuum breathersf34,35g. This approach uses
as a starting point for the calculations the continuum model
solution and fails far from this limit.

The second approachf36g is the geometric counterpart of
the first. It works with mobile breathers in a Hamiltonian
framework, which prevents its direct use in the dissipative
case considered here. However, the possibility of its use in
non-Hamiltonian contexts, under certain technical condi-
tions, is still open as was briefly pointed out in Ref.f37g.

Although analytical methods for a collective coordinate
approach to mobile dissipative discrete breathers have not
been yet developed, our numerical results strongly suggest
that such an approach could give an accurate account of most
of the observed phenomenology. We hope that the results
presented here could encourage a search of those methods.

Finally, we remark on the important role that a second
harmonic in the forcing plays in the dynamics of the MB. We
observe that the presence of a small subharmonic driving
term enhancessp/qd-resonant solutions. Increasing the sub-
harmonic amplitudes13d from zero, an initially chaotic MB
can be tamed, above some threshold, obtaining a nonchaotic
one fquasiperiodic orsp/qd resonantg. The feasibility of the
experimental implementation of different wave forms for
driving forces could falicitate the observation of these solu-
tions since they are more robust and stable.

In summary, we have shown that the mode-locking mo-
tions of breathers are stable solutions for an important ex-
ample of nonlinear lattices such as the Frenkel-Kontorova
model. We have characterized this mode-locking solution as
well as the mechanisms for the unlocking. Finally we have
applied a simple method to extend this kind of solutions to a
large range of values in parameter space.
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FIG. 8. sColor onlined sUpperd Largest Lyapunov exponentsjd
for Fac=0.04. sLowerd Poincaré section ofX at intervals 2Tb, so a
single point is indicative of a periodic solution in the mode-locking
step at its correspondingl value.
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