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On the robustness of complex heterogeneous gene expression networks
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Abstract

We analyze a continuous gene expression model on the underlying topology of a complex heterogeneous network. Numerical simulations

aimed at studying the chaotic and periodic dynamics of the model are performed. The results clearly indicate that there is a region in which

the dynamical and structural complexity of the system avoid chaotic attractors. However, contrary to what has been reported for Random

Boolean Networks, the chaotic phase cannot be completely suppressed, which has important bearings on network robustness and gene

expression modeling.
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1. Introduction

In the last several years, many scientists working on

fields as diverse as technological, social and biological

problems have realized that seemingly diverse systems such

as the Internet and protein interaction networks share

universal features when represented as graphs (or networks)

[1–3]. For instance, the small-world property and a power

law distribution of the number of interacting partners of a

given element, pervade social [4], biological [5,6] and

technological systems [7]. This observation has the invalu-

able advantage that statistical tools, concepts and even

results within a specific field can be borrowed or extrapo-

lated to other networked systems.

Biological systems constitute a topical field in which

network modeling is bringing out important results. Recent

analysis of protein–protein interaction networks has pro-

vided new useful insights into biological essentiality at this
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level of organization [8] and may help to elucidate the

functions of a large fraction of proteins whose functions are

unknown [9]. On the other hand, it is known that biological

networks show a striking degree of robustness in that their

functioning is preserved under variations of biochemical

parameters, different environmental conditions or even

different levels of their components [10]. Network’s

approach to cell functioning consists of studying the

dynamical and structural properties of the intricate patterns

of interconnections that made up cellular networks. Behind

this approach, it is hidden the belief that many processes at

the cellular level could be understood without a full and

detailed knowledge of all the chemical pathways, reactions

and molecular details involved in the functions performed

by cells [3]. This is the kind of analysis that we will use

here.

In the present paper, we are interested in studying how

the topological properties of complex networks affect the

robustness of biological systems. Specifically, we analyze

the dynamical phase diagram of a continuous gene

expression model on top of heterogeneous networks. We

provide evidences that both dynamics and structure deter-

mine the ability of the network to reach stable (robust)
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configurations, that is, regimes where small initial perturba-

tions do not grow in time (hereafter referred as dynamical

robustness). We also discuss the connections of our study

with other results recently reported for random heteroge-

neous networks with Boolean rules [11].
2. The model

The mathematical description of the gene expression

mechanisms is a tough task. Up to now, there is no model

that efficiently and accurately represents this complex

phenomenon. However, with the advent of modern com-

puter and laboratory techniques, scientists have unraveled

some of the essential features of these mechanisms as well

as the topological features of genetic networks. For instance,

by analyzing several datasets obtained from DNA micro-

array experiments, it has been recently shown that gene-

coexpression networks are highly heterogeneous [12]. This

means that there are a few genes that participates in the

regulation of many others, whereas the majority of them are

only involved in a few interactions. The previous observa-

tion, in terms of current network’s literature, translates into a

scale-free (SF) network [13]. They are characterized by a

power law degree distribution, P(k)~k�c, which measures

the probability that a given element interacts with other k

elements. Moreover, gene networks are also directed, that is,

interactions are unidirectional [14].

In order to take into account all previous features of real

genetic networks, we study the following model on top of

complex heterogeneous and directed networks. We consider

that the activity of the genes is described by the vector

G(t)={ g1(t),g2(t), . . ., gN(t)}, where gi, i=1, . . ., N accounts

for the activity level of each individual gene i in a network

made up of N elements. The time evolution of G(t) is

described by the set of first-order differential equations

[3,15]

G tð Þ
dt

¼ �G tð Þ þ F G tð Þð Þ; ð1Þ

where F(G(t)) is assumed to follow a continuous Michaelis–

Menten description [3,15],

Fi G tð Þð Þ ¼ d

U h
Xki
j¼1

wijgj tð Þ
" #

1þ U h
Xki
j¼1

wijgj tð Þ
" # : ð2Þ

The dynamics contained in Eq. (1) is a generalization of

the successful Random Boolean Networks (RBNs) models

[16–18], which consider that each gene’s activity is either 0

or 1. In Eq. (2), Wij is the interaction matrix linked to the

underlying network, dN0 and hN0 are constants, U(z)=z if

zz0 and zero otherwise, and ki is the connectivity (degree)

of gene i. We have set d=3 hereafter and varied h. As to the
underlying network, we follow the procedure introduced in

[19]. It consists of generating first a random scale-free

network [2] with a desired degree distribution P(k)~k�c and

a given average connectivity hki. At a second stage, we

assign directions to the already generated interactions.

Specifically, we look over the nonzero elements of the

connectivity matrix Cij of the SF network (if node i and j are

connected Cij=1) and with probability p consider that the

interaction iYj is inhibitory, Wij=�1, and with probability

1�p it is excitatory, Wij=1. In this way, the parameter p

controls the average output (input) connectivity of each

regulatory unit or gene. In this representation, two nodes at

the ends of a link are considered to be transcriptional units

which include a regulatory gene. On the other hand, the

parameter h controls the degree of nonlinearity in the genes’

interactions.

We have performed extensive numerical simulations of

the set of Eqs. (1–2). Starting from small values of h, the

time evolution of the local dynamics gi is obtained by

means of a fourth-order Runge–Kutta integration scheme

[20]. The set of simulations carried out screens the

parameter space (h, p), where h goes form 1 to 10 and p

from 0 to 1. For each pair (h, p), different realizations

corresponding to many initial conditions were performed.

