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The suppressory effects of localized heterogeneous periodic pulses on the chaotic behav-
iour of sinusoidally coupled nonlinear pendula are studied. We assume that when the pen-
dula are driven synchronously, i.e., all driving pulses have the same waveform, the chains
display chaotic dynamics. It is shown that decreasing the impulse transmitted by the
pulses of a minimal number of pendula results in regularization with the whole array
exhibiting frequency synchronization over a wide range of coupling periods. These findings
demonstrate that decreasing the impulse transmitted by localized external forces can tame
chaos and lead to frequency-locked states in networks of periodically coupled dissipative
systems.

� 2009 Elsevier Ltd. All rights reserved.
1. Introduction

One of the pervasive notions of nonlinear science with a wide area of practical applications as well as fundamental the-
oretical issues is that of synchronization (and desynchronization) in networks of coupled oscillators [1–4]. Closely related
with synchronization–desynchronization transitions in the context of chaotic arrays is the ubiquitous problem of controlling
chaos [5]. In this regard, studies have shown that chaos in coupled arrays of damped, periodically forced, nonlinear oscilla-
tors can be tamed by disorder [6], impurities [7], localized controlling resonant forces [8,9], random shortcuts [10], and glo-
bal disordered driving forces [11]. Generally, the arrays studied have been assumed to have homogeneous forces. In more
realistic situations, however, the periodic forces acting on the oscillators often exhibit heterogeneous distributions having
distinct periods, amplitudes, and wave forms. The heterogeneity-induced regularization of homogeneous chains of linearly
coupled chaotic pendula by decreasing the impulse transmitted by the driving forces acting on a minimal number of oscil-
lators has been recently demonstrated in [12]. It was also shown that, as the transmitted impulse is decreased, there typi-
cally emerges regular, frequency-locked dynamics, while desynchronization is due to the dispersion in the oscillator’s
amplitude.

2. Periodically coupled pendula

In the present work, we explore the stability of such a regularization scenario when the chaotic oscillators are periodically
coupled. Diverse dynamic aspects of systems subjected to periodic coupling have been considered previously (see, e.g.,
. All rights reserved.
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Fig. 1. Pulse function pðt; T;mÞ � cn2½2KðmÞt=T; m� (cf. Eq. (1)) vs t=T for m ¼ 0 (thin line), m ¼ 0:9993 (medium line), and m ¼ 1� 10�14 (thick line).

Fig. 2. Bifurcation diagram of the average velocity r and correlation function as a function of the shape parameter m for a chain of N ¼ 5 pendula, coupling
kF ¼ 3, and two values of the coupling period.
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[13,14]). For the sake of completeness, the results are discussed through the analysis of one-dimensional chains of damped
kicked rotators. In particular, the chain is described by the dimensionless equation of motion
Fig. 3.
couplin
€hn þ Fcn2 Xt; mð Þ sin hn ¼ �d _hn þ k sin X0 hnþ1 � hnð Þ
� �

þ sin X0 hn�1 � hnð Þ
� �� �

; ð1Þ
Bifurcation diagram of the average velocity r and the correlation function as a function of the coupling period s for a chain of N ¼ 5 pendula,
g kF ¼ 3, and six values of the shape parameter.
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where n ¼ 1;2; . . . ;N;X ¼ XðT;mÞ � 2KðmÞ=T; T and F are the forcing period and amplitude, respectively, d is the damping
coefficient, k is the coupling constant, cnð�; mÞ is the Jacobian elliptic function of parameter m;KðmÞ is the complete elliptic
integral of the first kind, X0 � 2p=s; s is the coupling period, and the shape parameter is taken to be m ¼ 0 except for the two
(free) end pendula which are subjected to pulses of variable width ðm 2 ½0;1�Þ. The waveform of the pulse is varied solely by
changing m between 0 and 1, such that by increasing m the pulse becomes ever narrower, until for m ’ 1 one recovers a
periodic sharply kicking excitation very close to the periodic d-function, but with finite amplitude and width as in real-world
impacts (see Fig. 1). Observe that cn2ðXt; m ¼ 0Þ ¼ cos2ðpt=TÞ while in the other limit, m ¼ 1, the pulse area vanishes. Eq. (1)
can be written in terms of the scaled dimensionless time t0 � t

ffiffiffi
F
p

, which implies that there are five independent parameters
Fig. 4. Angular velocities of the end (black), next-to-end (red), and central (green) pendula as a function of time for a chain of N ¼ 5 pendula, coupling
kF ¼ 3, shape parameter m ¼ 0:999, and three values of the coupling period: s ¼ 1:666; s ¼ 5:52 � TF , and s ¼ 10. (For interpretation of the references to
colour in this figure legend, the reader is referred to the web version of this paper.)
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in this model: the coupling period s, the number of rotators N, the scaled damped coefficient dF � d=
ffiffiffi
F
p

, the scaled forcing
period TF � T

ffiffiffi
F
p

, and the scaled coupling constant kF � k=F. For the parameter values used in the present numerical simu-
lations ðTF ¼ 5:52; dF ¼ 0:2Þ, each isolated pendulum driven by trigonometric pulses ðm ¼ 0Þ displays chaotic behaviour
characterized by a positive Lyapunov exponent [15]. Eq. (1) was numerically integrated using a fourth-order Runge–Kutta
algorithm with a time step dt0 ¼ 0:001. A useful measure that allows one to visualize the average global spatio-temporal
dynamics of the chains is the average velocity
Fig. 5.
(square
r jTFð Þ � 1
N

XN

n¼1

dhn

dt0
jTFð Þ; ð2Þ
where j is an integer multiple of the pulse period TF , while the degree of synchronization is characterized by the correlation
function
C jTFð Þ � 2
NðN � 1Þ

X
ilð Þ

cos hi jTFð Þ � hl jTFð Þh i; ð3Þ
where the summation is over all pairs of rotators. Notice that CðtÞ is 1(0) for the perfectly synchronized (desynchronized)
state.

Fig. 2 shows the average velocity as well as the correlation function at t0 ¼ 970TF ; . . . ;1000TF versus the shape parameter
for a chain of five pendula. Typically, the individual pendula go from chaos to stable equilibrium(oscillator death) as the
shape parameter increases from 0 to 1 while the whole chain goes from perfect synchrony(at m ¼ 0) to perfect trivial syn-
chrony(at m ¼ 1) passing through desynchronized states for m 2�0;1½. The evolution of the desynchronized states is charac-
terized by the correlation function undergoing an inverse period-doubling route as the shape parameter is increased, which
corresponds to the scenario found in the case of linear coupling [12]. While the strength of desynchronization generally in-
creases as the coupling period is increased, one typically finds that the correlation function exhibits a minimum as a function
of the shape parameter (at mmin) for sufficiently large coupling constant values (such as for kF ¼ 3, cf. Fig. 2). At this mini-
mum, all the pendula present a 2T periodic solution while their amplitude distribution reaches a maximum range. Also, for
certain values of the shape parameter (such as for m ¼ 0:99;0:999, cf. Fig. 3), the correlation function exhibits a weak min-
imum as a function of the coupling period at s ¼ smin K TF (see Fig. 3). This maximum desynchronization is due to the dis-
persion in both the amplitude and waveform of the pendula response (see Fig. 4) and is a consequence of the competition
between the two temporal scales of the problem (coupling and parametric excitation).