The behavior of the model turns out to be very rich with a

plenty of steady, periodic and chaotic states. Recently, we

have fully characterized these regimes [19,21]. However,

motivated by another study on the influence of the degree of

heterogeneity (here represented by the exponent c) in the

dynamical robustness of the system [11], we present here

numerical results for different heterogeneous networks. The

results show that, contrary to what has been claimed,

heterogeneous networks cannot completely avoid the onset

of chaotic behavior in a region of the parameter space (h, p).
3. Results and discussions

To this end, we first generate different networks

characterized by distinct exponents of the degree distribu-

tion. The method employed is known as the generalized

Barabási–Albert model [2] and allows to tune c between 2

and 3. In this range, the mathematical properties of the

degree distribution are peculiar. While an average con-

nectivity can be formally defined, the second moment of the

distribution diverges in the thermodynamics limit, which

means that the fluctuations around hki are not bounded. This
property has been shown to change radically the behavior of

several processes ran on top of these networks [3,22–24].

For instance, both epidemic and percolation thresholds are

suppressed in the infinite system size limit, contrary to what

happens in random graphs where the thresholds are nonzero.

Thus, we generate three networks with c=3, 2.33 and 2.2

with hki=6, assign directions to the genes’ interactions as

explained before and look at the phase diagram of the

system (for details of numerical simulations, see [21]).
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Fig. 2. Probability that the system displays dynamical robustness as a

function of p for different c. The network consists of N=300 nodes and

h=4. The straight line marks the threshold beyond which chaotic attractors

are more likely than periodic ones.
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The results are depicted in Fig. 1 for a network made up

of N=300 genes and h=4. It is evident that as we vary the

topological parameter p, the probability of having chaotic

behavior, Pch departs from zero at a threshold value, p1
which depends on the exponent c, i.e., on the degree of

heterogeneity of the network (the lower c is, the more

heterogeneous the network is). This probability is defined as

the relative number of realizations, corresponding to differ-

ent initial conditions, where at least one gene’s activity

ended up in a chaotic attractor. The inset is a zoom of the

region around the threshold value for the three networks

studied. The linear-log scale shows that near p1, the

probability exponentially grows as p is increased. More

important, the thresholds are clearly distinct for the three

cases illustrated. This confirms that the topological proper-

ties of the underlying network greatly affect the onset of

dynamical instabilities (chaotic behavior). Additionally, we

note that there is a second threshold value for large values of

p which avoids chaotic behavior. This is a consequence of

the dynamics expressed in Eq. (1). In this region, most of

the interactions are inhibitory and the dynamics of the genes

die out due to the damping term in Eq. (1). Thus, the

nontrivial threshold is p1.

As we said before, the dynamical behavior of the system

is very rich. In fact, chaotic behavior is usually interpreted

as a prohibited regime in which living organisms may not

operate [14]. There is no experimental observation of such a

behavior. However, periodic attractors are allowed as they

point to a rich behavioral repertoire while keeping the

robustness of the system under variations of initial

conditions, internal parameters or environmental pressures.

In Fig. 2, we represent the subtraction between Pper and Pch

for the same networks of Fig. 1. Here, Pper is also defined as

the portion of the total number of realizations in which
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Fig. 1. Probability of having chaotic behavior as a function of the

topological parameter p for three different heterogeneous networks. The

inset is a zoom of the parameter region in which Pch departs from zero. See

the text for further details on the definitions and network parameters.
chaotic behavior was not attained by any node and at least

one periodic orbit was observed. The straight line simply

marks the threshold value for p beyond which the chaotic

regimes are more likely than periodic behavior. In other

words, the system dynamics can be regarded as dynamically

robust in the region (0,p2) (neglecting the parameter space

near p=1, see Fig. 2), where the specific value of p2 depends

on the degree of heterogeneity of the underlying network.

Additionally, as the heterogeneity of the network increases

(smaller values of c), the parameter space that allows for

more robust behavior is larger.

The results here obtained are not always in the same lines

of a recent study where Random Boolean rules are

implemented on top of scale-free networks for the same

values of c [11]. Specifically, we found that the region in

which chaotic behavior is observed cannot be avoided

completely contrary to the results of [11]. There are several

reasons that explain the differences in the results. First of all,

it is known that there is no exact correspondence between

the numbers of behavioral patterns in RBNs and continuous

models of real gene networks [25]. On the other hand, the

directness of the networks studied in [11] differs from the

one implemented here which may be the source of

additional differences. As a matter of fact, Fig. 2 reveals

that regardless of the value of c employed, the dynamical

robustness of the system is mainly determined by the

topological properties given by p, as the differences in the

threshold values for the three networks is not too significant.

Finally, we point out that the analytical treatment used in

[11] may not take into account properly the fluctuations in

the degree distribution. As an example, we mention that in

epidemic and percolation problems, the mean-field approx-

imation, though still neglecting higher order correlations,

must be modified in order to account for the heterogeneous

character of the networks [3,22–24].
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In summary, we have studied a continuous gene

expression model on top of complex scale-free networks.

We have focussed on the influence of the fluctuations

around the mean average connectivity on the dynamical

robustness of the system’s dynamics. We have found that for

heterogeneous distributions, the system cannot completely

avoid the existence of chaotic attractors, contrary to what

was previously suggested for RBNs models. Finally, we

would like to stress that our results do not imply that these

networks are not advantageous from the perspective of

biological networks’ design and evolution. In a previous

work, we showed that even in the presence of chaotic

attractors, heterogeneous networks are more favored than

homogeneous ones [19,21]. We belief that the kind of study

performed here may provide hints for more complex

theoretical models and the experimental validation of the

topology of gene networks.
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