Similarly to the case of a linear coupling [12], the increase of the shape parameter has a twofold effect on the chaotic
chains, which permits one to understand the appearance of a maximum desynchronization (at mmin) as this parameter is
varied, provided both the coupling constant and the coupling period are sufficiently large [hereafter referred to as strong
coupling constant (SCC) and strong coupling period (SCP) regimes, respectively]. Indeed, while increasing the shape param-
eter from 0 improves the desynchronization-induced regularization of the chain, in the sense that to optimize the frequency-
locking to the forcing, it simultaneously increases the heterogeneity-induced desynchronization of the chain by increasing
the amplitude dispersion on the one hand, and the reshaping-induced oscillation death on the other. Indeed, the latter effect
becomes dominant for sufficiently narrow pulses: the equilibrium ðhn; _hnÞ ¼ ð0; 0Þ, unstable when the pendula are uncoupled,
becomes attracting and suppresses the 2T-periodic oscillations via an inverse supercritical Hopf bifurcation [15]. The depen-
dence of the impulse transmitted at the pulse waveform corresponding to maximal desynchronization,
Normalized transmitted impulse associated with maximal desynchronization Iðm ¼ mminÞ=Iðm ¼ 0Þ as a function of the coupling period s for N ¼ 4
s) and N ¼ 5 (circles) pendula. Black lines denote linear ð0:45708þ 0:00447s;0:4606þ 0:0072sÞ fits for N ¼ 4;5, respectively. Coupling kF ¼ 3.



Fig. 6. Bifurcation diagram of the average velocity r and the correlation function as a function of the coupling period s for a chain of N ¼ 5 pendula, shape
parameter m ¼ 0:9, and three values of the coupling constant.
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I m ¼ mminð Þ � F
Z T

0
cn2 Xt; m ¼ mminð Þdt; ð4Þ
on the coupling period is shown in Fig. 5. We typically find a linear law in the SCP regime, which exhibits an increasing slope
as the chain size is increased (see Fig. 5). For small coupling constants [hereafter referred to as a weak coupling constant
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(WCC) regime], one observes the regularization of chaotic chains from small values of the coupling period to values belong-
ing to the SCP regime, while a further increase of the coupling period leads to the pendula being chaotic again (such as for
kF ¼ 0:5, cf. Fig. 6). This rather complex scenario disappears in the SCC regime, where desynchronization of the regularized
states increases as the coupling period increases in the SCP regime (such as for kF ¼ 8, cf. Fig. 6). This desynchroniza-
tion increase is less noticeable in the deep SCC regime (such as for kF ¼ 20, cf. Fig. 6) and is due to the dispersion in the pen-
dula’s amplitude, as can be appreciated in Fig. 7.
Fig. 7. Angular velocities of the end (black), next-to-end (red), and central (green) pendula as a function of time for a chain of N ¼ 5 pendula, coupling
constant kF ¼ 8, shape parameter m ¼ 0:9, and three values of the coupling period: s ¼ 1; s ¼ 50, and s ¼ 80. (For interpretation of the references to colour
in this figure legend, the reader is referred to the web version of this paper.)
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For small values of the coupling constant, the weak coupling period (WCP) regime exhibits a great complexity, as can be
appreciated in the instance shown in Fig. 8. Indeed, one typically finds windows where the chains present chaotic desynchro-
nized states interspersed with windows containing regular states with different degrees of synchronization (such as for
kF ¼ 0:2, cf. Fig. 8) as well as abrupt chaos-order transitions via crisis phenomena (such as for kF ¼ 0:5, cf. Fig. 8).
Fig. 8. Bifurcation diagram of the average velocity r and the correlation function as a function of the coupling period s for a chain of N ¼ 5 pendula, shape
parameter m ¼ 0:999, and three values of the coupling constant.
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3. Conclusion

We have shown that localized reshaping of the driving forces leads to transitions from chaotic to phase-locked behaviour
in chains of dissipative and periodically coupled oscillators. In particular, we demonstrated numerically that decreasing the
impulse transmitted by the driving pulses of a minimal number of pendula results in regularization with the whole array
exhibiting frequency synchronization over a wide range of coupling periods. Also, we showed the great sensitivity of such
a regularization scenario against changes in both the coupling period and the coupling constant. Additionally, our results
suggest that the present reshaping mechanism can also be employed to enhance chaos in coupled systems [16]. We should
stress that this method of regularizing chaotic arrays has potential applications in those cases where the intrinsic parameters
of a system cannot be altered while any kind of periodic behaviour is preferred to chaos, such as in superconducting Joseph-
son arrays [17] or semiconductor laser arrays [18].
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